C++4-PaT-Net

JVP is controlled by PaT-Nets (Parallel Transition Networks). They are
simultaneously executing finite state automata. Every clock tick, they call
for action and conditionally make state transitions.

For the development of JVP, we implemented PaT-Nets in C++. Each
class of PaT-Nets is defined as a derived class of class LWNet, which stands
for Light Weight PaT-Net. Its nodes are defined with their associated ac-
tions and transition rules in its constructor, while actions and conditions are
defined as member functions in each PaT-Net. Other class-specific initial-
ization and termination can be performed in constructors and destructors of
each class, respectively!. Local variables can be defined as member variables
in class definitions of PaT-Nets.

Other features of the C+-+-PaT-Nets include:

(1) The definition of PaT-Nets is extended so that it can have multiple
states at the same time. It enables us to represent simple parallel
execution of actions in a single PaT-Net.

(2) A PaT-Net can send messages to other PaT-Nets. (message passing),
and can also wait for their reply.

Instances of PaT-Nets are stored on a list, and they are scanned every
tick.

!Common initialization and termination processings as a PaT-Net are performed in the
constructor and destructor of class LWlet, respectively.



Figure 1: A sample PaT-Net.

1 Defining PaT-Nets

Let us define a sample PaT-Net where a random value in [0, 1] is generated
every tick and then conditionally makes transitions depending on the value.
Its structure is shown in Figure 1.

Figure 2 is a sample header file defining the sample PaT-Net as SmplNet.
SmplNet is defined as a derived class of class LWNet, and thus lwnet.h needs
to be included in the header file.

Nodes in a single C++-PaT-Net are identified by numbers from 0 to n—1
if n is the number of the nodes. For readability, however, node identifiers
should usually be defined by an enumeration as shown from lines 5 to 12.
Local variables, action functions, conditions functions, constructors, and de-
structors are also declared in the class definition. Arguments and return
values for action/condition functions are defined in lwnet.h as:

typedef void (LWNet::*ACTFUNC) (void); // action function
typedef Bool (LWNet::*CONDFUNC) (void); // condition function

A program file for SmplNet is shown in Figure 3 In the figure, ac-
tion/condition functions and constructor/destructor are defined.

At the top of the constructor, arguments for LWNet must be provided. In
the declaration in lwnet.h, the constructor of LWNet has two arguments:

LWNet (int sz, Nodeld start = 0);

The first argument is the number of nodes, and the second is the start node
id. The second argument can be omitted, and the default start node id is 0.
In the constructor, the structure of the net is defined. For example,

4



#include "lwnet.h"

class SmplNet : public LWNet {
private:
// node identifier (in literal)
enum {
NODE_START,
NODE_1,
NODE_2,
NODE_END,
NUM_NODES // the number of nodes

// local variables
double rgv; // randomly generated value in [0,1]
// action functions
void actfunc_s(void);
void actfunc_1(void);
void preactfunc_1(void);
void postactfunc_1(void);
void actfunc_2(void);
// condition functions
Bool condfunc_5(void);
Bool condfunc_8(void);
public:
SmplNet(); // constructor
“SmplNet(); // destructor
¥+

Figure 2: A header file for SmplNet.



#include <stream.h>
#include <stdlib.h>
#include <sys/time.h>
#include '"smplnet.h"

void SmplNet::actfunc_s(void)

rgv = drand48();
cout << "Get " << rgv << " in actfunc_s" << endl;

}
void SmplNet::actfunc_1(void)
{
rgv = drand48();
cout << "Get " << rgv << " in actfunc_1" << endl;
}
void SmplNet::preactfunc_1(void)
{
cout << "Executing preactfunc_1" << endl;
}
void SmplNet::postactfunc_1(void)
{
cout << "Executing postactfunc_1" << endl;
}
void SmplNet::actfunc_2(void)
{
rgv = drand48(Q);
cout << "Get " << rgv << " in actfunc_2" << endl;
}

Bool SmplNet::condfunc_5(void)
{

return (rgv >= 0.5) 7 TRUE : FALSE;

}
Bool SmplNet::condfunc_8(void)
{
return (rgv >= 0.8) 7 TRUE : FALSE;
}

Figure 3: A program file for SmplNet.



SmplNet: :SmplNet ()
% LWNet (NUM_NODES)

cout << "Executing SmplNet constructor'" << endl;

// defining PaT-Net structure
defnormalnode (NODE_START, (ACTFUNC)&SmplNet::actfunc_s);
deftrans (NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);
deftrans (NODE_START, (CONDFUNC)&SmplNet::condfunc_5, NODE_1);

defnormalnode (NODE_1, (ACTFUNC)&SmplNet::actfunc_1,
(ACTFUNC)&SmplNet: :preactfunc_1, (ACTFUNC)&SmplNet::postactfunc_1);

deftrans(NODE_1, (CONDFUNC)&SmplNet::condfunc_8, NODE_END);

deftrans(NODE_1, (CONDFUNC)&SmplNet::condfunc_5, NODE_2);

defnormalnode (NODE_2, (ACTFUNC)&SmplNet::actfunc_2);
deftrans(NODE_2, (CONDFUNC)&SmplNet::condfunc_5, NODE_END);

defexitnode (NODE_END) ;
// initializing drand48

struct timeval tv;

struct timezone tz;
#ifdef sgi

BSDgettimeofday (&tv, &tz);
#telse

gettimeofday(&tv, &tz);
#endif

srand48(tv.tv_sec);

SmplNet: : "SmplNet ()
{

b

cout << "Executing SmplNet destructor\n";

Figure 3: A program file for SmplNet (contd.).



defnormalnode (NODE_START, (ACTFUNC)&SmplNet::actfunc_s);

defines that the node NODE_START(= 0) is a normal node where the action
actfunc_s() is executed every tick. If action functions are provided as the
third and forth arguments in defnormalnode(), they are the pre-action and
post-action of the node, respectively. The pre-action is executed once when
the state changes to the node, while the post-action is called once when the
state changes to another node.

For defining transition rules, deftrans()s are used. For example,

deftrans (NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);

defines that, in SmplNet, the state changes to NODE_2 if condfunc_8() re-
turns TRUE; otherwise, the state is kept to be NODE_START

The transition rules represented by deftrans() are evaluated in the order
of deftrans()s. If the two lines:

deftrans (NODE_START, (CONDFUNC)&SmplNet::condfunc_8, NODE_2);
deftrans (NODE_START, (CONDFUNC)&SmplNet::condfunc_5, NODE_1);

are exchanged, then any value in [0.5, 1] makes the state change to NODE_1.
defexitnode() defines an exit node, where the PaT-Net is terminated.
For example,

defexitnode (NODE_END) ;

defines the node NODE_END to be an exit node.

2 Running PaT-Nets

Figure 4 is a simplest program running SmplNet, and an output from the
program is shown in Figure 5. LWNet::advance() makes a single-tick ex-
ecution.

To create and delete PaT-Nets arbitrarily in programs, new and delete
operators in C++4 are used. A sample program is shown in Figure 6.

To manage and execute PaT-Nets in a unified fashion, class LWNetList is
prepared. LWNetList: :addnet () is used to register a PaT-Netin LWNetList,
while LWNetList: :advance() is to make a single-tick execution for all the
PaT-Nets on the LWNetList. Figure 7 illustrates the usage of LWNetList.



#include '"smplnet.h"
void main(void)
SmplNet snet;

while(snet.advance())

b

Figure 4: A program for running SmplNet.

LWNet constructor

Executing SmplNet constructor
Get 0.428522 in actfunc_s
Get 0.0187866 in actfunc_s
Get 0.5905 in actfunc_s
Executing preactfunc_1

Get 0.330349 in actfunc_1
Get 0.853521 in actfunc_1
Executing postactfunc_1
Executing SmplNet destructor
LWNet destructor

Figure 5: An output from the sample program

#include '"smplnet.h"

void main(void)
SmplNet* snet = new SmplNet;
while(snet->advance())

dele%e snet;

Figure 6: A program for running SmplNet.



#include '"smplnet.h"

void main(void)
LWNetList::addnet(new SmplNet);
while(LWNetList: :advance())

b

Figure 7: A program for running SmplNet.

A major difference between the Figures 4 and 6 and Figure 7 lies
in the execution of the destructor SmpleNet::“SmplNet (). In LWNetList, a
PaT-Net is treated not as an instance of a derived class of LWNet but as one
of the class LWNet. Thus SmpleNet::~SmplNet() is not executed in Figure
7. To make a terminal processing in a PaT-Net stored in LWNetList, the
terminal processing should be performed in a dummy node, and then the
dummy node is placed just before an exit node.

3 Running PaT-Nets in Jack

A simplest way to run PaT-Nets in Jack is to manage PaT-Nets in LWNetList
and then make LWNetList execute every tick with BindSimulationFunction().
A sample modification to jack_main.c++ is shown in Figure 8.

4 Node Types in PaT-Nets

The class LWNet has eight types of nodes: normal-node, call-node, par-node,
join-node, indy-node, kldp-node, halt-node, and exit-node. This section ex-
plains the usages of these types of nodes.

Normal-node. As described in Section 1, normal-nodes are defined by
defnormalnode():

void defnormalnode(NodeId dnid, ACTFUNC dact,
ACTFUNC dpreact = 0, ACTFUNC dpostact = 0);

10



int
main (int argc, char *argv[])

{

BindSimulationFunction(LWNetList::advance, 0); // inserted

/%
* Parse command line files
*/

parsefiles(argc,argv) ;
DoCmds () ;

return(0);

Figure 8: A sample modification to jack main.c++ in Jack.

dnid, dact, dpreact, and dpostact are a node id, an associated action
function, a pre-action function, and a post-action function, respectively. The
associated action function is executed every clock tick if the state is in the
node. The pre-action function is executed once when the state is changed
to the node, and the post-action function is executed once when the state is
changed from the node to another node.

Call-node. Call nodes are defined by defcallnode() in the form of:

void defcallnode(NodeId dnid, LWNEW dfnew);

The node dnid calls another PaT-Net invoked by dfnew and then wait until
the child net terminates. The type LWNEW is declared as:

typedef LWNet* (*LWNEW) (void);

and it is a “new” function for the class of the child PaT-Net. A sample “new”
function for SmplNet is shown in Figure 9.

Par-node. Our C++4-PaT-Net is extended so that it can have multiple
states at the same time. Par nodes spawn several states, each of which
corresponds to a node, and are defined by defparnode() in the form of:

11



LWNet* new_SmplNet ()
{

b

return new SmplNet();

Figure 9: A “new” function for SmplNet.

void defparnode(NodeId dnid, NodeId br0O, NodeId bri,
NodeId br2 = -1, Nodeld br3 = -1);

The node dnid spawns several states corresponding to br0, bri, br2, and
br3. In the current implementation, two to four states are spawned at the
same time. Depending on the number of the spawned states, br2 and br3
can be omitted. These spawned states are usually joined together by a Join
node described below. The first spawned state corresponding to brO has
precedence over the other spawned states. This precedence is related to kldp
nodes.

Join-node. Join nodes join together the spawned states, and are defined
by defjoinnode() in the form of:

void defjoinnode(NodeId dnid, NodeId dpar, Nodeld dnext);

The node dnid waits until all the states spawned by the par node dpar, and
then the state moves to the node dnext. If some of the states spawned by
dpar are terminated by indy/kldp/halt nodes as described below, then the
join node dnid waits eternally. If a par node p; spawned by another par node
po further spawns the states, then all the states/nodes spawned by p; should
first be joined by a join node corresponding to p;, and then the states/nodes
spawned by pgy should be joined by another join node.
Indy-node. Indy nodes are defined by defindynode() in the form of:

void defindynode(NodeId dnid, NodeId dpar, Nodeld dnext);

If the control comes to the indy node dnid, then the nodes spawned by
the par node dpar and their descendents (further spawned nodes) are all
terminated, and the control moves to the node dnext.

Kldp-node. As described above, the first spawned state/node in a par-
node has precedence over the other spawned states. We call its the other

12



nodes are dependents of the first node. If a state/node s; is a dependent of
another state/node sy, then all the nodes spawned by s; are also dependents
of sg. If a state/node s; is a dependent of another state/node sg, then s;
is also the dependent of the first node spawned by sq The above rules are
applied recursively. Kldp nodes are defined by defkldpnode() in the form
of:

void defkldpnode(NodeId dnid, NodeId dnext);

After the kldp node dnid kills all its dependents, the control moves to the
node dnext.
Halt-node. Halt nodes are defined by defhaltnode() in the form of:

void defhaltnode(NodeId dnid);

The halt node dnid terminate the node itself without invoking its following
nodes. If the number of current active states/nodes is zero, then the PaT-Net
itself is terminated.

Exit-node. Exit nodes are defined by defexitnode() in the form of:

void defexitnode(NodeIld dnid);

The exit node dnid terminates the PaT-Net itself.

5 Other Features on Conditions and Tran-
sitions

Condition functions. Two condition functions defaultcond() and finishcond ()
are prepared in C4++-PaT-Net. The function defaultcond() which always
returns TRUE enables us to make transitions form a node immediately. The
function finishcond () returns TRUE in a node immediately after the func-
tion markfinished() is called in the node.

Node transition via node branch functions In addition to node tran-
sitions via pairs of a condition function and a next node id, the C+4-Pa'T-
Net supports node transitions via pairs of a condition function and a node
branch function which returns the next node id. The function deftrans()
1s overloaded as follows:

13



void deftrans(NodeId dnid, CONDFUNC dcond, Nodeld dnext);
void deftrans(NodeId dnid, CONDFUNC dcond, NODEBRNCFUNC dnbf);

The type NODEBRNCFUNC is declared as:
typedef NodeId (LWNet::*NODEBRNCFUNC) (void);

The order of evaluation of condition functions is independent of the third
argument of deftrans(). Condition functions for a node are evaluated in
the order of associated deftrans() in the program.

6 Communication via message passing

Communication between LWNet is realized by sending a request from one
LWNet to another LWNet, and later returning its reply from the receiver of
the request to the sender. Request format and reply condition/format can
be defined as required. Waiting should be explicitly defined in some action
function in each LWNet.

To send a message to a PaT-Net, requestjob() is used. It is in the form:

void requestjob(int type, void* data, JobReport* ret);

and sent to a PaT-Neta via a.requestjob(...). Typically request types
and associated data (attributes and parameters) are sent via type and data,
respectively. The concrete format of data should be pre-determined among
senders and receivers.

The type JobReport is used to send a reply from the receiver. Its general
definition is given as:

class JobReport {
public:
virtual void reset() = 0; // reset JobReport as UNREPORTED
virtual int isreported() = 0; // TRUE if reported; FALSE otherwise
s

JobReport should be “unreported” until the reply is issued. reset () is used
to initialize/reset JobReport, and isreported() returns whether the reply
is issued (TRUE) or not (FALSE). Concrete classes for reply message should be

14



defined as a derived class of JobReport. The most typical derived class of
JobReport is given as GPJobReport in gpjobrep.h.

Once the requestjob() is sent from the PaT-Net n, to the PaT-Net n.,
the net n, processes the requested job with some functions like procrequest ().
n. can judge whether it is requested by isrequested (). If n. replies, for ex-
ample, by assigning COMPLETED to result in GPJobReport, n, knows it by
isreported(). In other words, n, typically calls isreported() every clock
tick. In case of GPJobReport, isreported() returns non-zero if and only if
Result is not UNCOMPLETED, and the above works well.

15



