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1. INTRODUCTION
In recent years, there has been a surge in research of embod-

ied conversational characters. Across applications these characters
vary widely. They differ in both appearance and ability. Their abil-
ity is not just what actions they can perform, but also how they can
perform them. Many applications call for an embodied character
with the ability to be an individual, a persona, and to interact with
humans as such.

Many researchers have explored giving embodied characters a
richer persona through personality and emotion models. To this
point, each researcher has created their own representation of these
models. Furthermore, they must each tie these models to anima-
tion and speech synthesis components. The creation of a standard
representation for embodied character models would allow better
cooperation between researchers and create a basis for designing
standards for evaluation of the models.

Virtual humans can represent other people or function as au-
tonomous helpers, teammates, or tutors enabling novel interactive
educational and training applications. We should be able to inter-
act and communicate with them through modalities we already use,
such as language, facial expressions, and gesture. This paper dis-
cusses the representational basis for character believability, person-
ality, and affect. We also describe, a Parameterized Action Repre-
sentation (PAR) that allows an agent to act, plan, and reason about
its actions or actions of others. Besides embodying the semantics
of human action, the PAR is designed for building future behaviors
into autonomous agents and controlling the animation parameters
that portray personality, mood, and affect in an embodied agent.
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typeparameterized action =
(name: STRING;
participants: agent-and-objects;
applicability conditions: BOOLEAN-expression;
preparatory specification: sequenceconditions-and-actions;
termination conditions: BOOLEAN-expression;
post assertion: STATEMENT;
during conditions: STATEMENT;
purpose: purpose-specification;
subactions: par-constraint-graph;
parent action: parameterized action;
previous action: parameterized action;
concurrent action: parameterized action;
next action: parameterized action;
start: time-specification;
duration: time-specification;
priority: INTEGER;
data: ANY-TYPE;
kinematics: kinematics-specification;
dynamics: dynamics-specification;
manner: manner-specification;
adverbs: sequenceadverb-specification;
failure: failure-data).

Table 1: High level Action PAR

2. PARAMETERIZED ACTION REPRESEN-
TATION

We have constructed a Parameterized Action Representation (PAR)
and a system (PARSYS) which uses PAR as a knowledge base and
intermediary between natural language and animation [2, 3, 5, 9].
The PAR parameterization was created out of information from
computer graphics and animation, natural language processing, and
movement observation science. Although the emphasis of our re-
search has been on the representation and processing of actions,
objects are also represented in our formalism.

As a representation for actions as instructions for an agent, the
PAR has to specify (parameterize) the agent, any relevant objects,
and information about paths, locations, manners, and purposes. Ta-
ble 1 shows the highest level representation of actions and Table 2
for objects.

The applicability conditions of an action specify what needs to
be true in the world in order to carry out an action. These can refer



to agent capabilities, object configurations, and other unchangeable
or uncontrollable aspects of the environment. The conditions in this
boolean expression must be true to perform the action.

Preparatory specifications are a list of<CONDITION, action>
statements. The conditions are evaluated first and have to be satis-
fied before the current action can proceed. If the conditions are not
satisfied, then the corresponding action is executed–it may be a sin-
gle action or a very complex combination of actions, but it has the
same format as the other PARs. In general, actions can involve the
full power of motion planning to determine, perhaps, that a handle
has to be grasped before it can be turned. We presently specify the
conditions to test for likely (but generalized) situations and execute
appropriate intermediate actions. It would also be possible to add
more general action planners, since the PAR represents goal states
and supports a full graphical model of the current world state.

A PAR can describe either a primitive or a complex action. The
subactions contain the details of executing the action after all the
conditions have been satisfied. If it is a primitive action, the under-
lying motion generator for the action is directly invoked. A com-
plex action can list a number of sub-actions that may need to be
executed in sequence, parallel, or a combination of both. A com-
plex action can be considered done if all of its sub-actions are done
or if its explicit termination conditions are satisfied.

Termination Conditions are a list of conditions which when sat-
isfied indicate the completion of the action. Post Assertions are a
list of statements or assertions that are executed after the termina-
tion conditions of the action have been satisfied. These assertions
update the database to record the changes in the environment. The
changes may be due to direct or side effects of the action.

The object type is defined explicitly to represent a physical object
and is stored hierarchically in a database, called the ActionaryTM .
Each object in the environment is an instance of this type and is
associated with a graphical model in a scene graph. An object type
lists the actions that can be performed on it and what state changes
they cause. Among other fields, a list of grasp sites and directions
are defined with respect to the object. These fields help orient ac-
tions that involve objects, such as grasping, reaching, and locomo-
tion.

The agent executes the action. The agents are treated as special
objects, and their properties are stored in the hierarchical object
database. Each agent is associated with an agent process, which
controls its actions based on the personality and capabilities of the
agent. Not only does an agent’s personality affect his or her re-
sponse to a situation, but it also affects the way these actions are
performed. Two agents with different personalities would execute
the same action in two different ways. For example, two agents
could be waving at one another. A shy agent would wave his hand
more slowly and with more hesitation than an extroverted agent
would. This increases believability by preventing agents from re-
acting in the same manner in identical contexts and gives the im-
pression that each agent has distinct emotions and personalities.

PARSYS uses this representation to animate embodied agents.
Actions are represented as PARs and stored in their uninstanti-
ated (UPAR) form. UPARs contain only default properties for
the action. Instantiated PARs (IPARs) contain specific information
about the agent, objects, and other properties. Similarly, objects are
stored in the ActionaryTM in their general form. Many of the details
of the representation of an object can be filled in as the simulation
begins (e.g.calculation of the bounding volume).

3. PAR FOR AGENT MODELING
Given that PAR can be used to animate embodied agents, even

from natural language instructions, can it be used to generate more

typeobject representation =
(name: STRING;
is agent: BOOLEAN;
properties: sequenceproperty-specification;
status: status-specification;
posture: posture-specification;
location: object representation;
contents: sequenceobject representation;
capabilities: sequenceparameterized action;
relative directions: sequencerelative-direction-specification;
special directions: sequencespecial-direction-specification;
sites: sequencesite-type-specification;
bounding volume: bounding-volume-specification;
coordinate system: site;
position: vector;
velocity: vector;
acceleration: vector;
orientation: vector;
data: ANY-TYPE).

Table 2: High level Object PAR

“character” rich agents? In this section, we will show that PAR ade-
quately represents the components necessary for modeling embod-
ied agents and further that it is compatible with common methods
for modeling emotion and personality in agents.

In [13], Funge et al. depicted a hierarchy of computer graphics
modeling (see Figure 1). The bottom two layers were addressed
early in computer graphics research with geometric models and in-
verse kinematics. Physical models generate realistic motion through
dynamic simulation. Behavioral modeling involves characters that
perceive environmental stimuli and react appropriately. Through
cognitive modeling,autonomouscharacters can be given goals and
react deliberatively as well as reactively.

Figure 1: Funge’s CG Modeling Hierarchy



PAR and PARSYS accommodate and enable each level in this hi-
erarchy. While the actual geometry is assumed to have been created
before the simulation begins, PAR does represent and PARSYS au-
tomatically recognizes some vital geometric constructs. Bounding
volumes, for example, can be calculated as soon as the geometry
is loaded into the system. Spatial properties, such as location and
containment can also be recognized and stored. Updating and stor-
ing this information in a central location means that it does not have
to be calculated by every object manipulator. Kinematics and dy-
namics are explicitly represented in PAR. Furthermore, PAR has
been tied to a fast, analytic inverse kinematics program [16] that
facilitates the generalization of actions such asreaching.

The behavioral component of embodied agency is at the foun-
dation of PARSYS. The object hierarchy of the ActionaryTM is up-
dated to provide the necessary processes, agent processes and mo-
tion generators, with information on the current state of the envi-
ronment. Currently, this hierarchy is shared by all of the agents and
motion generators. It is, however, possible to provide each agent
process with its own object hierarchy so that the hierarchy repre-
sents an agent’s own unique view of and beliefs about the state of
the world. The embodied agents can be given goals directly in the
form of a PAR or through natural language instructions. An agent
tries to complete its goals by performing actions. Reactivity to the
environment takes place in two forms. First, the agent processes
and motion generators have quick access to the current state of the
environment through the PAR allowing them to refine a motion or
even terminate an action. Second, the PAR contains information
about failure states and PARSYS has the ability to detect failures
and notify the agent process with the information necessary to han-
dle the failure. In PARSYS failures are anything that causes a mo-
tion generator to terminate before its termination conditions have
been met. For example, a motion generator may check to ensure
that the preparatory specifications of the action it is performing are
maintained throughout. If the specifications are not maintained, a
failure can be generated and returned to the agent process where
a decision could be made to try to reestablish the specifications or
abort the action.

The way in which an agent responds to changes in the environ-
ment, the way in which they pursue their goals, and even which
goals are most important are aspects of cognitive modeling. The
PARSYS contains mechanisms for planning and also filtering and
prioritizing the actions that the planner can plan with, thereby in-
dividualizing the agent. During the planning process, the planner
queries the ActionaryTM for actions that match the conditions it is
trying to meet. Before the satisfying actions are returned to the
planner, an action filter removes any actions that the agents would
not do in the situation and prioritizes the remaining actions. For
example,walkingmight be prioritized overrunningor skippingin
the satisfaction of a locomotion condition either because of the na-
ture of the agent (businessman or child) or in sensitivity to motion
goals or qualities (manner).

3.1 Personality and Emotions
The actions of the action filter may be dependent on any aspect

of the agent, including its personality or current emotion level. Two
popular models for personality and emotion are the OCEAN [17]
and OCC [15] respectively.

Personality is a pattern of behavioral, temperamental, emotional,
and mental traits that distinguish people from one another. Traits
are basic tendencies that remain stable across the life span, but
characteristic behavior can change through adaptive processes. The
ways in which a person perceives, acts, and reacts is influenced by
his or her personality. While there is no universally accepted theory,

typeparameterized agent =
(name: STRING;
personality: OCEAN-parameter-spec;

Openness INTEGER;
Conscientiousness INTEGER;
Extraversion INTEGER;
Agreeableness INTEGER;
Neuroticism INTEGER;

emotion: OCC-specification;
standards: sequenceSTATEMENT;
goals: sequenceparameterized action;
appraisals: sequencecogn-unit-specification;

sequenceappraisal-specification;

Table 4: Partial PAR Agent Representation

the Big Five or OCEAN model has gained some acceptance [17].
The “Big Five” represent a taxonomy of traits that some personality
psychologists suggest capture the essence of individual differences
in personality. The traits of the Big Five model are shown in Ta-
ble 3.

Openness means a person is imaginative, independent-minded
and has divergent thinking. Openness to experience describes the
breadth, depth, originality, and complexity of an individual’s men-
tal and experiential life. Conscientiousness means a person is re-
sponsible, orderly, and dependable. Conscientiousness describes
socially prescribed impulse control that facilitates task and goal-
directed behavior, such as thinking before acting, delaying gratifi-
cation, following norms and rules, and planning, organizing, and
prioritizing tasks. Extroversion means that a person is talkative, so-
cial, and assertive. It implies an energetic approach to the social
and material world and includes traits such as sociability, activ-
ity, assertiveness, and positive emotionality. Agreeableness means
a person is good natured, co-operative, and trusting. Agreeable-
ness contrasts a pro-social and communal orientation toward oth-
ers with antagonism and includes traits such as altruism, tender-
mindedness, trust, and modesty. Neuroticism means a person is
anxious, prone to depression, and worries a lot. It contrasts emo-
tional stability and even-temperedness with negative emotionality,
such as feeling anxious, nervous, sad, and tense.

One of the most popular models for emotion is the OCC model,
named after its authors [15]. In this model, emotions are generated
through the agent’s construal of and reaction to the consequence of
events, actions of agents, and aspects of objects. Many researchers
have based their work on this model [12, 8, 14].

Table 4 shows part of the PAR representation for agents. The
parameters of the OCEAN model are represented as values along
the scales of each of the characteristics. There is more information
needed to implement the OCC model. First, the standards and val-
ues of the agent must be represented. These can be represented as
statements that contain PAR actions. Essentially, each action can
be associated with a number corresponding to the agent’s thought
of that action. Agents or classes of agents can also be associated
with the actions to create more specific standards. Goals are ac-
tions with high priorities. Agents and objects can be tagged with
information representing the agent’s degree of cognitive unity and
liking of the object.

3.2 EMOTE for Displaying Affect
The implementation of personality or emotion for embodied char-

acters must extend further than decision-making or action selection.
The quality of movement in an action is also effected by personal-
ity and emotion. We have developed a parameterized system for



High Score Traits Low Score Traits
Openness Creative, Curious, Complex Conventional, Narrow interests, Uncreative
Conscientiousness Reliable, Well-organized, Disorganized, Undependable, Negligent

Self-disciplined, Careful
Extraversion Sociable, Friendly, Fun-loving, Talkative Introverted, Reserved, Inhibited, Quiet
Agreeableness Good natured, Sympathetic, Critical, Rude, Harsh, Callous

Forgiving, Courteous
Neuroticism Nervous, High-strung, Insecure, WorryingCalm, Relaxed, Secure, Hardy

Table 3: OCEAN Model of Personality

creating more expressive gestures. The EMOTE system [18, 19, 4,
11] is based on movement observation science. Laban Movement
Analysis (LMA) is a method for observing, describing, notating,
and interpreting human movement. Two of LMA’s components are
Effort andShape. Effort involves the dynamic qualities of move-
ment. Shape describes the changing forms that the body makes
in space. Effort comprises four motion factors: Space, Weight,
Time, and Flow. Each motion factor is a continuum between two
extremes: indulging in the quality or fighting against the quality.
Table 5 describes the Effort qualities. Shape changes in movement
can be described in terms of three dimensions: horizontal, vertical,
and sagittal.

We have created many demonstrations of the EMOTE parame-
ters. One such demonstration involved a virtual character hitting
and touching a balloon (see Figure 2,
http://hms.upenn.edu/software/EMOTE/balloon.html). Here the same
basic animation data (from motion capture) for hitting was altered
by the EMOTE system generating several different types of hitting
and even touching.

Figure 2: EMOTE alterations of hitting a balloon.

It is our goal to formally link these EMOTE parameters with
OCEAN and OCC parameterizations. Table 6 shows an initial link-

ing of EMOTE and OCEAN. This linkage is based on descriptions
of LMA [7] and OCEAN [17] and is included only as an example of
the type of mappings needed. We plan to verify or modify this link-
age by showing agents exhibiting these qualities to naive observers
and having them complete a questionnaire about the personality
characteristics of the agent. We also plan to use a learning process
to build the mapping between OCC and EMOTE. Automatically
acquiring motion qualities from observation and validating them to
make sure they are consistent with the LMA concepts and theories,
are not only essential components to complete the EMOTE system
in particular, but also can offer a powerful and valuable method-
ological tool for analyzing gestures and helping to create natural,
personalized communicative agents. In [18] Zhao has developed
a neural network based system to achieve this goal. The system
inputs 3D motion capture and outputs a classification of EMOTE
qualities that are detected in the input. The networks are trained
with professional LMA notators to ensure valid analysis.

Future work in the EMOTE system and the motion quality rec-
ognizer will be to train the system to correlate captured motions
with actor affect, behavior, mood, and intent. The critical problem
in such training is setting up appropriate situations that truly elicit
affective responses in individuals. We believe that the key ingredi-
ents to successful data generation are immersive experiences with
both live and virtual agents. Engaging with either or both real and
virtual agents in the same circumstances will be crucial to evaluat-
ing effectiveness and calibrating responses across the reality/virtual
divide. Using the motion capture and post-session analysis, ground
truth information can be supplied for training sets. The neural net-
work models may then connect motion qualities to expressed affect
and mood. Although the LMA community recognizes that such a
mapping may exist it has not yet been possible to investigate it in a
visually and computationally adequate environment.

3.3 Altering EMOTE Parameter Distributions
One problem that can result from parameterization is that rapid

changes in the parameter values can cause inconsistent or unnatural
looking movement. For example, an instantaneous change from a
joint angle of 0 to 90 would appear quite unnatural. Treating the
EMOTE parameters as a distribution and altering this distribution
(scaling, shifting, amplifying, etc.) based on the personality and
emotion parameters will lessen this inconsistency. A similar com-
putational model has been used by Ball and Breese to model user
mood based on user interface behaviors [6]. We start with neu-
tral EMOTE parameters and alter them according to personality
types. Distributions of EMOTE parameters for different personal-
ity traits will be created (probably through a learning process based
on many observations). During simulation the agent begins inter-
acting with its environment with actions modified by EMOTE val-
ues obtained from the parameter distributions. For example, an ex-
tremely extraverted personality may have a shift and amplification
of the EMOTE value distributions to increase the likelihood of free,



Space: attention to the surroundings
Indirect: flexible, meandering, wandering, multi-focus
Examples: waving away bugs, slashing through plant growth
Direct: single focus, channeled, undeviating
Examples: pointing to a particular spot, threading a needle
Weight: sense of the impact of one’s movement
Light: buoyant, delicate, easily overcoming gravity, marked by decreasing pressure
Examples: dabbing paint on a canvas, describing the movement of a feather
Strong: powerful, having an impact, increasing pressure into the movement
Examples: punching, pushing a heavy object, expressing a firmly held opinion
Time: lack or sense of urgency
Sustained: lingering, leisurely, indulging in time
Examples: stretching to yawn, stroking a pet
Sudden: hurried, urgent
Examples: swatting a fly, grabbing a child from the path of danger
Flow: attitude towards bodily tension and control
Free: uncontrolled, abandoned, unable to stop in the course of the movement
Examples: waving wildly, shaking off water
Bound: controlled, restrained, able to stop
Examples: moving in slow motion, tai chi, carefully carrying a cup of hot liquid

Horizontal
Spreading: affinity with Indirect
Enclosing: affinity with Direct
Vertical
Rising: affinity with Light
Sinking: affinity with Strong
Sagittal
Advancing: affinity with Sustained
Retreating: affinity with Sudden

Table 5: Effort and Shape Elements

Space Weight Time Flow
Openness
High indirect light sustained free
Low direct strong sudden bound
Conscientiousness
High direct strong sudden bound
Low indirect light sustained free
Extraversion
High indirect light sustained free
Low direct strong sudden bound
Agreeableness
High indirect light sustained free
Low direct strong sudden bound
Neuroticism
High direct strong sudden free
Low indirect light sustained bound

Table 6: Example EMOTE and OCEAN linkage



spreading gestures. If all channels of communication are affected
by the EMOTE distributions for personality types, the agent’s be-
havior will appear more consistent [1]. Currently, we have such
parameterization for gestures and facial expressions. As emotional
responses arise the EMOTE parameter distributions can be shifted
or scaled to demonstrate the effect of emotions on movement be-
havior.

4. CONCLUSION
PAR was designed to be a flexible representation, meaning that

many different types of information can be represented. Not all of
the fields of the PARs need to be filled in for every action. When
considering a representation for use with embodied conversational
agents we should consider the trade-offs between parameterization
specificity and program complexity. If you specify every joint angle
for your character at every frame of the animation, your program
needs only to display these angles on the figure. If you only specify
that your agent needs to get some milk, then your program will
need to figure out all the aspects of acquiring milk from high level
planning to intricacies of movement. Our experience with the PAR
and PARSYS leads us to conclude that they have the right balance
of specificity and complexity.

That is not to say that there is not more work to be done. We
would like to represent the PAR in XML format so that is more
widely available to other researchers. Much work also needs to
be done to establish the connection between EMOTE parameteri-
zation and models of personality and emotion. We are continuing
to work on better planning and smarter motion generators for the
PARSYS. Finally, although there is a natural language interface for
the PARSYS, conversation and dialogue are not currently consid-
ered. A representation and system for modeling conversation and
its timing, such asBEAT[10] would certainly enhance our system.
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