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ABSTRACT
In virtual environments, the control of numerous entities in
multiple dimensions can be diÆcult and tedious. In this
paper, we present a system for synthesizing and recogniz-
ing aggregate movements in a virtual environment with a
high-level (natural language) interface. The principal com-
ponents include: an interactive interface for aggregate con-
trol based on a collection of parameters extending an exist-
ing movement quality model, a feature analysis of aggregate
motion verbs, recognizers to detect occurrences of features in
a collection of simulated entities, and a clustering algorithm
that determines subgroups. Results based on simulations
and a sample instruction application are shown.

Categories and Subject Descriptors
I.5 [Computing Methodologies]: Pattern Recognition;
I.6 [Computing Methodologies]: Simulation and Mod-
eling; I.2.7 [Computing Methodologies]: Natural Lan-
guage Processing

1. INTRODUCTION
Human language developed partly from a need to com-

press and linearize human experience. The world we live
in is multi-dimensional: three spatial dimensions plus time,
as well as the activities of numerous natural, mechanical,
physical, and sentient entities. Although we can capture
experience through multiple sensors, we possess very few in-
nate methods { mainly gestures or verbal expression { for
conveying complete experiences to others. We thus augment
the cognitive powers of others by compressing our experience
into sketches and words. In a military environment, a com-
mander relies on the communications of others to charac-
terize and summarize complex, multi-entity movements and
situations. A traÆc reporter characterizes o�-nominal ve-
hicle 
ows purely through verbal summaries. During urban
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Figure 1: Aggregate Movement Examples

emergencies or civil unrest, the police attempt to character-
ize group movements to focus resources and control threats.
Our goal is to build eÆcient computational models for cre-

ating and recognizing aggregate activities within a collection
of entities. We capture the cognition enhancing function of
language to both recognize and describe actions of groups of
entities. Such a capability allows scenario creators to e�ec-
tively control visual simulations of aggregate entities such
as in crowds or urban populations. It permits the compres-
sion and textual linearization of voluminous data of aggre-
gate movements to establish process, context, and deviation
points for decision-makers, and allow after action review of
constructive, live, or virtual simulations.
Descriptions convey much information without requiring

one to view particular imagery or animations; they can be
conveyed by a straightforward text message and can be as-
similated easily at the cognitive level: creating a mental pic-
ture of these dynamic situations is e�ortless for the hearer.
For example, \The [funeral] procession walked in a slow but
energetic line followed by a growing collection of people and
was watched carefully by a milling crowd of onlookers." (See
Figure 1).
Our approach is to decompose higher-level concepts, such

as assembling and dispersing, into simpler features that may
be quickly and robustly detected in large aggregate popu-
lations. The primary alternative would be to code speci�c
high-level action recognizers, but this would be both cum-
bersome and diÆcult to scale. We speci�cally seek to take
advantage of subject matter experts by using natural lan-
guage to communicate aggregate activities, thus avoiding
a direct translation of every interesting high-level concept
into code. Work in de�ning such features is leading to use-
ful computational models, grounded in cognitive movement
understanding.
Creating movements of large numbers of independent en-

tities such as crowds or urban populations is time-consuming



and costly to modify. A natural language based construc-
tive interface enhances the generation and modi�cation of
aggregate behaviors. A natural language based recognition
and description module permits compressing and lineariz-
ing huge amounts of movement information, thus amplify-
ing cognitive understanding of context and streamlining its
presentation to decision-makers. We are not claiming that
visual presentation of such data is not useful or valid; rather,
our claim is that the linearization provided by language can
be a useful adjunct in delivering compressed information to
a decision-maker. Since language may be verbalized as well
as read, and since auditory delivery of such information can
be used as an alert, these automated descriptions would not
require the constant vigilance of direct visual monitoring.
Auditory alerts for speci�c events are a staple of, for exam-
ple, aircraft control systems.
This paper introduces ACUMEN, which builds on our

work on connecting natural language and animation. We be-
gin by describing our Parameterized Action Representation
and the system that processes it. We then discuss aggre-
gate entities, their movements, and related research. Next,
we present a detailed description of the ACUMEN system
and a demonstration of the system. Finally, we present our
conclusions and discuss future extensions.

2. PREVIOUS WORK
Any dynamic situation must be created by some (possi-

bly unknown) processes, so any description or recognition
of that situation must utilize a process representation to ac-
count for and interpret dynamic data. We have developed a
process representation called the Parameterized Action Rep-
resentation (PAR) [6]. A primary component of the sys-
tem that processes PARs for animation is the ActionaryTM .
It contains persistent, hierarchical databases of agents, ob-
jects, and actions. The agents are treated as special objects
and stored within the same hierarchical structure as the ob-
jects. Parameterized actions are represented in a frame-like
structure with �elds that may be used to generate the ac-
tions on or with a given agent or set of agents. Because
animation and natural language have di�erent constraints
we have designed independent hierarchies for the represen-
tation of actions. On the one hand, we have natural lan-
guage PAR schemas that are derived from the idea that
verbs share common semantics and can be described by a
set of semantic predicates associated with arguments (which
are participants in the action) and selectional restrictions
on these arguments. This conjunction of semantic predi-
cates captures the semantics of a verb or a class of related
verbs. On the other hand, the hierarchy for animation is
derived from motion semantics based on the requirements
of the animation. An uninstantiated PAR (UPAR) is es-
sentially a de�nition for an action, containing only default
properties for the action. When an action becomes associ-
ated with an agent, it is called an instantiated PAR (IPAR)
and contains speci�c information about the agent, objects,
and other properties. All the UPARs are stored hierarchi-
cally within the Actionary.
PARs can be stored, modi�ed, interpreted, and trans-

ferred like data packets, and are generally used as dynamic
information objects. We have extended our representation
and our software to handle both individual and aggregate
actions so that it can be used in applications for decision-
making. More details on PAR and the processing of actions

can be found in [6, 4, 3].

3. AGGREGATE ENTITIES
Things that move do so over time. The activities that

they engage in are 
uid and changing. Often we perceive an
action only as it crystallizes out of other random or chaotic
activities. Dispersing, for instance, only becomes apparent
after the process has progressed for some time. Often it is
easier to detect that something has happened by seeing an
end or termination, such as an escape from a place. Human
language has developed lexical items with detailed seman-
tics to characterize such processes. E�ective and eÆcient
characterizations of such spatio-temporal, ongoing processes
present an exciting opportunity for augmenting the cogni-
tive space available to decision-makers [20].
Much work has been done on the generation and recog-

nition of individual actions [7, 17, 5, 22]. Bindiganavale's
work [5], in particular, recognized human actions and de-
scribed them using our Parameterized Action Representa-
tion.

Figure 2: Aggregate Movement Synthesis Examples.

Aggregate movement generation has also been a classic
computer graphics research topic. Reynolds [19] created a
particle system based simulator for 
ocking, herding, and
schooling. The gross movement of the aggregate is controlled
by a migratory attractor. The overall motion of the simu-
lated 
ock is the result of simple behaviors of the individual
simulated birds. More recently, Musse and Thalmann [18]
have reported a method of crowd simulation with various
levels of autonomy. Their work incorporated rule-based be-
haviors with programmed and user controlled agents in the
same scenario. The movement of these crowds or groups
is based on interest points, which act as attractors for the
crowds. Aggregate simulation systems such as these have
limited control over the movement of the aggregates. Dis-
persion of a group from a point in this way would be quite
diÆcult as an attractor would have to be created for each
individual entity. Our aggregate simulation system uses at-
tractors in combination with repulsors, randomization, and
higher level parameterization to achieve varied, realistic ag-
gregate movement behaviors.
Biographic Technologies has created a MayaTM plug-in

for autonomous character control for crowds. However, an
animator still has to write the rules to make each charac-



ter behave as desired [14]. Our system, on the other hand,
is based on lexical semantics and has a natural language
interface which allows non-animators to control the charac-
ters. Additionally, our system synthesizes a greater number
of aggregate behaviors and includes recognition of aggregate
movements.
Many military simulations, such as [10], use computer gen-

erated forces but treat aggregates as a single entity, which
only become disaggregated when they enter a con
ict zone.
A Capture the Flag simulator was developed by Paul Co-

hen and his group in the Experimental Knowledge Systems
Laboratory at the University of Massachusetts at Amherst [9].
In this war-gaming environment, aggregate entities are rep-
resented as blobs. Units can change shape and adopt colum-
nar and frontal formations, as well as wedge and \V" for-
mations or can change shape in response to terrain features.
Marsella and Johnson [15] created a system to aid instruc-
tors in the evaluation of military team training through high-
level assessment of simulations based on situation spaces.
This work includes the evaluation of aggregate formations,
but the evaluation is done on a small number of formations
with few entities. We have found no research in computer
generated forces and military simulations that recognizes
aggregate movements with the robustness and scale of our
system.
Recognition of aggregate movements has been done for

commentaries in RoboCup soccer simulations [2]. These
commentator systems take position and orientation infor-
mation along with game score and play modes and create
higher level conceptual units that can be used to produce
natural language commentaries. The scene interpretation
or recognition is, unlike ours, highly domain speci�c.

4. SYSTEM SOLUTIONS
Cognitive understanding of a dynamic situation depends

on understanding the processes, 
ows, and changing spatio-
temporal processes at work. Representing and identifying
dynamic processes in 3D space is key to presenting cogni-
tively manageable chunks of information. PARs form an
abstraction of the observed events and processes; they can
then be monitored and reported or queried as the applica-
tion requires. This representation to be extended to sup-
port descriptions of aggregates as a situation evolves. Key
transitions in descriptions signal context changes. Natural
language can be used to describe transitions, terminating
points, processes, etc. Moreover, natural language includes
qualitative terms (adjectives and adverbs) which focus on
degree, rate, focus, or manner. These terms summarize
highly complex aggregate activities by �ltering out individ-
ual details and exposing emergent behaviors.
PARs were designed to represent actions, so its syntax

takes into account the relevant information for such a task.
It is well-suited to describe any sort of process, whether
human, machine, or aggregate. Both military and civil en-
vironments may require that a decision-maker understand
dynamic states and infer intention, control and threat: all
of which have a strong spatial component. PAR is the basis
for building and describing situation states with parameter-
ized models.
We have re�ned our PAR system to make it more robust

and able to represent aggregates and their movements. The
new system incorporates an aggregate movement synthesizer
and an aggregate movement recognizer.

Figure 3: Generation Interface: This is an interface

to the aggregate motion synthesizer.

4.1 Aggregate Movement Synthesis
Creating movements of large numbers of independent enti-

ties such as crowds or urban populations is time-consuming
and costly to modify. A natural language-based interface
enhances the generation and modi�cation of aggregate be-
haviors. The crowd behaviors in the Institute for Creative
Technologies' virtual trainer demonstration [21] cannot be
changed without extensive recoding. Our system permits
rapid development of alternative, spatial, context-sensitive
crowd behaviors. Though our system can support a natural
language interface, we have created a GUI (Graphical User
Interface) to the aggregate action synthesis portion of our
ACUMEN system (Figure 3). The controls in this GUI are
based on the semantics of terms used to describe movements
of oriented entities.
Our aggregate motion simulator has been created within

the scripting environment of Alias|Wavefront's graphics
program, MayaTM. Based largely on a particle system-like
model of group simulation, this script uses dynamic forces
acting on rigid bodies to produce the desired movement.
Unlike particles, rigid bodies allow for greater control over
individual orientation and accurate collision detection. The
script maps lexical terms to lower level features, which are
in turn mapped to dynamic primitives, such as attractors,
repulsors, velocity, inertia, and randomization. The aggre-
gate movement features are also used for aggregate motion
recognition and are presented in Section 4.2.
Our synthesis module is able to demonstrate di�erent

types of aggregate movements, such as dispersing and gath-
ering as exempli�ed in Figure 2. The synthesis module
drives not only the visual display shown, but also stores
a frame by frame accounting of the simulation as it is pro-
duced. This accounting contains the voluminous geometric
information that is condensed by the recognition module of
ACUMEN.

4.2 Aggregate Movement Recognition
Though the synthesis and recognition systems share a

common data representation, PAR, theACUMEN aggregate
movement synthesis module and the movement recognition
module are separate. The recognition system is able to be
driven by any simulator that can convey geometric or spatial
information. Geometric data from actual sensors can also be



used. It recognizes instances of aggregate movements such
as group dispersing and generates compact lexical descrip-
tions of them, which are passed to other decision support or
display systems.
We base the recognition module on computational de�ni-

tions of features of terms, words, and concepts that describe
movements of aggregate entities. By starting with low level
features we are able to create a system that can be extended
to new terms and re�ned for better recognition. The recogni-
tion of new terms only requires determining which semantic
features are present for the new term. If we were to base
the recognition of aggregate movement terms solely on indi-
vidual computational models of each lexical item, the recog-
nition of new terms could require extensive recoding. Our
examination of features is based on both lexical semantics
and movement observation science.

4.2.1 Lexical Semantics and Feature Selection
VerbNet [11] is a verb lexicon being built at the Univer-

sity of Pennsylvania exploiting the idea that verbs can be
grouped into classes according to syntactic commonalities
and shared semantic components. It uses Levin verb classes
[13] to systematically construct lexical entries. These classes
are based on the ability or inability of a verb to occur in pairs
of syntactic frames called diathesis alternations. The sets of
syntactic frames associated with a particular Levin class are
supposed to re
ect underlying semantic components that
constrain allowable arguments and adjuncts.
Verb classes allow us to capture generalizations about verb

behavior. This reduces not only the e�ort needed to con-
struct the lexicon, but also the likelihood that errors are in-
troduced when adding a new verb entry. Each verb class in
VerbNet lists the thematic roles that the predicate-argument
structure of its members allows, and provides descriptions
of the syntactic frames corresponding to licensed construc-
tions, with selectional restrictions de�ned for each argument
in each frame. Each frame also includes semantic predicates
describing the participants at various stages of the event
described by the frame. Verb classes are hierarchically or-
ganized, ensuring that each class is coherent { that is, all
its members have common semantic elements and share a
common set of thematic roles and basic syntactic frames.
PAR schemas, a component of the ActionaryTMwhich spec-

i�es natural language semantics for actions, derive from Verb-
Net the idea that verbs can be represented in a lattice that
allows semantically similar verbs, such as motion verbs or
verbs of contact, to be closely associated with each other
under a common parent that captures the properties these
verbs all share. The highest nodes in the hierarchy are occu-
pied by generalized PAR schemas which represent the basic
predicate-argument structures, the lower nodes are occupied
by progressively more speci�c schemas that inherit informa-
tion from the generalized schemas.
These action schemas are based on VerbNet entries and

are described by a set of semantic predicates associated with
arguments (participants in the action) and selectional re-
strictions on these arguments. The semantic predicates used
to describe an action can be viewed as basic features (e.g.
motion, contact), and their conjunction captures the seman-
tics of a verb or a class of related verbs. Figure 4 shows an
example representation for the verb 'to shove'. First, there
is the syntactic frame (ARG0 verb ARG1), corresponding to
the transitive use of the verb, this also serves to establish the

shove / ARG0-v-ARG1
/ is_animate(ARG0)

is_concrete(ARG1)

contact(during(e),ARG0,ARG1)
exert_force(during(e),ARG0,ARG1)
motion(during(e),ARG1)
cause(ARG0,e)

Figure 4: PAR schema for `shove'

minimal set of participants in the action. The selectional re-
strictions for the arguments are captured by the predicates
is animate(ARG0) and is concrete(ARG1). The other pred-
icates in the conjunction describe the semantics of the event
Agent shoves Patient.
Additionally, our action descriptions are based on features

of human movement observation science. Originated by
Rudolf Laban [12], Laban Movement Analysis (LMA) today
is a creative method of movement study for observing, de-
scribing, notating, and interpreting humanmovement. LMA
provides insights into one's personal movement style and in-
creases awareness of what movement communicates and ex-
presses. Chi et al. [8, 23] built a system called EMOTE
based on LMA to parameterize and modulate action per-
formance. EMOTE is not an action selector per se; it is
used to modify the execution of a given behavior and thus
change its movement qualities or character. The power of
EMOTE arises from the relatively small number of param-
eters that control or a�ect a much larger set. The EMOTE
work focuses on the E�ort and Shape components of LMA,
because these two are the major direct speci�cations or in-
dications of expressive human movements. E�ort comprises
four motion factors: Space, Weight, Time, and Flow. Each
motion factor is a continuum between two extremes: (1) in-
dulging in the quality and (2) �ghting against the quality.
Shape changes in movement can be described in terms of
three dimensions: Horizontal, Vertical, and Sagittal.
After extensively analyzing the individual behavior of verbs

that describe activities of aggregates to determine features
that span a broad and expressive action space, and deciding
to adopt the idea of verb classes used in VerbNet, we pro-
ceeded by grouping sets of these aggregate verbs into classes,
extending the EMOTE features to group movement. Since
EMOTE was designed for human arm gestures, the features
had to be revised for aggregate entity movements. By using
the EMOTE features as primitives we were able to capture
both generalizations and distinctions among sets of verbs as
shown in Table 1. Examples of verb classes created include
verbs of gathering, dispersing, and milling.
We have found that the E�ort dimensions (slow-fast; sudden-

sustained; direct-indirect; free-bound) have meaningful cor-
relation to aggregate behavior. We have also found that two
of the Shape dimensions (advancing-retreating; spreading-
enclosing;) correlate to aggregate shapes. Other dimensions
of the study seem less appropriate (rising-sinking; left-right).
Most aggregates entities, unlike individual humans, do not
have an inherent top and bottom or left and right. Other
factors, such as the focus of attraction are geometric features
that have been found crucial to the proper characterization
of group actions.
Figure 5 shows a PAR schema for 'to assemble' as in The

kids assemble (in a location), which has only one participant



Gathering Dispersing Obj. Referential Formation Milling

Shape
Advancing

Retreating

Spreading x

Enclosing x

E�ort
Slow

Fast

Sudden

Sustained x

Direct x x x x

Indirect x

Free

Bound

Other
Obj Referent x

Structured x

Table 1: Feature Table

assemble / ARG0-v
/ is_concrete(ARG0)

is_plural(ARG0)
!together_group(start(e),ARG0)
transl_motion(during(e),ARG0)
shape_enclosing(during(e),ARG0)
effort_direct(during(e),ARG0)
together_group(end(e),ARG0)

Figure 5: PAR schema for `assemble'

(a plural concrete entity). As can be seen from the example
entry, many of semantic predicates are taken directly from
the EMOTE features. Our verb semantics allows for the de-
composition of the action into stages similar to that of [16].
Semantic predicates hold true at di�erent stages (start, dur-
ing, end) of the event. The semantics of `assemble' establish
that at the start of the event the participants are not to-
gether as a group, during the event the participants move,
the shape of the group is enclosing and the movement is
direct, at the end of the event the participants should be
together.
Although several verbs within a class are quasi-synonyms

and can be described by the same set of features, it is also
the case that we need more speci�c features to distinguish
between some members of the same class. One the fea-
tures have been computed, classes are determined and lexi-
cal descriptions generated. These compact descriptions can
be passed to decision-making aids, used for operation sum-
maries, or stored as essential context information.

4.2.2 Feature Calculation
Each of the features is mathematically computable based

on the geometric and spatial data of the individuals and
environment over time. Likelihoods or strengths of each of
the features are computed. Many of the features are not
boolean, such as nearness, which is a fuzzy value. The fea-
tures apply to sets of individuals, so at any time there may
be a number of individuals displaying a feature and a num-
ber of them not. A description of these features is given

below:

� Advancing: constant average velocity vector

� Change of Direction: 10 degree or greater change in
average velocity vector

� Spreading: increasing average distance from center of
mass

� Enclosing: decreasing average distance from center of
mass

� Slow: average velocity below user-speci�ed threshold

� Fast: average velocity above user-speci�ed threshold

� Sudden: orientation: rate of change of orientation above
threshold and velocity: rate of change of velocity above
threshold

� Random: high variance in individual orientation (cor-
responds to directness).

� Orientation Bound: uniform individual orientation and
all individual positions aligned along orientation vec-
tor

� Position Bound: zero net change in position relative
to world

4.2.3 Recognition Implementation
Figure 6 shows a diagram of the aggregate movement

recognition system. Geometric data enters the recognition
system from a simulator or sensor processing system. The
data is stored so that time-segmented chunks of data can
be processed. These data chunks are sent to the Attribute
Recognizer and Group Analyzer. The Attribute Recognizer
calculates the features or attributes and creates a histogram
for testing and display. It also sends the attribute probabili-
ties to the Verb Recognition component where they are used
to chose terms to describe the aggregate movement.
Currently, the Group Analyzer uses K-means clustering [1]

to determine subgroups of aggregates based on their move-
ments. The clustering components include position, orien-
tation, and velocity. When the algorithm begins two sub-
groups are assumed to exist in the population; each entity
is randomly assigned to one of the two groups. The centroid
of each group is calculated from the normalized components
of each entity in the groups. Next, each entity is reassigned
to a group based on the minimum distance between it and



Figure 6: Diagram of the Aggregate Movement

Recognition System

Figure 7: Example of K-means classi�cation into

subgroups.

the centroids of the groups. The centroids are recalculated
and the process is iterated. The algorithm terminates when
during an iteration no entities changed groups. In order to
determine if more than two groups exist, the greatest dis-
tance between an entity and its group centroid is compared
to a threshold value. If the distance is greater than the
threshold, the same algorithm is run based on three groups
(centroids). Preliminary results �nd this method e�ective
(See Figure 7).

5. DEMONSTRATION
The computational de�nitions of verbs that describe move-

ments of oriented entities are used in a scenario in to guide
(program) the activities of aggregate entities in a simulation.
Our demonstration also shows how these de�nitions may be
used to recognize signi�cant activities of a set of entities.
The scenario takes place in a schoolyard with eight children
and a supervising teacher (see Figure 8). Video clips of the

demonstration can be found at
http://hms.upenn.edu/software/ACUMEN/demo.html
The scenario begins with the children milling around the

yard. Additional instructions can be given to either the
children or the teacher. Our video sample demonstrates the
following natural language instructions:
Instructions given to the children:

1. When the teacher blows the whistle, disperse.

2. When the teacher opens the door, assemble.

3. When the teacher waves, gather in front of her.

4. If a skunk enters the playground, panic.

Instructions given to the teacher:

1. If the children are surrounding Ralph, blow a whistle.

2. If the children gather around the door, open it.

3. If the bell rings, assemble the children.

The actions in these instructions fall into three di�erent
categories: actions of an individual, individual actions given
to an aggregate, and actions of an aggregate. Actions such as
blowing a whistle or opening a door are included in instruc-
tions for an individual and performed only by that individ-
ual. Actions such as panicking are included in instructions
for an entire group, but are performed separately by each
member of the group. Finally, actions such as gathering, as-
sembling, dispersing, surrounding, and milling can only be
performed by aggregate entities and are the focus of this
research.
The aggregate actions are divided into classes based on

their features according to Table 1. Gathering movements
have an enclosing shape and direct e�ort, which means that
the density of the aggregate is increasing and the movement
has a focus1. Assembling, congregating, and getting together
are quasi-synonyms of gathering. Our classi�cation scheme
allows us to treat these terms as synonyms but, if required,
do a more detailed classi�cation. Dispersing movements are
similar to gathering movements except that the shape is
spreading instead of enclosing. Dissipate, scatter, and spread
out have meanings similar to dispersing. Object Referential
actions such as surrounding and encircling syntactically and
semantically require an object which is the focus of the ac-
tion. Unlike dispersing and gathering, which can have an
implicit focus, object referential actions require an explicit
focus. Milling actions are sustained actions lacking focus.
These actions progress over a period of time in a wandering
or meandering fashion. Some similar concepts in the milling
class can be further distinguished by other e�ort parame-
ters. Bustling, for example, implies a faster movement than
milling. Formations are aggregate actions with structure,
such as lines or columns. We have determined ways to rec-
ognize this structure in aggregate movements based on the
position and orientation of the individuals. It is, however,
diÆcult to generate these formations in a general way. As
the generation and recognition of formations is very applica-
ble to military domains, this remains a focus of our research.

1this focus can be explicit, as in gather around the door or
implicit, as in gather together



Figure 8: The Schoolyard Environment.

This demonstration also illustrates our system's ability
to both synthesize and recognize aggregate movements. In-
structions given to the children synthesis aggregate move-
ments. The �rst two instructions given to the teacher are
conditioned by the movements of the children and therefore
only apply if a certain aggregate movement is recognized.
The last instruction to the teacher illustrates our system's
planning capabilities. When the bell rings, the teacher must
assemble the children, which means that she must realize
that a waving action will gather the children in front of her.
This connection is made through the semantic information
stored as parameters of the actions.

6. CONCLUSIONS
Amplifying a person's understanding of a complex multi-

entity spatio-temporal situation is most properly served by
a representation that understands spatial and directional
terms and parametric modi�ers. Process representations in
PAR address recognition of individual or aggregate move-
ments, manner or style of movement, and, will, in general,
fundamentally support both retrospective (after action re-
view) and prospective (predictive) analyses and responses.
Our ACUMEN system uses the PAR representation to cap-
ture the semantics of aggregate movement for generation and
recognition. The ACUMEN system synthesizes and recog-
nizes movements of multiple entities in digital simulations
and describes their movements in language terms. Unlike
other research, the recognition of group actions is through
feature-based action semantics based on verb classi�cation
and human movement observation science. We have found

no research in computer generated forces and military sim-
ulations that recognizes aggregate movements with the ro-
bustness and scale of our system.
The more general goal of this research is to augment cog-

nition by creating a compact description of aggregate entity
movements which can then be used for human or automatic
decision-making. Our scenario demonstrates these capabil-
ities, as an illustration of a possible application. We are
currently performing studies to determine the level of com-
pression a natural language based representation provides
and how this information may be best presented to decision-
makers for both rapid absorption and long-term recall.
Our extensions include research in synthesis and recog-

nition of simulated crowds and riots, as well as, military
formations; and on the scalability of our design to large
groups. In order to obtain real time recognition of large
entity populations, we need to both sample the entities and
to select those features most predictive of the activities of
interest. For large crowds, it is neither feasible nor neces-
sary to model all of the individuals in the crowd in order to
analyze its behavior. More eÆcient strategies use sampling
of sets of individuals, forming an approximate analysis of
the di�erent activities occuring, and then analyzing more
entities to determine more precisely the boundaries between
the di�erent groups. Spatial zones may be used to sample
geographically large or population dense areas; a subset of
individuals from each spatial zone can be pro�led. For very
large populations this will tend to statistically select aggre-
gate actions.
Although we have constructed feature matrices, it is hard



to know a priori exactly which features of entities and rela-
tionships between entities will be most predictive of di�erent
activities. We need to incorporate the use modern feature
selection techniques to make this determination, providing
an ordering for the computation and analysis of the fea-
tures. Finally, we are working toward a more �ne-grained
distinction for semantically related verbs within the classes,
in order to further distinguish between them.
The ACUMEN system provides easy control of aggregate

entities for simulations of military exercises, crowds, and ur-
ban environments. Through the use of an aggregate move-
ment recognizer, a feature-based recognition procedure, and
verb classi�cation scheme, we have constructed a system
for characterizing and summarizing complex, multi-entity
movements in natural language terms. The resulting com-
pressed information may be used for amplifying understand-
ing of a situation and thereby aiding decision-making, in
facilitating descriptions of multiple entity actions for after
action reviews of real-time interactive simulations, or for
capturing attention to signi�cant group events with audi-
tory alerts.
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