
Creating Agent Behaviors in Real-time

Norman I. Badler, Jan M. Allbeck, Rama Bindiganavale, Karin Kipper,

Michael B. Moore, William Schuler, Liwei Zhao,

Aravind K. Joshi, and Martha Palmer

Center for Human Modeling and Simulation
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389

215-898-5862
badler@central.cis.upenn.edu

1 Overview

A challenging research area is virtual reality systems suitable for training interpersonal inter-
actions. In such a system, at least one person is the VR participant while one or preferably
several more virtual human agents are engaged in activities in the same virtual space [7].
The participants, whether live or virtual, should interact as if all were real. This means that
the virtual agents must have several characteristics a�orded to real people:

1. They should exhibit su�cient situation awareness to precipitate relevant and appro-
priate decision-making. They should have human-like attention and, if possible, per-
ceptual capabilities. At the minimum they should be able to \see" the actions of
others [15] and make plausible assessments of behavior, action, and even intention.

2. They should understand verbal instructions for action [9, 11], the cessation of action,
or the behaviors appropriate to future situations (standing orders). Training for lead-
ership will require issuing orders, and the virtual agents must be knowledgeable about
the content, meaning, and applicability of those orders. This is partly a natural lan-
guage communication problem, but more importantly, a resolution of an interpreted
instruction against the situational context of the virtual agent.

3. They should exhibit gestures, movements, and facial expressions appropriate to the
primary actions they are engaged in, and these should appear credible and situationally
meaningful to the live participant.

These three requirements demand signi�cant improvements over embodied agent repre-
sentations used in today's VR systems. While super�cial appearance (shape, attire, equip-
ment complement) is certainly important to the live participant's perception of the other



virtual beings, their appropriate behavior is arguably more crucial to training success. An
approach to action selection (and execution) through situation awareness and run-time in-
structions is the research area we deem most critical to the next generation of VR training
systems.

Needless to say, these capabilities must execute in real-time for e�ective training. Au-
thoring training scenarios must therefore not tax the abilities of subject matter experts to
change the course of the simulation as it is running. Capabilities (1) and (2) are the keys to
run-time behavior modi�cations of virtual agents. Capability (3) lets us manifest internal
states (observation, deliberation, and decision-making) of the virtual agent into human-like
external actions.

In this paper we outline a broad and integrated approach to creating behaviors for real-
time 3D embodied agents. We start with a brief summary of the sorts of instructions we wish
to accommodate and the architecture we have designed and implemented to interpret and
execute instructions in context. The architecture includes a parameterized action dictionary
called an Actionary. Instantiated actions control a shallow software hierarchy of �nite state
machines and motion generators. Then we discuss various aspects of an autonomous agent
model which support selection and control of a wide range of behaviors needed in a real-
time training experience. We address the issues of movement naturalness by considering
a parameterized system for expressing and animating the qualitative aspects of a gestural
movement. We show how parametric action representations might be build from limited
observations of performed movements. Finally, we close with some discussion of near future
research directions.

2 Extensions to the PAR Architecture

The work presented in this paper is an extension of previous work found in [1, 3, 5], which
uses natural language input to dynamically alter the behaviors of agents during real-time
simulations. In that architecture we were able to give agents both immediate instructions
such as \Approach the vehicle" and conditional instructions such as \If the driver has a
weapon, draw your weapon and aim it at the driver". However, we were not able to give
negative directives or constraints, such as \Do not stand in front of the car door" or \Do
not walk on the grass." In order to successfully carry out these type of instructions, we need
a planner which can dynamically alter an agent's behavior based on constraints imposed by
new instructions.

We extend our current architecture to include a planner and the ability to keep a record
or history of all actions successfully completed by the agent. This will also allow us to give
conditional, iterative instructions to the agent, such as \Check every abandoned vehicle."
The history feature ensures that the agent will correctly check every abandoned vehicle only
once. The planner also allows us to give abstract instructions such as, \Take cover behind

2



the drum." This instruction does not include information about how to take cover behind
the drum. The agent could walk, run, crawl, swim, or do any number of other translatory
actions to position itself behind the drum. Also, the instruction has no information about
the path the agent should take, nor how the spatial prepositional phrase \behind the drum"
should be interpreted. The planner will provide the information that is needed for animation
but not provided by the natural language input.

3 Actionary

The Actionary (Figure 1) is the core component of our system. It contains persistent, hier-
archical databases of agents, objects, and actions. The objects are smart objects [12] that
contain information necessary for object-agent interaction like grasp sites and constraint lo-
cations. The agents are treated as special objects and stored within the same hierarchical
structure as the objects. The object hierarchy is constantly updated during the simulation,
recording any changes in the environment or in the properties of the agents and objects.
Actions are represented as PARs (Parameterized Action Representation). Each PAR can
either be uninstantiated, containing only default properties for the action or be instantiated,
containing speci�c information about the agent, objects, and other properties. Each PAR
contains both low-level and high-level information. Low-level information includes motion,
force, and path. High-level information includes applicability conditions, preparatory speci-
�cations, termination conditions, and manner. All the PARs are stored hierarchically within
the Actionary and map to one or more motion generators.

PAR schemas are similar to PARs, except that their hierarchy is derived from natural
language verbs and semantics, whereas the PAR hierarchy is derived from motion semantics
within the animation domain. The hierarchy of PARs allows actions with physically similar
animations to inherit properties from a common parent. The hierarchy of PAR schemas
allows semantically similar verbs, such as motion verbs (like \go") or verbs of contact (like
\hit"), to be closely associated with each other under a common parent that captures the
properties these verbs all share [13]. Also, not all PAR schemas are directly associated
with particular motions. For example, \Take cover" does not specify the translatory action
(walking, running, swimming, etc.) that should be used to take cover. The highest nodes in
the hierarchy are occupied by generalized PAR schemas which represent the basic predicate-
argument structures for entire groups of subordinate actions. The lower nodes are occupied
by progressively more speci�c schemas that inherit information from the more generalized
ones. PAR schemas have been used to demonstrate that this representation can also be used
as an interlingua in Machine Translation applications[14].

3



Actionary

Objects

PARs

Actions

PAR
Schemas

Figure 1: Actionary

4 Architecture

Controlling a virtual human model from sources other than direct animator manipulations
requires an architecture that supports higher-level expressions of movement. We use a multi-
level architecture system to provide e�cient localization of control for both graphics and
language requirements. The architecture is grounded in typical graphical models. Motion
generators drive these graphical models to generate various motor skills, and endow the
virtual humans with useful abilities like walking, reaching, grasping, climbing, etc.

At the next higher level, we use PaT-Nets to allow for simultaneous execution of the
various motion generators thus allowing a human to \walk, talk, and chew gum" at the
same time. PaT-Nets are e�ective programming tools, but do not represent exactly the way
people conceptualize a particular situation, so at the next higher level, we use PARs and
PAR-schemas to capture additional information, parameters, and aspects of human action.

At the highest level, we use natural language to instruct virtual humans while a simulation
is running, so a user can dynamically re�ne an agent's behavior or react to simulated stimuli
without having to undertake a lengthy programming session. This allows a non-technical
user, such as a domain expert, to specify abstract, conditional behaviors, thereby scripting
a simulation.

Figure 2 shows the new architecture of our system. The user inputs natural language
instructions for a speci�c agent through a GUI. The Natural Language Transducer parses
the instructions and translates them into situation calculus expressions containing the action
information from the PAR schemas. These expressions are stored as Desired Situations in
the Agent Process, and serve as temporally-extended goals of the agent, so they can function
as constraints over long periods of time (like \Don't drive on the grass,") and persistent
conditional rules (like \If there is a truck, open the gate,") as well as ordinary state-based
goals (like \Close the gate,") without any special treatment. The situation calculus can also
express information about spatial references (like `in' and `near') in a natural language in-
put, by treating them as three-dimensional (spatial bounding box) constraints on situations,
much as temporal references (like `yesterday') can be treated as one-dimensional (time in-
terval) constraints on situations. Since the input instructions may contain a certain amount

4



Transducer
NL

Generator
Motion

(GUIs, etc)

Visualizer

Engine
Execution

Jack
Toolkit

PAR SYSTEM ARCHITECTURE

Agent Process N

Agent Process 2

Agent Process 1

Mgr
Proc

Action Filter

Experienced

Desired
Situations

Mgr
Rule

Situations Plan Strategy

Mgr
Goal

Mgr
Queue

PlannerActionary

Figure 2: New Architecture Diagram

5



of syntactic ambiguity (such as prepositional phrase attachment ambiguity in the sentence
\If Trainee 1 aims at someone with a bazooka, take cover," where either the someone has
a bazooka or the aiming is with a bazooka), the parser can preserve this ambiguity in the
situation calculus expression, so that the appropriate interpretation may be determined by
later circumstances in the environment (depending on who Trainee 1 aims at, and what he
aims with, for example). This environment-based disambiguation allows the interface to han-
dle long sentences without having to maintain complex, domain-dependent disambiguation
heuristics or a large statistical database.

Within the Agent Process, the situation calculus expressions are stored as a list of Desired
Situations along with other situation calculus expressions generated from previous instruc-
tions. The Desired Situations set collectively represents the desired future behavior of the
agent. The Rule Manager uses the Actionary to evaluate the expressions in the Desired
Situations set and sends them to the Goal Manager when there are any changes. All actions
successfully completed by the agent are stored as a list of Experienced Situations . The Goal
Manager uses the Desired Situations and the Experienced Situations to determine new
goals. It then sends the new goals to the Planner.

The Planner solves an abstract planning problem where the initial state comes from
the object hierarchy in the Actionary. The Planner begins by evaluating the situation
calculus expressions and querying the Actionary for PARs which will meet the goals. Before
the query results are sent to the Planner , the Action Filter �rst eliminates some of the
PARs from the set of results based on the agent's capabilities, and sorts the remaining
PARs based on the agent's characteristics. For example, the Planner may ask for all of the
translatory PAR actions. If one of the actions returned is \walk" and the agent is an infant
not capable of walking, \walk" will be removed from the set. Also, if the agent is a happy
child, the Action Filter may prefer \skip" to \walk," but if the agent is a prominent, business
woman \walk" would be preferable. The ordering of actions is based on the agent's role,
perception of the situation, culture, personality, and emotions. During the planning process
the Planner determines which actions to include in the plan based on the list of actions sent
from the Action Filter, it determines the structure of the plan based on parameters of the
Plan Strategy, and it eliminates some of the possible plans, based on the constraints found
in the situation calculus expressions. The Planner instantiates the PARs with information
about the speci�c agents and objects involved in the actions as well as information about
how the actions should be performed. This includes information not available in the natural
language directives. For example, a directive such as \Walk across the street," does not
include information about the path, but this information must be provided before the action
can be executed [16].

These instantiated PARs are processed by the Queue Manager and Process Manager and
then sent to the pre-registered Motion Generators for the actual execution of the action. It
is within these motion generators that all the parameters of the IPAR are �nally resolved.
These generators access the Actionary for information on agents, objects, and the current

6



state of the environment. During the execution of the action, the motion generators update
the Actionary with the status of the ongoing action. At the end of the action, they use
post assertions to update the Actionary with the various changes in the environment. After
successful completion of the action, the Process Manager adds the relevant information
about the action to the list of Experienced Situations.

5 Agent Model

The PAR architecture contains Agent Processes, which contain high-level mechanisms for the
agents to perform actions. In order for an agent to perform an action, it needs only to place
the appropriate IPAR on its action queue. It also allows multiple agents in the environment to
communicate with each other through message passing. By providing these mechanisms, the
architecture allows the designer of autonomous agents for virtual environments to concentrate
on other aspects of the design like creating believable agents with individuality.

The agent, whether acting autonomously or being controlled by a user, acts under the
in
uence of many variables. These are a few of the parameters of an agent that might
in
uence its behavior:

� Roles are learned, generalized guidelines for behavior. Roles are more about expecta-
tions and perceptions than what is actually said or done, and an agent may have more
than one role.

� Cultural associations condition the way an agent perceives, acts, and reacts. Culture
helps in determining the importance and immediacy of the activities of life.

� Situation is a collection of variables that characterize the agent's model of the world.
A key idea is that the situation representation can vary over the agents.

� Personality is a pattern of behavioral, temperamental, emotional, and mental traits
for an individual. The way an agent perceives, acts, and reacts is in
uenced by its
personality.

� Emotions are generated through the agent's construal of and reaction to the conse-
quences of events, actions of agents, and aspects of objects. Emotions e�ect not only
which actions the agent chooses to perform, but also the manner in which they are
performed.

6 Manner

One essential component of agent behavior is adequate body and gesture movements. In a
real-time procedural animation system, it is even more important to have the performance

7



of appropriate movements parametrically controlled by the agent's internal states. One
mechanism for doing this is through the manner �eld of the PAR. Manner describes how
a particular movement is performed within a space of reasonable variations in E�ort and
Shape dimensions from Laban Movement Analysis [4].

Our design for the expression of manner is based on the EMOTE Model [2, 10]. EMOTE
allows the speci�cation of E�ort and Shape parameters used to modify independently de�ned
limbs and torso movements. The underlying movements are speci�ed through key time
and pose information. Key pose information may be generated by an external process; for
example, a procedurally generated motion, or motion captured from live performance. Given
an underlying movement, manner information can be used to compute speci�c E�ort and
Shape parameters, which in turn are used to vary the performance of the motion. E�ort
and Shape parameters are expressed numerically in the range of -1.0 and +1.0. The extreme
values correspond to extreme attitudes. For example, a +1.0 value in E�ort's Weight factor
corresponds to a Strong movement; a -1.0 value in Shape's Vertical dimension corresponds
to a Rising movement. E�ort parameters are translated further into low-level parameters,
while Shape parameters are used to modify key pose information. In addition, di�erent
E�ort and Shape parameters may be speci�ed for di�erent parts of the body involved in the
same movement. Moreover, E�ort and Shape parameters may be phrased across a set of
movements, similarly to communicative phrasing with an expressive content consonant with
the principal utterance. Working from movements stored as key time and pose information,
the manner parameters can execute the movements to speed, space, force, or 
uidity and
these in turn can be related back to the internal states, personalities and emotions of the
agent.

7 Building Parameterized Action Representations from

Observation

A PAR can be created either from a GUI or from observing a real human performing the
task. For virtual humans, motion capture and procedural animation are two of the popular
approaches for action generation. We have built the CaPAR (Captured PARs) interactive
system [6] which combines both these approaches to generate agent-size neutral represen-
tations of meaningful actions in the form of a PAR. Just as a person learns new complex
physical tasks by observing another person do it, the CaPAR system observes a single trial
of a human performing some complex task involving interaction with self or other objects in
the environment and automatically generates semantically rich information about the action.
This information can be used to generate similar constrained motions for agents of di�erent
sizes.

We use motion capture techniques to acquire human movements of a complex action.
By computing motion zero-crossings and geometric spatial proximities, we isolate signi�cant

8



events, abstract both spatial and visual constraints from an agent's action, and segment
continuous motion sequences. By breaking up a given complex action into several simpler
subactions and analyzing them independently, we build individual PARs for each of them.
We can then combine several PARs into one complex PAR representing the original activity.
Within each motion segment, we extract semantic and style information about the action.
The style information allows us to generate the same constrained motion in other di�erently
sized virtual agents by copying the end-e�ector velocity pro�le, by following a similar end-
e�ector trajectory, or by scaling and mapping force interactions between the agent and an
object. The extracted style information is stored in the corresponding agent and object
models. The semantic information is stored in a PAR as a high level description of an
action. The CaPAR system generates PAR attributes at both the low-level (constraints,
style of execution, etc) and the high-level (default preparatory speci�cations and termination
conditions of the observed action).

8 Directions

We believe that Natural Language instructions, parameterized actions, EMOTE, and ob-
served movement inputs will provide e�ective methods for the on-line creation of behaviors
for embodied animated agents. Preliminary implementations are all these components exist
and are mostly integrated. The EMOTE system will be brought into the PAR architecture
and the planner will be integrated before the end of 2000. The virtual checkpoint simulation
is already running and we plan to add a live participant to interact with the other virtual
autonomous agents within a year. In addition, another scenario is being developed based
on a virtual maintenance technician validating task instructions on an actual vehicle. This
application will demonstrate the re-usability and extensibility of the Actionary. The plan-
ner will be exercised, too, as tasks may fail for any number of reasons such as presence of
hazards, lack of access, ordering constraints, and so on.

Overarching desires for this e�ort include the better appearance in the human forms,
more detailed environments, and faster execution of the whole system. We would like to have
other human models controlled by the motion generators in the system, and are examining
other possibilities that might be compatible with the EAI Jack Toolkit interface API. For
more detailed environments we are looking into full vehicle CAD models and more elaborate
urban models to expand our two primary applications in virtual training and equipment
maintenance. The main issues are availability of suitable data and its polygon volume.
Game engines are an interesting alternative for the OpenGL graphics interface we presently
use. Finally, although the interpreted Python software gives us a performance hit, it has
proven invaluable in software development and interactivity in the system as a whole. Faster
computing platforms are inevitable.

A more speci�c research direction is connecting spatial referents in the textual instruc-

9



tions with the objects or parts of objects in the world [8]. We are investigating a combination
of propositional and geometric reasoning to ground spatial terms (prepositional phrases) in
the current or future contexts. We have already studied directional prepositions as predictors
of general access or locomotion paths [16]. Such instructions are also likely to interact with
the visual and attentional aspects of the agent [2].

Finally, we are leaving aside the input requirements for an autonomous agent who inter-
acts with a live player. The issues of gesture recognition, facial expression recognition, and
speech input are all important components for a successful virtual reality training experience
with interacting arti�cial agents. We expect to adapt some of the existing techniques in this
area to provide inputs for situation assessment in our agents.

9 Acknowledgments

This research is partially supported by U.S. Air Force F41624-97-D-5002, O�ce of Naval Re-
search K-5-55043/3916-1552793, AASERTs N00014-97-1-0603 and N0014-97-1-0605, DARPA
SB-MDA-97-2951001, NSF SBR-8900230 and IIS-9900297, Army Research O�ce ASSERT
DAA 655-981-0147, NASA NRA NAG 5-3990, and Engineering Animation Inc.

References

[1] N. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, and M. Palmer. A param-
eterized action representation for virtual human agents. In Embodied Conversational
Agents, pages 256{284. MIT Press, 2000.

[2] N. Badler, D. Chi, and S. Chopra. Virtual human animation based on movement
observation and cognitive behavior models. In Proceedings of Computer Animation,
pages 128{137, 1999.

[3] N. Badler, M. Palmer, and R. Bindiganavale. Animation control for real-time virtual
humans. Comm. of the ACM, 42(8):65{73, Aug. 1999.

[4] I. Bartenie� and D. Lewis. Body Movement: Coping with the Environment. Gordon
and Breach Science Publishers, New York, 1980.

[5] R. Bindiganavale, William Schuler, Jan M. Allbeck, Norman I. Badler, Aravind K.
Joshi, and Martha Palmer. Dynamically altering agent behaviors using natural language
instructions. In Proceedings of Autonomous Agents, pages 293{300, 2000.

[6] Rama Bindiganavale. Building Parameterized Action Representations from Observation.
PhD thesis, CIS, University of Pennsylvania, 2000. In preparation.

10



[7] T. Capin, I. Pandzic, N. Magnenat-Thalmann, and D. Thalmann. Avatars in Networked
Virtual Environments. Wiley, Chichester, England, 1999.

[8] Marc Cavazza and Ian Palmer. A prototype for natural language control of video games.
In Proceedings of VSMM'99, pages 36{45, 1999.

[9] D. Chapman. Vision, instruction, and action. PhD thesis, Massachusetts Institute of
Technology, 1990.

[10] D. Chi, M. Costa, L. Zhao, and N. Badler. The EMOTE model for e�ort and shape. In
ACM SIGGRAPH Computer Graphics, 2000. To appear.

[11] S.B. Hu�man and J.E. Laird. Flexibly instructable agents. Journal of Arti�cial Intel-
ligence Research, 3:271{324, 1990.

[12] M. Kallmann and D. Thalmann. Direct 3d interaction with smart objects. In Proceedings
of ACM VRST'99, 1999.

[13] Karin Kipper, Hoa Trang Dang, and Martha Palmer. Class-based construction of a verb
lexicon. In Proceedings of the Seventh National Conference on Arti�cial Intelligence
(AAAI-2000), Austin, TX, July-August 2000.

[14] Karin Kipper and Martha Palmer. Representation of actions as an interlingua. In
Proceedings of the Third Workshop on Applied Interlinguas, held in conjunction with
ANLP-NAACL 2000, Seattle, WA, April 2000.

[15] H. Noser and D. Thalmann. A rule-based interactive behavioral animation system for
humanoids. IEEE Transactions on Visualization and Computer Graphics, 5(4):218{307,
1999.

[16] Yilun Dianna Xu and Norman I. Badler. Algorithms for generating motion trajectories
described by prepositions. In Proceedings of Computer Animation, pages 33{39, 2000.

11


