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Abstract contribution to locomotion research is the addition of more
natural motion of the upper body during walking.

Creating a complex virtual environment with human in- When people walk, their upper bodies rarely follow the
habitants that behave as we would expect real humans toclassic mirroring the legs pattern found in most animations
behave is a difficult and time consuming task. Time must beof walking. Rather, the arms are nearly always engaged, ei-
spent to construct the environment, to create human figuresther due to holding a package, gesturing while participating
to create animations for the agents’ actions, and to create in conversation, or just touching the body. Also, the torso
controls for the agents’ behaviors, such as scripts, plans, and head should move periodically as the figure glances at
and decision-makers. Often work done for one virtual en- the ground and at attention-demanding people, objects, and
vironment must be completely replicated for another. The motions in the environment. Our hypothesis is that the ad-
creation of robust, procedural actions that can be ported dition of these “subconscious actions” will add a sense of
from one simulation to another would ease the creation of Jife to otherwise repetitive walking.

new virtual environments. As walking is useful in many dif- We define a subconscious action to be any action that
ferent virtual environments, the creation of natural looking person is not entirely conscious he or she is perform-
walking is important. In this paper we present a system for ing (though they could become conscious of it). We con-

producing more natural looking walking by incorporating yaqt sunconscious actions with conscious or planned ac-

actions for the upper body. We aim to provide a tool that g \hich are performed as a step toward a goal. Unlike
authors of virtual environments can use to add realism {0 2 yneq actions, our subconscious actions have no inherent
their characters without effort. semantic value and do not progress the agent toward a goal.
In other words, adding our subconscious actions to a simu-
lation does not alter the semantic content of the simulation
1 Introduction like an action, such as, clapping might.
We have, however, come to realize that if our subcon-
Creating a complex virtual environment with human in- SCious actions are always performed in the same manner,
habitants that behave as we would expect real humans t¢hey may detract from the consistency of individual char-
behave is a difficult and timing consuming task. Time must acters [1]. For example, a very tired or very sad character
be spent to construct the environment, to create human fig-would be unlikely to perform actions in the same manner
ures, to create animations for the agents’ actions, and tods @ very energetic character would. In order to preserve
create controls for the agents’ behaviors, such as scriptsthe consistency of the characters, we have linked high level
plans, and decision-makers. Often work done for one vir- agent model parameters, such as tiredness and sadness, with
tual environment must be completely replicated for another. the low level animation parameters such as position and ve-
The creation of robust, procedural actions that can be portedOCity.
from one simulation to another would ease the creation of  Similarly, it seems that some character traits influence
new virtual environments. As walking is useful in many dif- the probability of a character performing some subcon-
ferent virtual environments, the creation of natural looking scious actions. For example, a fearful character is less likely
walking is important. In this paper, we are not concentrat- to perform behaviors such as scratching [9]. Through ob-
ing on creating state of the art leg motion for walking. Our servation, we have created a statistical distribution for our



Perlin and Goldberg’s Improv system combined scripted
actions with stochastically generated motions to achieve
controllability and believability at the same time[20]. Al-
though our aim is somewhat similar to theirs, there are a
couple of crucial differences. First, their method for avoid-
ing the mechanical appearance of character movements is
adding coherent noise to limb motions. We choose instead
to provide low level parameters that control aspects of the
motion, such as velocity, range of motion, and orientation.
The values of these low level parameters are then set in
accordance with character properties such as emotion to
produce natural-looking motion that reflects the emotional
state of the character. Second, the Improv system is cen-
tered around a scripting language. This language provides
a mechanism for authors to create decision rules containing
probabilistic choices between actions. Thus, the stochas-

Figure 1. Pedestrians tic nature of the character’s behavior must be scripted by
a simulation’s authors. While our system also allows au-
thors to provide probabilities for actions, our system works
subconscious actions. This distribution represents the fre-without this sort of author intervention. In our system, sub-
quency of occurrences of subconscious actions for an averconscious actions are chosen stochastically based on psy-
age person. We can then alter the distribution in accordancehological and physiological aspects of the agent. There-
with agent model parameters to customize the distributionfore, our system does not require authors to be familiar with

to the characters. human behavior patterns in order to create realistic anima-
tions.
2 Related Work The EMOTE system of Chi et al [7] provides artists

a method of incorporating movement manner specified in

Using motion capture may be the most effective way to higher level a_bstract concepts into any pre—exi_sting motio_ns.
adding natural looking walking to virtual environments, but e @lso provide a way for artists to control animations with
it is not flexible enough to reuse in different environments. higher level parameters. However, our goal is to off load as
Many different research groups have explored the gener_much of thg work as possible from animators. Towards this
ation of locomotion. Most methods for generating loco- €Nd, we built a system to create those higher level param-
motion can be classified into kinematics [4, 5], dynamics, ©t€rs according to a dlstrlbutlon so that a series of human
which are slower and more complex [6, 17, 12, 15], mo- ggents can be_ cre_ated automatically. Frqm anpther perspec-
tion editing [11, 16, 21], and combinations of these meth- tiveé, our work is different from that of Chi et al in that they
ods [14, 10, 2, 24]. These existing walking systems have modified motion trajectories, whereas we add extra motions

different features including, flexibility (procedural models 0 @nimation sequences.
and figure size independence), parameterization (stylistic In[18], Musse and Thalmann have reported their method
walking), curved path locomotion, and the ability to han- of crowd simulation with various levels of autonomy. They
dle uneven terrain. However, all of these systems have conincorporated rule-based behaviors with programmed and
centrated on the movement of the lower body, and nearlyuser controlled agents in the same scenario. This added con-
ignored the upper body. As a result, the leg movement maytrollability gives the perception of intelligence where nec-
appear natural, but the character still appears lifeless. essary. Our focus is more on naturalness. To this end, the
Similar to the work of Rose, Bodenheimer, and Co- quality of an individual's walking and its variation among
hen [23], we use joint angle space to interpolate betweenthe members of a group is more important than being able
animations in order to express more variations in an ac-to give specific commands to a single agent or group of
tion. These interpolations are based on higher level parameagents. Our controllers provide a method to change the
ters, such as emotion. Our work, however, also interpolatesqualities of individuals. For example, through graphical
the frequency with which our subconscious actions are per-user interfaces, we can control how “depressed” a character
formed. Also, the weight of their interpolants, such as the is. Musse and Thalmann also can control high level parame-
amount of limping is designed by animators. The weight of ters such as emotion, which in turn effect lower level param-
our interpolants is based on statistical observation data anceters such as walking style. In their system other actions,
agent model parameters. such as applauding, are either scripted or activated through



action points that are manually placed in the environment.
Our system uses stochastic processes which are influenced
by emotional state to evoke actions in a less structured,
pre-defined manner. Because our actions are stochastically
driven, our agents are better able to express emotion. Both
the frequency of the actions and the motion quality of the
actions are effected by emotional state.

Funge et al [8] used cognitive modeling to create intelli-
gent characters. While we also try to make our system smart
enough to create an illusion of life without much effort on
the animator side, the focus of our work is very different
from theirs. Funge et al concentrated on creating consistent,
believable high level behaviors, instead of natural-looking
human actions.

We hypothesize that the combination of our system with
those cited above would create even better simulations. In
particular, the addition of our subconscious actions and mo-
tion variations would create a more natural crowd simula-
tions. In our work we have not examined high level behav-
iors of crowds as others have [22, 19]. We have not focused ) ) o
on flocking behaviors, navigation, or sociological aspects of !N order to gather data with which to form our distri-

crowds, but the stochastic addition of subconscious actionsPUtion of subconscious actions, we video-taped people as
to crowd simulations would add needed variation, interest, (€Y walked along a section of sidewalk on the University
and realism. of Pennsylvania campus. Each of the 33 subjects was taped

for 35 seconds We then studied the video tape and de-
termined the type of actions we wished to model in our
3 Stochastic Behavior Modeling system. In this, the first version of our system, we chose;
head touches, body touches, head scratches, body scratches,
yawning, looking around, looking down, and gesturing. As
3.1 Subconscious Actions we are not attempting to model communication in our sys-
tem and have no basis for linking speech acts with ges-
turing, we simply created two different gesture actions for

Figure 2. A frame from the video used to ob-
tain our stochastic data.

3.2 Statistical Analysis of Observation Data

As stated in the introduction, our aim is to increase re- dded variability in the simulati
alism in simulations by adding stochastically modeled sub- added variapiity In the simutation.

conscious actions. These are not actions that require high Nhext ;‘_’e f[:our;ted the ogct;:rrences (;L th§§e abc_t|o?s for
level planning or progress a story-line. These are actiong®ach subject and averaged them over the Subjects, cre-

that we, as humans, perform on a daily basis without nec_ating a representation of the actions for an average pé&rson
essarily, even being,aware of. They are similar to idling We then created a distribution of these actions over time

behaviors found in some games, but our actions are base(E;ased on an average action duration of 3 seconds. At every

on a distribution and linked to character traits, whereas in _am_e of the (\j/'[tu?r: e/r&vwor:n':/ler:jt s||;nutljat|on, tth's. d'zt:'bltjr']
most games idling behaviors are based only on the amoun{'ﬁn IS i)asse 0 the Agent Model to be customized fo the
of time the character has been idle. character.

Subconscious actions are not, at their very root, stochas-

. . : ) .3
tically driven. They likely have a definable cause and if
one were omniscient, one could point to the source of each
action. However, from the various levels of explanation
for a subconscious action, including the neuron level, the
nerve level, the organ level (i.e. skin itch), and the cognitive
level (i.e. emotions), it is clear that modeling the underlying
causes of subconscious actions is a formidable task. Rather !we taped each subject for 35 seconds, because it was the longest time
than model each and all of these levels, we instead modepuring which the subjects were not occluded by any trees or buildings.
the generation of subconscious actions as a stochastic pro- 2We are not claiming that our sampling was done in a principled way

R g in order capture data for an average person. It is clearly biased toward
cess whos_e d'Str_'bUt'on can be mOd'f"‘_:‘d based on a numbeg yniversity community. Different distributions could be constructed for
of factors, including dry skin and emotions. different environments.

.3 Agent Model

Each character in the virtual environment has a parame-
terized Agent Model. Including an Agent Model in the sys-
tem adds to the consistency of the behaviors. Not everyone
performs the same subconscious actions or performs them




walking that reflects the cognitive state of the agent. For
example, we can produce sad walking(See Figure 3) where
the agent’s body has a more closed shape and the speed of
the walking is slower. Furthermore, the Agent Model pa-
rameters effect the style of the subconscious actions. One
example is handedness. The handedness of the agent effects
which hand and arm is used for an action. The predominant
hand is preferred, but if that hand is already being utilized,
then the other hand will be used (See Section 4.1 for more
details).

4 Simulation System

The task of animating such subconscious actions re-
quired the design of a new animation architecture. To un-
derstand why, consider how online animations are usually
generated. Typically, animation data, in the form of joint
angle sets for the whole body, are created using an off-line
procedure and associated with some action label, such as
“Open door.” When this action is required, the animation
data set is played back on a figure.

at the same rates. In fact even the same person exhibits dif- This approach commandeers the entire body for the du-

. . . . ration of the animation. However, if multiple actions are
ferent actions, such as nervous mannerisms, with different P

frequencies in different situations. to take place, then animation data sets cannot take over the

. . . . whole body, as this prevents other actions from being per-
We can not determine cognitive or behavioral influences

) . 'formed simultaneously. Body segments and joints which
such as emotions, boredom level, or tiredness from a 35 sec- y y S€9 J

. . . ) are not necessary for the action should not be used and

ond video clip, so the ways in whlch_ the Aggnt Model Pa- <hould be left for use by other actions.
rgr_neters aIFer the subconscious action distribution are em- Furthermore, subconscious action can occur at any time.
pirically derived. _ Scratching your nose might need to occur while driving,

In our system the parameters of the Agent Model, in- \yaking, or lying down. This implies that a more flexible
cluding emotions, physiological factors, and role, can be notion of action is needed for animation. Animating based
set by a user before the simulation starts, set randomly, orgp, joint angle data sets will be unable to handle many situ-
set through graphical user interfaces during the simulat_ion.atiOns in which the subconscious actions will be called.
Some of the Agent Model parameters change as the simu-  Fina|ly, subconscious actions are often satisfiable using
lation progresses. For example, the longer the agent stay$ny available resource. For example, if you are writing
awake, the more tired it will become. using your right hand and need to scratch your nose, you

The parameters of the Agent Model affect the actions of might use your left hand, or the back of the pen in your right
the agents in two ways. First, they effect the frequency with hand. This implies that a resource manager for the body will
which it performs the subconscious action. For example, be necessary to determine which joint/segment resources
boredom increases the frequency of restless behaviors sucban be used to satisfy an action request. The fact that the
as scratching and touching. Similarly, fear increases the fresresources for performing a subconscious action are known
quency of looking around as though the agent were visually only at run-time (since subconscious actions are generated
scanning the environment for danger. Role also effects thestochastically), reinforces the previous observation that ac-
frequency of many of the subconscious actions, including tions must be very flexible in order to work successfully
the gestures. Gestures are much more likely when the charwith different resources, as well as in different situations.
acter is in a speaking role. At every frame in the simulation,  Figure 4 shows the architecture of our system. After the
the Agent Model updates the distribution of subconscious distribution of subconscious actions has been altered by the
actions to reflect its current state. Agent Model, the Stochastic Behavior unit chooses an ac-

Second, the parameters of the agent model effect thetion according to the distribution. It then instantiates a PAR
style or manner in which the character’s actions are per-(Parameterized Action Representation) [3] for that action.
formed. The Agent Model can set parameters of our basicPARs contain high level information such as the agents and
walking (walking with out subconscious actions) to produce object participating in the action, as well as, low level in-

Figure 3. Sad Walking



tions from each queue can be executed given the available

resources. Preference is given to actions on the Planned
l l Actions queue. The Action Execution unit then provides

additional information such as goal positions and calls the

mochartic || et wodat Animation System with all of the necessary information.
e L The Action Execution unit notifies the Agent Model
when an action is being executed. This allows the Agent
1 1 Model to reset some of its properties when necessary.
P For example, itch grows over time, increasing its urgency.
[ iy J ST When the itch is finally scratched, the parameter is reset to
A, J its default value. Finally, the Animation System then uses
inverse kinematics to animate the character. The Anima-
\ tions System notifies the Action Execution unit when an ac-
Py tion has been completed, so that the Action Execution unit
*] Eascution can use the body resources that are now free.
We observed that people often initiate subconscious ac-
. tions concurrently with planned and walking actions or even
i other subconscious actions. Those actions are not always
PR synchronized to one another, and they do not always end
dywtan in the same order as they started. When a human starts an

action, he or she unconsciously selects parts of the body
which are not engaged in any other actions at the time. If
necessary he or she would wait until some of those parts are
freed before launching the action, or he or she might give
up and forget about the action he or she was about to start.

The Action Execution unit examines the queues of ac-
tions to find actions with higher priorities that can be exe-
formation such as which end effector(s) is prefered for the cuted by the agent given the available body resources.
action and how strongly it is prefered. The Stochastic Be- We enumerated body parts as resour@es {r;|V0 <
havior unit uses the parameters of the Agent Model and ob-i < N} whereN is the number of such resources). Cur-
jects of the environment to set parameters of the actions.rently, we haveHead Left Arm Right Arm and Upper
For example, if scratching the head is chosen as an actionJorso as the resources. The legs are reserved for walk-
the Stochastic Behavior unit will consult the Agent Model ing. Each action (both subconscious and planned) is defined
to determine the handedness of the agent. It then stores thiwith the set of resources it requires. In other words, for ac-
information along with the degree of handedness (in this tion A4;, there isk; C 'R such that:
case low because scratching can be performed with either
hand) in the PAR, and places the PAR on the subconscious R; = {rj|Vj A;uses;}
action queue. Similarly, if looking around is chosen as an
action, the Stochastic Behavior unit will provide the action
with objects in the environment to look at.

There is also a queue of Planned Actions. Actions on
this queue are also represented as PARs, and can be script
ahead of time, come from a planner or cognitive unit, or
placed on the queue dynamically during the simulation
through a graphical user interface.

Figure 4. System Architecture

At any moment in time, an agent has a set of free re-
sources. We let” C R denote this set. Action; can be
launched wher?; C F'. Many actions are defined to use
any one of the set of resources. For example, the “Scratch

ead” action is able to use eith¢rLeftArm Head} or {
RightArm Head}.

The queued actions are also associated with priorities
and actions with higher priority have precedence for execu-
] ) tion. As soon as an action has been chosen to run, the free
4.1 Action Execution resource seF is updated, and this action is pulled out from

the action queue. It should be noted that in contrast to the

The Action Execution unit is responsible for managing work of Perlin and Goldberg[20], we choose between the
the body resources (i.e. arms, legs, torso, and head) of théiming of actions, not the actions themselves. Planned ac-
agent and translating the high level parameters of the Agenttions have higher priority, but the urgency of subconscious
Model into low level parameters for the Animation system. action increase if they are not performed (like an itch that is
It examines both action queues and determines which acnot scratched).



4.2 Animation System face is very different when the figure is upright and walk-
ing than when it is bent over a table writing. Because our

This module considers the parameters in the PARs, suchSyStem checks goal position at every cycle of the animation,
as objects and handedness. These parameters either decid2at 9oal position does not need to be static. Going back to
the trajectory of an action or the manner in which the re- OUr previous example of scratching the nose, at every cycle
sources are chosen. our system finds the two goal positions from the pre-defined

In our system, ari\ctionis defined to be a sequence of site, which may have changed its global position since the
goal positions of one or more end effectors along with their 12t frame, if for example the agent is moving its head. The
intervals. Using inverse kinematics, the goal positions are 'K then uses these newly found goal positions to move the

linearly interpolated in joint angle space to achieve contin- €Nd effectors. Thus, it can handle dynamic trajectories.
UouS motions. The Animation System uses IKAN[25] inverse kinemat-

In order to make those actions work in situations along /¢S @nd Transom Jack[13] to animate the actions and move

with other actions concurrently, we define the goal posi- the human figure.

tions to be relative to the coordinate frame of the relevant

body segment. For example, some goal positions of the4.2.1 Parameterization of Animation
“Scratch Head” motion are defined relative to the coordi-
nate frame of the head segment. This simple scheme work

for our purposes, allowing the head to move, while it is be- Therefore, we have divided walking into upper and lower
N9 scratchgd. . . body movements. Most research on locomotion concen-
Anotherissue that must be addressed in our system is the 51e5 mostly on the lower body movement and simply adds
blending and stitching Fo_getht_ar (_)f disparate actions. This synchronized arm swing to the upper body. We believe that
becomes much more difficult in light of the unknown sta_te movement of upper body adds significant reality and natu-
of the body, due to the stochastic nature of the subconsuou§a|rless to walking animation. Unlike legs during walking,

actions, and in light of our desire not to return to a *oody e \nner hody in general does not create a closed chain
neutral” state after each action. R(_eturnlng to a known state ;¢ joints. This gives us greater variability, which makes
not only does not work when actions can overlap, but is 4 qqing affect to the walking simpler. However, the move-
undesirable beca_use 9f the unpaturgl |_°°k itgives. . ment of upper body does need to be closely synchronized
We blend motions in a fashion similar to that of Perlin \\iih the lower body motions, and any changes happening
and Goldberg[20]. In order to transition from one action g the Jower body motions need to be reflected to the upper
to another, each required joint gradually changes the peryqy e describe our system of controlling upper body
centage of the actions it is performing. As example, take j, section 4.2.2. This upper body controller is responsible
transitioning from arm swing to scratching head. Atthe ¢4, gpine, arm, and neck motions. In addition we need to
beginning of the transition the arm joints are performing coniro| the nuances of locomotion. We need a walking an-
100 percent arm swing and no scratching. They graduallyimagion which allows us to control its parameters in real
start lowering the amount of arm swing and increasing thejme  our solution to this problem is described in section
amount of scratching until it is eventually fifty percent of 4 5 3. This leg controller is responsible for movement of all
each and finally 100 percent scratching. the joints from the pelvis to the feet. The Agent Model and

~ Subconscious arm motions are generated using inversexction Execution modules can set parameters of the actions
kinematics (IK). Goal positions for the IK are generated in- gy poth upper and lower body movements.

side of our Action Execution module. Scratching the tip
of a nose is an example of a subconscious arm motion. In
order to animate this action, the Action Execution module
finds two relative positions on the nose surface from a pre- Unlike the leg motion which plays the main role in the
defined site on the character's face. The IK then moves thefunctionality of forwarded movement, upper body move-
specified end effector to the goal positions. Other goal po-ment has more room for affect to show through. We fo-
sitions are given from higher levels of this system becausecused on the movement of upper body which can convey
they can be different depending on the current environmentthis secondary information. In order to create an upper body
or time. For example, an object could be given as a goalmovement which is controllable enough to generate differ-
position for an attention action. ent styles of walking, we employed a simple kinematic, pro-
One of the key issues in animating simultaneous actionscedural method.
is how to generate the trajectories for the end effectors, so In figure 5, we show the structure of our human figure.
that the actions are satisfied no matter what other actionsWe control 11 degrees of freedom (DOFs) in this structure
are occurring. For example, the trajectory for scratching the to create the upper body movement for walking. The DOFs

We have applied our ideas about stochastic modeling of sub-
Tonscious actions to creating more natural looking walking.

4.2.2 Upper Body Movements
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Figure 6. Trajectory of Toe During Walking.

Figure 5. Joint Structure of the Upper Body

we use are associated with elbow joint (1 DOF), shoulder
joint (2 DOFs), clavicle joint (2 DOFs), uppér 1 spine
joints (3 DOFs), and loweN — i spine joints (3 DOFs)
where N is the total number of spine joints of the figure
(including the waist) and is the index of specially desig- e T B
nated spine joint.
In order to cancel out the rotational movement of the
pelvis that is created during walking, the lowsr— i spine Figure 7. Distance Checking
joints move counter to the pelvis rotation. The necessary ro-

tation of 3 DOF is evenly distributed in thosé — 1 joints the parameter set associated with emotions of agents. For
so that the upper body does not rotate in any direction above P 9 '

s . . example, we have created a parameter set for “Angry” walk-
theith joint because of the pelvis movement. Selection of . . .
effects the naturalness of the upper body movement. Fromng- We used weighted barycenter of those parameters with

emprial sty e found ~ 13 1 b a good seting for <2511 ST1on PARCles a e weigne, T creted
our figure with N = 17 spine joints. gsly 9 '

Upper body and leg movements are synchronized using
a common time parameter All the rest of DOFs are con- 4.2.3 Lower Body Movements

trolled by sine curves with thisas a parameter. Like the arm movement, walking in our system is also an-

imated by using inverse kinematics. The walking has pre-
stored key coordinates for the goals used by the leg inverse
kinematic system. The root foot is non-swinging foot that
stays in contact with the ground. The goal position of the
swinging leg is calculated based on the distance from the
root foot to the center of the pelvis (See Figure 7).

An intermediate goal position and orientation of the
swinging leg is provided as a parameter of the walking. The
goal position is first calculated relative to the pelvis. It is
then transformed into the global coordinates necessary for

Those5 x 11 parameters4;, a;, b;, pj, and B; with the inverse kinematics. The style of walking can be varied
0 < j < 11) define a style of upper body movement. simply by changing one key coordinate for the intermediate
Changing these parameters, changes the walking style ofjoal. This coordinate is used to set the maximum height
a figure. Each simulation begins with default (average) val- of the swing leg and the position of this maximum height
ues for these parameters. In order to create different stylesalong the leg’s stride path (See Figure 6).
of walking for different agents, we have created a graphical During a walking cycle, a time, where—1 <t < 1,is
tool to interactively adjust these parameters. Instead of cre-maintained. This time value represents the position of the
ating this parameter set for each agent, we have constructetegs in the walking cycle. For examples= 0, represents the

Rj = Ajsin(ajt + bj)pj + Bj
where0 < j < 11 and R; is the rotation angle of the

joint for time instance. Controls of symmetric joints are
achieved using the same sine curve with phase shift of

Ré = Ajsin(ajt + bj)pj + Bj

R} = Ajsin(a;(t +7) + ;)" + B;



left foot in full contact with the floor, and = —1 or 1 rep- tiple locations on their head in the same phrase of motion.
resents the right foot in full contact with the floor. Note that Currently, this would only occur in our system if the various
because this is a repeating cycld, is equivalent td. This scratches had similar priorities. When one subconscious ac-
timet is then used to coordinate the upper body movementstion is marked for animation, we could check the urgency of
with the leg movements, such as the arm swing with the others that could be phrased with it. For example, if scratch-
leg strides. Our upper body movements and subconsciousng the nose is about to execute and the value of itch on the
actions can be used with any walking system that provideschin is above a certain threshold, we could phrase them to-
this timing information, because as we have mentioned in gether.

the previous section, our animation system uses the lower Additionally, we would like to add more subconscious
spine joints to compensate for the pelvis rotations. actions to our system. We have noticed that available ob-
jects seem to promote some subconscious behaviors. For
example, a watch or a pair of glasses are often adjusted
while walking. More emotive actions, including a facial

In order to evaluate our system, we performed an infor- animation system, and a component, chh as EMOTE [71,
mal study in which we showed various animation clips to for expressive gestures would also contribute realism to our

6 people. The majority of the participants (83%) found the SYStem. _
walking with subconscious actions to be more natural than _ Lastly, we plan to more fully integrate an agent model
walking without subconscious actions. The participant that With our system. The cognition of our current agent model

found plain walking more natural indicated that she was dis- IS limited. One area of further exploration is, the linkage
tracted by movementin the hips. All of the participants cor- ©f Plans and subconscious actions. An agent's plans effect

rectly identified our sad walking clip as sad. Some (66%), @Mong other things its emotions _and physiological state.
however, also described our worried walking as sad. Most 1 Nese type of states are reflected in the frequency and style
of the participants were unable to identify angry walking. of subconscious actions, but the link between the plans and

5 Evaluations

We believe adjustments in the parameters and an angry falh€se states is currently not in place.

cial expression is needed to more clearly depict anger. Ad-

ditionally, most (66%) of participants correctly identified References

happiness.

6 Conclusions and Future Work

In this paper, we have presented a system for produc-
ing more natural looking walking by incorporating actions
for the upper body. Our aim is to provide a tool that au-
thors of virtual environments can use to add realism to their
characters without effort. Our system models subconscious
actions with a statistical distribution and alters this distri-
bution to customize the actions to traits of the characters
in the virtual environment. Additionally, the actions them-
selves, including the walking, are parameterized allowing
their performance to be consistent with the cognitive, so-
cial, physiological, and emotional state of the agent.

We found that our work is particularly well suited for the
simulation of pedestrians (See Figure 1). With our system,
generating a lot of agents with individualized walking ac-
tions is quite simple. All that is necessary is the setting of
the Agent Model parameters. If desired the parameters of
the agent could even be set stochastically.

There are, however, many areas where our work could be
expanded. First, we are currently using a simple method for
generating walking. We plan to add additional parameters
to the walking.

Secondly, we have observed that there is phrasing in sub-
conscious actions. For example, a person may scratch mul-
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