
Authoring Embodied Agents’ Behaviors through Natural
Language and Planning �

Jan M. Allbeck, Rama Bindiganavale, Karin Kipper, Michael B. Moore, William Schuler,
Norman I. Badler, Aravind K. Joshi, and Martha Palmer

University of Pennsylvania
200 S. 33rd St.

Philadelphia, PA 19104

allbeck@graphics.cis.upenn.edu

1. INTRODUCTION
In any virtual simulation or AI based game involving agents,
there is a need to create or to dynamically alter agent be-
haviors. These behaviors can be generated by scripting [5],
or by using rules in a rule-based system [4], or by specify-
ing goals that are input to a planning or reactive system [1,
3]. In our system, we incorporate all of these methods and
additionally allow a user to dynamically create and modify
the behaviors of the agents.

Our goal is to explore an architecture for authoring the be-
haviors of interactive, animated agents using natural lan-
guage instructions. The work presented in this paper is an
extension of previous work found in [2], which uses natural
language input to dynamically alter the behaviors of agents
during real-time simulations. In that architecture we were
able to give both immediate instructions and conditional in-
structions to the agents. However, we were not able to give
negative directives or constraints, such as \Do not stand in
front of the car door" or \Do not walk on the grass." In
order to successfully carry out these type of instructions,
we need a planner which can dynamically alter an agent's
behavior based on constraints imposed by new instructions.

We extend our current architecture to include a planner and
the ablility to keep a record or history of all actions success-
fully completed by the agent. This will also allow us to
give conditional, iterative instructions to the agent, such as
\Check every abandoned vehicle." The history feature en-
sures that the agent will correctly check every abandoned
vehicle only once. The planner also allows us to give ab-
stract instructions such as, \Take cover behind the drum."
This instruction does not include information about how to
take cover behind the drum. The agent could walk, run,
crawl, swim, or do any number of other translatory actions
to position itself behind the drum. Also, the instruction
has no information about the path the agent should take.
The planner will provide the information that is needed for
animation but not provided by the natural language input.

2. ACTIONARY
The Actionary (Figure 1) is the core component of our sys-
tem. It contains persistent, hierarchical databases of agents,
objects, and actions. The agents are treated as special ob-
jects and stored within the same hierarchical structure as the
objects. Actions are represented as PARs (Parameterized

Action Representation). Each PAR can either be uninstan-
tiated (UPAR), containing only default properties for the
action or be instantiated (IPAR), containing speci�c infor-
mation about the agent, objects, and other properties. All
the UPARs are stored hierarchically within the Actionary.
PAR schemas are similiar to UPARs, except that their hier-
archy is derived from natural language verbs and semantics,
whereas the UPAR hierarchy is derived from motion seman-
tics within the animation domain.

During the initialization phase of a simulation, the Database
Manager loads relevant parts of the Actionary into the
World Model. The model is constantly updated during the
simulation, recording any changes in the environment or in
the properties of the agents and objects.

Actionary/World Model

Objects

PARs

Actions

PAR
Schemas

Figure 1: Actionary and World Model

3. ARCHITECTURE
Figure 2 shows the new architecture of our system.

The user inputs natural language instructions for a speci�c
agent through a GUI. The NL transducer parses the instruc-
tions, translates them into situation calculus expressions en-
capsulating references to PAR schemas, and sends them to
the Agent Process.

Within the Agent Process, these expressions are stored as a
list of Desired Situations along with other situation calculus
expressions generated from previous instructions. The De-
sired Situations set collectively represents the desired future
behavior of the agent. The Rule Manager uses the World
Model to evaluate the expressions in the Desired Situations
set and sends them to the Goal Manager when there are any
changes. All actions successfully completed by the agent are



NL
Transducer

Manager

Generator

Actionary

Database

MotionJack
Visualizer

(GUIs, etc)
Engine

Toolkit

Execution

PAR SYSTEM ARCHITECTURE

Agent Process N

Agent Process 2

Agent Process 1

Mgr
Proc

Action Filter

Experienced

Desired
Situations

Mgr
Rule

Situations Plan Strategy

Mgr
Goal

World Model

Mgr
Queue

Planner

Figure 2: New Architecture Diagram

stored as a list of Experienced Situations. The Goal Manager
uses the Desired Situations and the Experienced Situations
to determine new goals and sends them to the Planner. The
Planner further evaluates the situation calculus expressions
and retrieves the PAR schemas from them. For each PAR
schema, the Planner needs to retrieve the set of all relevant
UPARs from theWorld Model. The Action Filter �rst elim-
inates some of the UPARs from the set based on the agent's
capabilities, and sorts the remaining UPARs based on the
agent's characteristics. For example, the Planner may ask
for all of the translatory PAR actions. If one of the actions
returned is \walk" and the agent is an infant not capable
of walking, \walk" will be removed from the set. Also, if
the agent is a happy child, the Action Filter may prefer
\skip" to \walk," but if the agent is a dominant, business
woman \walk" would be preferable. The ordering of ac-
tions is based on the agent's role, metamotivational state,
perception of the situation, culture, personality, and emo-
tions. The Planner solves an abstract planning problem
where the initial state comes from the World Model, the
goal state from the Desired Situations, a preference order
of available actions from the Action Filter, parameters to
select plan structure from Plan Strategy, and constraints,
also from Desired Situations, are used to eliminate possible
plans from consideration. These IPARs are processed by the
Queue Manager and Process Manager and then sent to the
Motion Generators for the actual execution of the action.
After successful completion of the action, the Process Man-
ager adds the relevant information about the action to the
list of Experienced Situations. The multiple agents in the
environment communicate with each other through message
passing.

4. ACKNOWLEDGMENTS
This research is partially supported by U.S. Air Force F41624-
97-D-5002, O�ce of Naval Research K-5-55043/3916-1552793,
AASERTs N00014-97-1-0603 and N0014-97-1-0605, NSF IIS-
9900297 and SBR-8900230, Army Research O�ce ASSERT
DAA 655-981-0147, NASA NRA NAG 5-3990, and Engi-
neering Animation Inc.

5. REFERENCES
[1] J. Bates, A. Loyall, and W. Reilly. Integrating

reactivity, goals, and emotions in a broad agent. In 14th
Annual Conference of the Cognitvie Science Society,
Indiana, July 1992.

[2] R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I.
Badler, A. K. Joshi, and M. Palmer. Dynamically
altering agent behaviors using natural language
instructions. In Proceedings of Autonomous Agents,
2000.

[3] J. Funge, X. Tu, and D. Terzopoulos. Cognitive
modeling: Knowledge, reasoning, and planning for
intelligent characters. In SIGGRAPH'99, pages 29{38,
1999.

[4] W. L. Johnson and J. Rickel. Steve: An animated
pedagogical agent for procedural training in virtual
environments. SIGART Bulletin, 8(1-4):16{21, 1997.

[5] K. Perlin and A. Goldberg. IMPROV: A system for
scripting interactive actors in virtual worlds. In
Proceedings of SIGGRAPH '96, pages 205{216, Aug.
1996.


