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Abstract

Creating a complex virtual environment with human in-
habitants that behave as we would expect real humans to
behave is a difficult and time consuming task. Time must be
spent to construct the environment, to create human figures,
to create animations for the agents’ actions, and to create
controls for the agents’ behaviors, such as scripts, plans,
and decision-makers. Often work done for one virtual en-
vironment must be completely replicated for another. The
creation of robust, procedural actions that can be ported
from one simulation to another would ease the creation of
new virtual environments. As walking is useful in many dif-
ferent virtual environments, the creation of natural looking
walking is important. In this paper we present a system for
producing more natural looking walking by incorporating
actions for the upper body. We aim to provide a tool that
authors of virtual environments can use to add realism to
their characters without effort.

1 Introduction

Creating a complex virtual environment with human in-
habitants that behave as we would expect real humans to
behave is a difficult and timing consuming task. Time must
be spent to construct the environment, to create human fig-
ures, to create animations for the agents’ actions, and to
create controls for the agents’ behaviors, such as scripts,
plans, and decision-makers. Often work done for one vir-
tual environment must be completely replicated for another.
The creation of robust, procedural actions that can be ported
from one simulation to another would ease the creation of
new virtual environments. As walking is useful in many dif-
ferent virtual environments, the creation of natural looking
walking is important. In this paper, we are not concentrat-
ing on creating state of the art leg motion for walking. Our

contribution to locomotion research is the addition of more
natural motion of the upper body during walking.

When people walk, their upper bodies rarely follow the
classic mirroring the legs pattern found in most animations
of walking. Rather, the arms are nearly always engaged, ei-
ther due to holding a package, gesturing while participating
in conversation, or just touching the body. Also, the torso
and head should move periodically as the figure glances at
the ground and at attention-demanding people, objects, and
motions in the environment. Our hypothesis is that the ad-
dition of these “subconscious actions” will add a sense of
life to otherwise repetitive walking.

We define a subconscious action to be any action that
a person is not entirely conscious he or she is perform-
ing (though they could become conscious of it). We con-
trast subconscious actions with conscious or planned ac-
tions, which are performed as a step toward a goal. Unlike
planned actions, our subconscious actions have no inherent
semantic value and do not progress the agent toward a goal.
In other words, adding our subconscious actions to a simu-
lation does not alter the semantic content of the simulation
like an action, such as, clapping might.

We have, however, come to realize that if our subcon-
scious actions are always performed in the same manner,
they may detract from the consistency of individual char-
acters [1]. For example, a very tired or very sad character
would be unlikely to perform actions in the same manner
as a very energetic character would. In order to preserve
the consistency of the characters, we have linked high level
agent model parameters, such as tiredness and sadness, with
the low level animation parameters such as position and ve-
locity.

Similarly, it seems that some character traits influence
the probability of a character performing some subcon-
scious actions. For example, a fearful character is less likely
to perform behaviors such as scratching [9]. Through ob-
servation, we have created a statistical distribution for our



Figure 1. Pedestrians

subconscious actions. This distribution represents the fre-
quency of occurrences of subconscious actions for an aver-
age person. We can then alter the distribution in accordance
with agent model parameters to customize the distribution
to the characters.

2 Related Work

Using motion capture may be the most effective way to
adding natural looking walking to virtual environments, but
it is not flexible enough to reuse in different environments.
Many different research groups have explored the gener-
ation of locomotion. Most methods for generating loco-
motion can be classified into kinematics [4, 5], dynamics,
which are slower and more complex [6, 17, 12, 15], mo-
tion editing [11, 16, 21], and combinations of these meth-
ods [14, 10, 2, 24]. These existing walking systems have
different features including, flexibility (procedural models
and figure size independence), parameterization (stylistic
walking), curved path locomotion, and the ability to han-
dle uneven terrain. However, all of these systems have con-
centrated on the movement of the lower body, and nearly
ignored the upper body. As a result, the leg movement may
appear natural, but the character still appears lifeless.

Similar to the work of Rose, Bodenheimer, and Co-
hen [23], we use joint angle space to interpolate between
animations in order to express more variations in an ac-
tion. These interpolations are based on higher level parame-
ters, such as emotion. Our work, however, also interpolates
the frequency with which our subconscious actions are per-
formed. Also, the weight of their interpolants, such as the
amount of limping is designed by animators. The weight of
our interpolants is based on statistical observation data and
agent model parameters.

Perlin and Goldberg’s Improv system combined scripted
actions with stochastically generated motions to achieve
controllability and believability at the same time[20]. Al-
though our aim is somewhat similar to theirs, there are a
couple of crucial differences. First, their method for avoid-
ing the mechanical appearance of character movements is
adding coherent noise to limb motions. We choose instead
to provide low level parameters that control aspects of the
motion, such as velocity, range of motion, and orientation.
The values of these low level parameters are then set in
accordance with character properties such as emotion to
produce natural-looking motion that reflects the emotional
state of the character. Second, the Improv system is cen-
tered around a scripting language. This language provides
a mechanism for authors to create decision rules containing
probabilistic choices between actions. Thus, the stochas-
tic nature of the character’s behavior must be scripted by
a simulation’s authors. While our system also allows au-
thors to provide probabilities for actions, our system works
without this sort of author intervention. In our system, sub-
conscious actions are chosen stochastically based on psy-
chological and physiological aspects of the agent. There-
fore, our system does not require authors to be familiar with
human behavior patterns in order to create realistic anima-
tions.

The EMOTE system of Chi et al [7] provides artists
a method of incorporating movement manner specified in
higher level abstract concepts into any pre-existing motions.
We also provide a way for artists to control animations with
higher level parameters. However, our goal is to off load as
much of the work as possible from animators. Towards this
end, we built a system to create those higher level param-
eters according to a distribution so that a series of human
agents can be created automatically. From another perspec-
tive, our work is different from that of Chi et al in that they
modified motion trajectories, whereas we add extra motions
to animation sequences.

In [18], Musse and Thalmann have reported their method
of crowd simulation with various levels of autonomy. They
incorporated rule-based behaviors with programmed and
user controlled agents in the same scenario. This added con-
trollability gives the perception of intelligence where nec-
essary. Our focus is more on naturalness. To this end, the
quality of an individual’s walking and its variation among
the members of a group is more important than being able
to give specific commands to a single agent or group of
agents. Our controllers provide a method to change the
qualities of individuals. For example, through graphical
user interfaces, we can control how “depressed” a character
is. Musse and Thalmann also can control high level parame-
ters such as emotion, which in turn effect lower level param-
eters such as walking style. In their system other actions,
such as applauding, are either scripted or activated through
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action points that are manually placed in the environment.
Our system uses stochastic processes which are influenced
by emotional state to evoke actions in a less structured,
pre-defined manner. Because our actions are stochastically
driven, our agents are better able to express emotion. Both
the frequency of the actions and the motion quality of the
actions are effected by emotional state.

Funge et al [8] used cognitive modeling to create intelli-
gent characters. While we also try to make our system smart
enough to create an illusion of life without much effort on
the animator side, the focus of our work is very different
from theirs. Funge et al concentrated on creating consistent,
believable high level behaviors, instead of natural-looking
human actions.

We hypothesize that the combination of our system with
those cited above would create even better simulations. In
particular, the addition of our subconscious actions and mo-
tion variations would create a more natural crowd simula-
tions. In our work we have not examined high level behav-
iors of crowds as others have [22, 19]. We have not focused
on flocking behaviors, navigation, or sociological aspects of
crowds, but the stochastic addition of subconscious actions
to crowd simulations would add needed variation, interest,
and realism.

3 Stochastic Behavior Modeling

3.1 Subconscious Actions

As stated in the introduction, our aim is to increase re-
alism in simulations by adding stochastically modeled sub-
conscious actions. These are not actions that require high
level planning or progress a story-line. These are actions
that we, as humans, perform on a daily basis without nec-
essarily even being aware of. They are similar to idling
behaviors found in some games, but our actions are based
on a distribution and linked to character traits, whereas in
most games idling behaviors are based only on the amount
of time the character has been idle.

Subconscious actions are not, at their very root, stochas-
tically driven. They likely have a definable cause and if
one were omniscient, one could point to the source of each
action. However, from the various levels of explanation
for a subconscious action, including the neuron level, the
nerve level, the organ level (i.e. skin itch), and the cognitive
level (i.e. emotions), it is clear that modeling the underlying
causes of subconscious actions is a formidable task. Rather
than model each and all of these levels, we instead model
the generation of subconscious actions as a stochastic pro-
cess whose distribution can be modified based on a number
of factors, including dry skin and emotions.

Figure 2. A frame from the video used to ob-
tain our stochastic data.

3.2 Statistical Analysis of Observation Data

In order to gather data with which to form our distri-
bution of subconscious actions, we video-taped people as
they walked along a section of sidewalk on the University
of Pennsylvania campus. Each of the 33 subjects was taped
for 35 seconds1. We then studied the video tape and de-
termined the type of actions we wished to model in our
system. In this, the first version of our system, we chose;
head touches, body touches, head scratches, body scratches,
yawning, looking around, looking down, and gesturing. As
we are not attempting to model communication in our sys-
tem and have no basis for linking speech acts with ges-
turing, we simply created two different gesture actions for
added variability in the simulation.

Next we counted the occurrences of these actions for
each subject and averaged them over the 33 subjects, cre-
ating a representation of the actions for an average person2.
We then created a distribution of these actions over time
based on an average action duration of 3 seconds. At every
frame of the virtual environment simulation, this distribu-
tion is passed to the Agent Model to be customized to the
character.

3.3 Agent Model

Each character in the virtual environment has a parame-
terized Agent Model. Including an Agent Model in the sys-
tem adds to the consistency of the behaviors. Not everyone
performs the same subconscious actions or performs them

1We taped each subject for 35 seconds, because it was the longest time
during which the subjects were not occluded by any trees or buildings.

2We are not claiming that our sampling was done in a principled way
in order capture data for an average person. It is clearly biased toward
a university community. Different distributions could be constructed for
different environments.
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Figure 3. Sad Walking

at the same rates. In fact even the same person exhibits dif-
ferent actions, such as nervous mannerisms, with different
frequencies in different situations.

We can not determine cognitive or behavioral influences,
such as emotions, boredom level, or tiredness from a 35 sec-
ond video clip, so the ways in which the Agent Model pa-
rameters alter the subconscious action distribution are em-
pirically derived.

In our system the parameters of the Agent Model, in-
cluding emotions, physiological factors, and role, can be
set by a user before the simulation starts, set randomly, or
set through graphical user interfaces during the simulation.
Some of the Agent Model parameters change as the simu-
lation progresses. For example, the longer the agent stays
awake, the more tired it will become.

The parameters of the Agent Model affect the actions of
the agents in two ways. First, they effect the frequency with
which it performs the subconscious action. For example,
boredom increases the frequency of restless behaviors such
as scratching and touching. Similarly, fear increases the fre-
quency of looking around as though the agent were visually
scanning the environment for danger. Role also effects the
frequency of many of the subconscious actions, including
the gestures. Gestures are much more likely when the char-
acter is in a speaking role. At every frame in the simulation,
the Agent Model updates the distribution of subconscious
actions to reflect its current state.

Second, the parameters of the agent model effect the
style or manner in which the character’s actions are per-
formed. The Agent Model can set parameters of our basic
walking (walking with out subconscious actions) to produce

walking that reflects the cognitive state of the agent. For
example, we can produce sad walking(See Figure 3) where
the agent’s body has a more closed shape and the speed of
the walking is slower. Furthermore, the Agent Model pa-
rameters effect the style of the subconscious actions. One
example is handedness. The handedness of the agent effects
which hand and arm is used for an action. The predominant
hand is preferred, but if that hand is already being utilized,
then the other hand will be used (See Section 4.1 for more
details).

4 Simulation System

The task of animating such subconscious actions re-
quired the design of a new animation architecture. To un-
derstand why, consider how online animations are usually
generated. Typically, animation data, in the form of joint
angle sets for the whole body, are created using an off-line
procedure and associated with some action label, such as
“Open door.” When this action is required, the animation
data set is played back on a figure.

This approach commandeers the entire body for the du-
ration of the animation. However, if multiple actions are
to take place, then animation data sets cannot take over the
whole body, as this prevents other actions from being per-
formed simultaneously. Body segments and joints which
are not necessary for the action should not be used and
should be left for use by other actions.

Furthermore, subconscious action can occur at any time.
Scratching your nose might need to occur while driving,
walking, or lying down. This implies that a more flexible
notion of action is needed for animation. Animating based
on joint angle data sets will be unable to handle many situ-
ations in which the subconscious actions will be called.

Finally, subconscious actions are often satisfiable using
any available resource. For example, if you are writing
using your right hand and need to scratch your nose, you
might use your left hand, or the back of the pen in your right
hand. This implies that a resource manager for the body will
be necessary to determine which joint/segment resources
can be used to satisfy an action request. The fact that the
resources for performing a subconscious action are known
only at run-time (since subconscious actions are generated
stochastically), reinforces the previous observation that ac-
tions must be very flexible in order to work successfully
with different resources, as well as in different situations.

Figure 4 shows the architecture of our system. After the
distribution of subconscious actions has been altered by the
Agent Model, the Stochastic Behavior unit chooses an ac-
tion according to the distribution. It then instantiates a PAR
(Parameterized Action Representation) [3] for that action.
PARs contain high level information such as the agents and
object participating in the action, as well as, low level in-
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Figure 4. System Architecture

formation such as which end effector(s) is prefered for the
action and how strongly it is prefered. The Stochastic Be-
havior unit uses the parameters of the Agent Model and ob-
jects of the environment to set parameters of the actions.
For example, if scratching the head is chosen as an action,
the Stochastic Behavior unit will consult the Agent Model
to determine the handedness of the agent. It then stores this
information along with the degree of handedness (in this
case low because scratching can be performed with either
hand) in the PAR, and places the PAR on the subconscious
action queue. Similarly, if looking around is chosen as an
action, the Stochastic Behavior unit will provide the action
with objects in the environment to look at.

There is also a queue of Planned Actions. Actions on
this queue are also represented as PARs, and can be scripted
ahead of time, come from a planner or cognitive unit, or
placed on the queue dynamically during the simulation
through a graphical user interface.

4.1 Action Execution

The Action Execution unit is responsible for managing
the body resources (i.e. arms, legs, torso, and head) of the
agent and translating the high level parameters of the Agent
Model into low level parameters for the Animation system.
It examines both action queues and determines which ac-

tions from each queue can be executed given the available
resources. Preference is given to actions on the Planned
Actions queue. The Action Execution unit then provides
additional information such as goal positions and calls the
Animation System with all of the necessary information.

The Action Execution unit notifies the Agent Model
when an action is being executed. This allows the Agent
Model to reset some of its properties when necessary.
For example, itch grows over time, increasing its urgency.
When the itch is finally scratched, the parameter is reset to
its default value. Finally, the Animation System then uses
inverse kinematics to animate the character. The Anima-
tions System notifies the Action Execution unit when an ac-
tion has been completed, so that the Action Execution unit
can use the body resources that are now free.

We observed that people often initiate subconscious ac-
tions concurrently with planned and walking actions or even
other subconscious actions. Those actions are not always
synchronized to one another, and they do not always end
in the same order as they started. When a human starts an
action, he or she unconsciously selects parts of the body
which are not engaged in any other actions at the time. If
necessary he or she would wait until some of those parts are
freed before launching the action, or he or she might give
up and forget about the action he or she was about to start.

The Action Execution unit examines the queues of ac-
tions to find actions with higher priorities that can be exe-
cuted by the agent given the available body resources.

We enumerated body parts as resources (R = frij80 �
i < Ng whereN is the number of such resources). Cur-
rently, we haveHead, Left Arm, Right Arm, and Upper
Torso as the resources. The legs are reserved for walk-
ing. Each action (both subconscious and planned) is defined
with the set of resources it requires. In other words, for ac-
tionAi, there isRi � R such that:

Ri = frj j8j Ai usesrjg

At any moment in time, an agent has a set of free re-
sources. We letF � R denote this set. ActionAi can be
launched whenRi � F . Many actions are defined to use
any one of the set of resources. For example, the “Scratch
Head” action is able to use eitherf LeftArm Headg or f
RightArm Headg.

The queued actions are also associated with priorities
and actions with higher priority have precedence for execu-
tion. As soon as an action has been chosen to run, the free
resource setF is updated, and this action is pulled out from
the action queue. It should be noted that in contrast to the
work of Perlin and Goldberg[20], we choose between the
timing of actions, not the actions themselves. Planned ac-
tions have higher priority, but the urgency of subconscious
action increase if they are not performed (like an itch that is
not scratched).
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4.2 Animation System

This module considers the parameters in the PARs, such
as objects and handedness. These parameters either decide
the trajectory of an action or the manner in which the re-
sources are chosen.

In our system, anAction is defined to be a sequence of
goal positions of one or more end effectors along with their
intervals. Using inverse kinematics, the goal positions are
linearly interpolated in joint angle space to achieve contin-
uous motions.

In order to make those actions work in situations along
with other actions concurrently, we define the goal posi-
tions to be relative to the coordinate frame of the relevant
body segment. For example, some goal positions of the
“Scratch Head” motion are defined relative to the coordi-
nate frame of the head segment. This simple scheme works
for our purposes, allowing the head to move, while it is be-
ing scratched.

Another issue that must be addressed in our system is the
blending and stitching together of disparate actions. This
becomes much more difficult in light of the unknown state
of the body, due to the stochastic nature of the subconscious
actions, and in light of our desire not to return to a “body
neutral” state after each action. Returning to a known state
not only does not work when actions can overlap, but is
undesirable because of the unnatural look it gives.

We blend motions in a fashion similar to that of Perlin
and Goldberg[20]. In order to transition from one action
to another, each required joint gradually changes the per-
centage of the actions it is performing. As example, take
transitioning from arm swing to scratching head. At the
beginning of the transition the arm joints are performing
100 percent arm swing and no scratching. They gradually
start lowering the amount of arm swing and increasing the
amount of scratching until it is eventually fifty percent of
each and finally 100 percent scratching.

Subconscious arm motions are generated using inverse
kinematics (IK). Goal positions for the IK are generated in-
side of our Action Execution module. Scratching the tip
of a nose is an example of a subconscious arm motion. In
order to animate this action, the Action Execution module
finds two relative positions on the nose surface from a pre-
defined site on the character’s face. The IK then moves the
specified end effector to the goal positions. Other goal po-
sitions are given from higher levels of this system because
they can be different depending on the current environment
or time. For example, an object could be given as a goal
position for an attention action.

One of the key issues in animating simultaneous actions
is how to generate the trajectories for the end effectors, so
that the actions are satisfied no matter what other actions
are occurring. For example, the trajectory for scratching the

face is very different when the figure is upright and walk-
ing than when it is bent over a table writing. Because our
system checks goal position at every cycle of the animation,
that goal position does not need to be static. Going back to
our previous example of scratching the nose, at every cycle
our system finds the two goal positions from the pre-defined
site, which may have changed its global position since the
last frame, if for example the agent is moving its head. The
IK then uses these newly found goal positions to move the
end effectors. Thus, it can handle dynamic trajectories.

The Animation System uses IKAN[25] inverse kinemat-
ics and Transom Jack[13] to animate the actions and move
the human figure.

4.2.1 Parameterization of Animation

We have applied our ideas about stochastic modeling of sub-
conscious actions to creating more natural looking walking.
Therefore, we have divided walking into upper and lower
body movements. Most research on locomotion concen-
trates mostly on the lower body movement and simply adds
synchronized arm swing to the upper body. We believe that
movement of upper body adds significant reality and natu-
ralness to walking animation. Unlike legs during walking,
the upper body in general does not create a closed chain
of joints. This gives us greater variability, which makes
adding affect to the walking simpler. However, the move-
ment of upper body does need to be closely synchronized
with the lower body motions, and any changes happening
to the lower body motions need to be reflected to the upper
body. We describe our system of controlling upper body
in section 4.2.2. This upper body controller is responsible
for spine, arm, and neck motions. In addition we need to
control the nuances of locomotion. We need a walking an-
imation which allows us to control its parameters in real
time. Our solution to this problem is described in section
4.2.3. This leg controller is responsible for movement of all
the joints from the pelvis to the feet. The Agent Model and
Action Execution modules can set parameters of the actions
for both upper and lower body movements.

4.2.2 Upper Body Movements

Unlike the leg motion which plays the main role in the
functionality of forwarded movement, upper body move-
ment has more room for affect to show through. We fo-
cused on the movement of upper body which can convey
this secondary information. In order to create an upper body
movement which is controllable enough to generate differ-
ent styles of walking, we employed a simple kinematic, pro-
cedural method.

In figure 5, we show the structure of our human figure.
We control 11 degrees of freedom (DOFs) in this structure
to create the upper body movement for walking. The DOFs
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Figure 5. Joint Structure of the Upper Body

we use are associated with elbow joint (1 DOF), shoulder
joint (2 DOFs), clavicle joint (2 DOFs), upperi + 1 spine
joints (3 DOFs), and lowerN � i spine joints (3 DOFs)
whereN is the total number of spine joints of the figure
(including the waist) andi is the index of specially desig-
nated spine joint.

In order to cancel out the rotational movement of the
pelvis that is created during walking, the lowerN � i spine
joints move counter to the pelvis rotation. The necessary ro-
tation of 3 DOF is evenly distributed in thoseN � 1 joints
so that the upper body does not rotate in any direction above
theith joint because of the pelvis movement. Selection ofi

effects the naturalness of the upper body movement. From
empirical study, we foundi = 13 to be a good setting for
our figure withN = 17 spine joints.

Upper body and leg movements are synchronized using
a common time parametert. All the rest of DOFs are con-
trolled by sine curves with thist as a parameter.

Rj = Ajsin(ajt+ bj)
pj +Bj

where0 � j < 11 andRj is the rotation angle of the
joint for time instancet. Controls of symmetric joints are
achieved using the same sine curve with phase shift of�.

Rl
j = Ajsin(ajt+ bj)

pj +Bj

Rr
j = Ajsin(aj(t+ �) + bj)

pj +Bj

Those5 � 11 parameters (Aj , aj , bj , pj , andBj with
0 � j < 11) define a style of upper body movement.
Changing these parameters, changes the walking style of
a figure. Each simulation begins with default (average) val-
ues for these parameters. In order to create different styles
of walking for different agents, we have created a graphical
tool to interactively adjust these parameters. Instead of cre-
ating this parameter set for each agent, we have constructed

Figure 6. Trajectory of Toe During Walking.

Figure 7. Distance Checking

the parameter set associated with emotions of agents. For
example, we have created a parameter set for “Angry” walk-
ing. We used weighted barycenter of those parameters with
agent’s emotion parameters as the weights. This created a
walking style which reflects the agent’s emotional state.

4.2.3 Lower Body Movements

Like the arm movement, walking in our system is also an-
imated by using inverse kinematics. The walking has pre-
stored key coordinates for the goals used by the leg inverse
kinematic system. The root foot is non-swinging foot that
stays in contact with the ground. The goal position of the
swinging leg is calculated based on the distance from the
root foot to the center of the pelvis (See Figure 7).

An intermediate goal position and orientation of the
swinging leg is provided as a parameter of the walking. The
goal position is first calculated relative to the pelvis. It is
then transformed into the global coordinates necessary for
the inverse kinematics. The style of walking can be varied
simply by changing one key coordinate for the intermediate
goal. This coordinate is used to set the maximum height
of the swing leg and the position of this maximum height
along the leg’s stride path (See Figure 6).

During a walking cycle, a timet, where�1 � t � 1, is
maintained. This time value represents the position of the
legs in the walking cycle. For example,t = 0, represents the

7



left foot in full contact with the floor, andt = �1 or 1 rep-
resents the right foot in full contact with the floor. Note that
because this is a repeating cycle,�1 is equivalent to1. This
timet is then used to coordinate the upper body movements
with the leg movements, such as the arm swing with the
leg strides. Our upper body movements and subconscious
actions can be used with any walking system that provides
this timing information, because as we have mentioned in
the previous section, our animation system uses the lower
spine joints to compensate for the pelvis rotations.

5 Evaluations

In order to evaluate our system, we performed an infor-
mal study in which we showed various animation clips to
6 people. The majority of the participants (83%) found the
walking with subconscious actions to be more natural than
walking without subconscious actions. The participant that
found plain walking more natural indicated that she was dis-
tracted by movement in the hips. All of the participants cor-
rectly identified our sad walking clip as sad. Some (66%),
however, also described our worried walking as sad. Most
of the participants were unable to identify angry walking.
We believe adjustments in the parameters and an angry fa-
cial expression is needed to more clearly depict anger. Ad-
ditionally, most (66%) of participants correctly identified
happiness.

6 Conclusions and Future Work

In this paper, we have presented a system for produc-
ing more natural looking walking by incorporating actions
for the upper body. Our aim is to provide a tool that au-
thors of virtual environments can use to add realism to their
characters without effort. Our system models subconscious
actions with a statistical distribution and alters this distri-
bution to customize the actions to traits of the characters
in the virtual environment. Additionally, the actions them-
selves, including the walking, are parameterized allowing
their performance to be consistent with the cognitive, so-
cial, physiological, and emotional state of the agent.

We found that our work is particularly well suited for the
simulation of pedestrians (See Figure 1). With our system,
generating a lot of agents with individualized walking ac-
tions is quite simple. All that is necessary is the setting of
the Agent Model parameters. If desired the parameters of
the agent could even be set stochastically.

There are, however, many areas where our work could be
expanded. First, we are currently using a simple method for
generating walking. We plan to add additional parameters
to the walking.

Secondly, we have observed that there is phrasing in sub-
conscious actions. For example, a person may scratch mul-

tiple locations on their head in the same phrase of motion.
Currently, this would only occur in our system if the various
scratches had similar priorities. When one subconscious ac-
tion is marked for animation, we could check the urgency of
others that could be phrased with it. For example, if scratch-
ing the nose is about to execute and the value of itch on the
chin is above a certain threshold, we could phrase them to-
gether.

Additionally, we would like to add more subconscious
actions to our system. We have noticed that available ob-
jects seem to promote some subconscious behaviors. For
example, a watch or a pair of glasses are often adjusted
while walking. More emotive actions, including a facial
animation system, and a component, such as EMOTE [7],
for expressive gestures would also contribute realism to our
system.

Lastly, we plan to more fully integrate an agent model
with our system. The cognition of our current agent model
is limited. One area of further exploration is the linkage
of plans and subconscious actions. An agent’s plans effect
among other things its emotions and physiological state.
These type of states are reflected in the frequency and style
of subconscious actions, but the link between the plans and
these states is currently not in place.
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