
C++-PaT-Net

JVP is controlled by PaT-Nets (Parallel Transition Networks). They are

simultaneously executing �nite state automata. Every clock tick, they call

for action and conditionally make state transitions.

For the development of JVP, we implemented PaT-Nets in C++. Each

class of PaT-Nets is de�ned as a derived class of class LWNet, which stands

for Light Weight PaT-Net. Its nodes are de�ned with their associated ac-

tions and transition rules in its constructor, while actions and conditions are

de�ned as member functions in each PaT-Net. Other class-speci�c initial-

ization and termination can be performed in constructors and destructors of

each class, respectively

1

. Local variables can be de�ned as member variables

in class de�nitions of PaT-Nets.

Other features of the C++-PaT-Nets include:

(1) The de�nition of PaT-Nets is extended so that it can have multiple

states at the same time. It enables us to represent simple parallel

execution of actions in a single PaT-Net.

(2) A PaT-Net can send messages to other PaT-Nets. (message passing),

and can also wait for their reply.

Instances of PaT-Nets are stored on a list, and they are scanned every

tick.

1

Common initialization and termination processings as a PaT-Net are performed in the

constructor and destructor of class LWNet, respectively.

3



&%

'$

START

-

[0:5; 0:8)

' $

?

[0:8; 1:0]

&%

'$

NODE 1

-

[0:5; 0:8)

& %

6

[0:8; 1:0]

&%

'$

NODE 2

-

[0:5; 1:0]

&%

'$

END

Figure 1: A sample PaT-Net.

1 De�ning PaT-Nets

Let us de�ne a sample PaT-Net where a random value in [0; 1] is generated

every tick and then conditionally makes transitions depending on the value.

Its structure is shown in Figure 1.

Figure 2 is a sample header �le de�ning the sample PaT-Net as SmplNet.

SmplNet is de�ned as a derived class of class LWNet, and thus lwnet.h needs

to be included in the header �le.

Nodes in a single C++-PaT-Net are identi�ed by numbers from 0 to n�1

if n is the number of the nodes. For readability, however, node identi�ers

should usually be de�ned by an enumeration as shown from lines 5 to 12.

Local variables, action functions, conditions functions, constructors, and de-

structors are also declared in the class de�nition. Arguments and return

values for action/condition functions are de�ned in lwnet.h as:

typedef void (LWNet::*ACTFUNC)(void); // action function

typedef Bool (LWNet::*CONDFUNC)(void); // condition function

A program �le for SmplNet is shown in Figure 3 In the �gure, ac-

tion/condition functions and constructor/destructor are de�ned.

At the top of the constructor, arguments for LWNet must be provided. In

the declaration in lwnet.h, the constructor of LWNet has two arguments:

LWNet(int sz, NodeId start = 0);

The �rst argument is the number of nodes, and the second is the start node

id. The second argument can be omitted, and the default start node id is 0.

In the constructor, the structure of the net is de�ned. For example,

4



#include "lwnet.h"

class SmplNet : public LWNet {

private:

// node identifier (in literal)

enum {

NODE_START,

NODE_1,

NODE_2,

NODE_END,

NUM_NODES // the number of nodes

};

// local variables

double rgv; // randomly generated value in [0,1]

// action functions

void actfunc_s(void);

void actfunc_1(void);

void preactfunc_1(void);

void postactfunc_1(void);

void actfunc_2(void);

// condition functions

Bool condfunc_5(void);

Bool condfunc_8(void);

public:

SmplNet(); // constructor

~SmplNet(); // destructor

};

Figure 2: A header �le for SmplNet.

5



#include <stream.h>

#include <stdlib.h>

#include <sys/time.h>

#include "smplnet.h"

void SmplNet::actfunc_s(void)

{

rgv = drand48();

cout << "Get " << rgv << " in actfunc_s" << endl;

}

void SmplNet::actfunc_1(void)

{

rgv = drand48();

cout << "Get " << rgv << " in actfunc_1" << endl;

}

void SmplNet::preactfunc_1(void)

{

cout << "Executing preactfunc_1" << endl;

}

void SmplNet::postactfunc_1(void)

{

cout << "Executing postactfunc_1" << endl;

}

void SmplNet::actfunc_2(void)

{

rgv = drand48();

cout << "Get " << rgv << " in actfunc_2" << endl;

}

Bool SmplNet::condfunc_5(void)

{

return (rgv >= 0.5) ? TRUE : FALSE;

}

Bool SmplNet::condfunc_8(void)

{

return (rgv >= 0.8) ? TRUE : FALSE;

}

Figure 3: A program �le for SmplNet.

6



SmplNet::SmplNet()

: LWNet(NUM_NODES)

{

cout << "Executing SmplNet constructor" << endl;

// defining PaT-Net structure

defnormalnode(NODE_START, (ACTFUNC)&SmplNet::actfunc_s);

deftrans(NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);

deftrans(NODE_START, (CONDFUNC)&SmplNet::condfunc_5, NODE_1);

defnormalnode(NODE_1, (ACTFUNC)&SmplNet::actfunc_1,

(ACTFUNC)&SmplNet::preactfunc_1, (ACTFUNC)&SmplNet::postactfunc_1);

deftrans(NODE_1, (CONDFUNC)&SmplNet::condfunc_8, NODE_END);

deftrans(NODE_1, (CONDFUNC)&SmplNet::condfunc_5, NODE_2);

defnormalnode(NODE_2, (ACTFUNC)&SmplNet::actfunc_2);

deftrans(NODE_2, (CONDFUNC)&SmplNet::condfunc_5, NODE_END);

defexitnode(NODE_END);

// initializing drand48

struct timeval tv;

struct timezone tz;

#ifdef sgi

BSDgettimeofday(&tv, &tz);

#else

gettimeofday(&tv, &tz);

#endif

srand48(tv.tv_sec);

}

SmplNet::~SmplNet()

{

cout << "Executing SmplNet destructor\n";

}

Figure 3: A program �le for SmplNet (contd.).

7



defnormalnode(NODE_START, (ACTFUNC)&SmplNet::actfunc_s);

de�nes that the node NODE_START(= 0) is a normal node where the action

actfunc_s() is executed every tick. If action functions are provided as the

third and forth arguments in defnormalnode(), they are the pre-action and

post-action of the node, respectively. The pre-action is executed once when

the state changes to the node, while the post-action is called once when the

state changes to another node.

For de�ning transition rules, deftrans()s are used. For example,

deftrans(NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);

de�nes that, in SmplNet, the state changes to NODE_2 if condfunc_8() re-

turns TRUE; otherwise, the state is kept to be NODE_START

The transition rules represented by deftrans() are evaluated in the order

of deftrans()s. If the two lines:

deftrans(NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);

deftrans(NODE_START, (CONDFUNC)&SmplNet::condfunc_5, NODE_1);

are exchanged, then any value in [0:5; 1] makes the state change to NODE_1.

defexitnode() de�nes an exit node, where the PaT-Net is terminated.

For example,

defexitnode(NODE_END);

de�nes the node NODE_END to be an exit node.

2 Running PaT-Nets

Figure 4 is a simplest program running SmplNet, and an output from the

program is shown in Figure 5. LWNet::advance() makes a single-tick ex-

ecution.

To create and delete PaT-Nets arbitrarily in programs, new and delete

operators in C++ are used. A sample program is shown in Figure 6.

To manage and execute PaT-Nets in a uni�ed fashion, class LWNetList is

prepared. LWNetList::addnet() is used to register a PaT-Netin LWNetList,

while LWNetList::advance() is to make a single-tick execution for all the

PaT-Nets on the LWNetList. Figure 7 illustrates the usage of LWNetList.

8



#include "smplnet.h"

void main(void)

{

SmplNet snet;

while(snet.advance())

;

}

Figure 4: A program for running SmplNet.

LWNet constructor

Executing SmplNet constructor

Get 0.428522 in actfunc_s

Get 0.0187866 in actfunc_s

Get 0.5905 in actfunc_s

Executing preactfunc_1

Get 0.330349 in actfunc_1

Get 0.853521 in actfunc_1

Executing postactfunc_1

Executing SmplNet destructor

LWNet destructor

Figure 5: An output from the sample program

#include "smplnet.h"

void main(void)

{

SmplNet* snet = new SmplNet;

while(snet->advance())

;

delete snet;

}

Figure 6: A program for running SmplNet.

9



#include "smplnet.h"

void main(void)

{

LWNetList::addnet(new SmplNet);

while(LWNetList::advance())

;

}

Figure 7: A program for running SmplNet.

A major di�erence between the Figures 4 and 6 and Figure 7 lies

in the execution of the destructor SmpleNet::~SmplNet(). In LWNetList, a

PaT-Net is treated not as an instance of a derived class of LWNet but as one

of the class LWNet. Thus SmpleNet::~SmplNet() is not executed in Figure

7. To make a terminal processing in a PaT-Net stored in LWNetList, the

terminal processing should be performed in a dummy node, and then the

dummy node is placed just before an exit node.

3 Running PaT-Nets in Jack

A simplest way to run PaT-Nets in Jack is to manage PaT-Nets in LWNetList

and then make LWNetList execute every tick with BindSimulationFunction().

A sample modi�cation to jack_main.c++ is shown in Figure 8.

4 Node Types in PaT-Nets

The class LWNet has eight types of nodes: normal-node, call-node, par-node,

join-node, indy-node, kldp-node, halt-node, and exit-node. This section ex-

plains the usages of these types of nodes.

Normal-node. As described in Section 1, normal-nodes are de�ned by

defnormalnode():

void defnormalnode(NodeId dnid, ACTFUNC dact,

ACTFUNC dpreact = 0, ACTFUNC dpostact = 0);

10



int

main (int argc, char *argv[])

{

...

BindSimulationFunction(LWNetList::advance, 0); // inserted

...

/*

* Parse command line files

*/

parsefiles(argc,argv);

DoCmds();

return(0);

}

Figure 8: A sample modi�cation to jack main.c++ in Jack.

dnid, dact, dpreact, and dpostact are a node id, an associated action

function, a pre-action function, and a post-action function, respectively. The

associated action function is executed every clock tick if the state is in the

node. The pre-action function is executed once when the state is changed

to the node, and the post-action function is executed once when the state is

changed from the node to another node.

Call-node. Call nodes are de�ned by defcallnode() in the form of:

void defcallnode(NodeId dnid, LWNEW dfnew);

The node dnid calls another PaT-Net invoked by dfnew and then wait until

the child net terminates. The type LWNEW is declared as:

typedef LWNet* (*LWNEW)(void);

and it is a \new" function for the class of the child PaT-Net. A sample \new"

function for SmplNet is shown in Figure 9.

Par-node. Our C++-PaT-Net is extended so that it can have multiple

states at the same time. Par nodes spawn several states, each of which

corresponds to a node, and are de�ned by defparnode() in the form of:

11



LWNet* new_SmplNet()

{

return new SmplNet();

}

Figure 9: A \new" function for SmplNet.

void defparnode(NodeId dnid, NodeId br0, NodeId br1,

NodeId br2 = -1, NodeId br3 = -1);

The node dnid spawns several states corresponding to br0, br1, br2, and

br3. In the current implementation, two to four states are spawned at the

same time. Depending on the number of the spawned states, br2 and br3

can be omitted. These spawned states are usually joined together by a Join

node described below. The �rst spawned state corresponding to br0 has

precedence over the other spawned states. This precedence is related to kldp

nodes.

Join-node. Join nodes join together the spawned states, and are de�ned

by defjoinnode() in the form of:

void defjoinnode(NodeId dnid, NodeId dpar, NodeId dnext);

The node dnid waits until all the states spawned by the par node dpar, and

then the state moves to the node dnext. If some of the states spawned by

dpar are terminated by indy/kldp/halt nodes as described below, then the

join node dnid waits eternally. If a par node p

1

spawned by another par node

p

0

further spawns the states, then all the states/nodes spawned by p

1

should

�rst be joined by a join node corresponding to p

1

, and then the states/nodes

spawned by p

0

should be joined by another join node.

Indy-node. Indy nodes are de�ned by defindynode() in the form of:

void defindynode(NodeId dnid, NodeId dpar, NodeId dnext);

If the control comes to the indy node dnid, then the nodes spawned by

the par node dpar and their descendents (further spawned nodes) are all

terminated, and the control moves to the node dnext.

Kldp-node. As described above, the �rst spawned state/node in a par-

node has precedence over the other spawned states. We call its the other

12



nodes are dependents of the �rst node. If a state/node s

1

is a dependent of

another state/node s

0

, then all the nodes spawned by s

1

are also dependents

of s

0

. If a state/node s

1

is a dependent of another state/node s

0

, then s

1

is also the dependent of the �rst node spawned by s

0

The above rules are

applied recursively. Kldp nodes are de�ned by defkldpnode() in the form

of:

void defkldpnode(NodeId dnid, NodeId dnext);

After the kldp node dnid kills all its dependents, the control moves to the

node dnext.

Halt-node. Halt nodes are de�ned by defhaltnode() in the form of:

void defhaltnode(NodeId dnid);

The halt node dnid terminate the node itself without invoking its following

nodes. If the number of current active states/nodes is zero, then the PaT-Net

itself is terminated.

Exit-node. Exit nodes are de�ned by defexitnode() in the form of:

void defexitnode(NodeId dnid);

The exit node dnid terminates the PaT-Net itself.

5 Other Features on Conditions and Tran-

sitions

Condition functions. Two condition functions defaultcond() and finishcond()

are prepared in C++-PaT-Net. The function defaultcond() which always

returns TRUE enables us to make transitions form a node immediately. The

function finishcond() returns TRUE in a node immediately after the func-

tion markfinished() is called in the node.

Node transition via node branch functions In addition to node tran-

sitions via pairs of a condition function and a next node id, the C++-PaT-

Net supports node transitions via pairs of a condition function and a node

branch function which returns the next node id. The function deftrans()

is overloaded as follows:

13



void deftrans(NodeId dnid, CONDFUNC dcond, NodeId dnext);

void deftrans(NodeId dnid, CONDFUNC dcond, NODEBRNCFUNC dnbf);

The type NODEBRNCFUNC is declared as:

typedef NodeId (LWNet::*NODEBRNCFUNC)(void);

The order of evaluation of condition functions is independent of the third

argument of deftrans(). Condition functions for a node are evaluated in

the order of associated deftrans() in the program.

6 Communication via message passing

Communication between LWNet is realized by sending a request from one

LWNet to another LWNet, and later returning its reply from the receiver of

the request to the sender. Request format and reply condition/format can

be de�ned as required. Waiting should be explicitly de�ned in some action

function in each LWNet.

To send a message to a PaT-Net, requestjob() is used. It is in the form:

void requestjob(int type, void* data, JobReport* ret);

and sent to a PaT-Neta via a.requestjob(...). Typically request types

and associated data (attributes and parameters) are sent via type and data,

respectively. The concrete format of data should be pre-determined among

senders and receivers.

The type JobReport is used to send a reply from the receiver. Its general

de�nition is given as:

class JobReport {

public:

virtual void reset() = 0; // reset JobReport as UNREPORTED

virtual int isreported() = 0; // TRUE if reported; FALSE otherwise

};

JobReport should be \unreported" until the reply is issued. reset() is used

to initialize/reset JobReport, and isreported() returns whether the reply

is issued (TRUE) or not (FALSE). Concrete classes for reply message should be

14



de�ned as a derived class of JobReport. The most typical derived class of

JobReport is given as GPJobReport in gpjobrep.h.

Once the requestjob() is sent from the PaT-Net n

p

to the PaT-Net n

c

,

the net n

c

processes the requested job with some functions like procrequest().

n

c

can judge whether it is requested by isrequested(). If n

c

replies, for ex-

ample, by assigning COMPLETED to result in GPJobReport, n

p

knows it by

isreported(). In other words, n

p

typically calls isreported() every clock

tick. In case of GPJobReport, isreported() returns non-zero if and only if

Result is not UNCOMPLETED, and the above works well.

15


