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Abstract. The field of Multiagent Systems is concerned with domains
where several agents interact while solving competitive or cooperative
tasks. Increasingly complex problem domains involving non-trivial num-
bers of agents revealed inherent difficulties with creating such systems. As
such, the field witnessed a recent increased interest in Machine Learning
techniques, capable of easing the programming efforts for approaching
more challenging domains.
Despite the relative youth of the field, there are already several hundreds
of papers trying to answer interesting questions in domains where learn-
ing affects the behavior of more than a single agent. Such questions tar-
get issues as varied as learning to communicate, modeling other agents
in the environment, learning to compete or cooperate with the other
agents, analysis of optimality for the learning algorithms, and many oth-
ers. The large variety of papers generates a desirability for good surveys
categorizing previous work.
We argue that there are two alternatives for learning in multiagent sys-
tems. A first direction is to have each individual agent learn how to
improve its performance. The alternative is to have a single learning
process that improves the behavior of the entire team of agents. Because
of scalability problems with respect to increased numbers of agents, the
majority of machine learning techniques can not be realistically applied
to learn team behaviors. We discovered that most previous surveys con-
centrate on individual agents’ learning, but neglect approaches at the
team level.
In this survey, we propose a new arrangement for multiagent learning
papers. As such, there is an entire category of papers dealing with learn-
ing behaviors for the entire team and issues associated with scalability
to non-trivial numbers of agents, such as the heterogeneity of the team.
A second class of papers is concerned with individual agent learning
in multiagent domains. Based on their main research focus, the papers
are categorized in sections dealing with optimality of learned behaviors,
impact of locality of reward information, cooperation or competition re-
lations among agents, and modeling other agents.
Additionally, we identified two issues relatively perpendicular to the team
or individual levels of learning: problem decomposition and communica-
tion. The former is concerned with techniques for decomposing either the
problem to be solved or the collective behavior into simpler independent
components that can be more easily handled by the learning process.
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An in-depth survey of the literature on the relationship between multi-
agent learning and communication revealed three approaches, each with
its own particularities. The three such methods involve communication
via either rapidly decaying information, slowly decaying information, or
embodiment.

1 Introduction

There is an increasing interest in decentralized approaches to a wide range of
complex real-world problems. Usually, approaches to such domains fall into the
area of Distributed Systems, where a number of entities work together to cooper-
atively solve problems. The additional combination of the Artificial Intelligence
(AI) and Distributed Systems areas adds scalability and adaptability proper-
ties to the solutions. This area of research is known as Distributed Artificial
Intelligence (DAI).

Traditionally, Distributed Artificial Intelligence is divided into two classes
of approaches. The first area, Distributed Problem Solving, is concerned with
distributing the problem solving process. It usually involves a number of nodes
that divide and share knowledge about the problem and the constructed solution.
The second class of approaches is known as Multiagent Systems1 (or MAS) and
involves nodes with some degree of autonomy. We will concentrate on MAS
approaches in this survey.

Learning is a central concept in Artificial Intelligence. An entire subfield of
AI, namely Machine Learning (ML), is concerned with only studying learning
techniques. The past fifteen years have witnessed increased research work in
learning approaches for multiagent systems. The interest stems from fascinating
questions on how multiple agents can learn to work together.

Despite the relative youth of the field, the number of multiagent learning
papers is fairly large. This makes it very desirable for good organizations of the
work. We discovered that most previous surveys neglect a large number of tech-
niques and issues associated with learning in multiagent systems. The specific
approaches consist of a single learning process for the behavior of the entire team
of agents. This makes the techniques very similar to standard machine learning
techniques, but additional questions related to the scalability of the approaches
to large teams of agents are of special interest in the context of multiagent ap-
plications.

In this survey, we suggest yet another categorization for multiagent learn-
ing investigations. We believe that this taxonomy is a better organization that

1 The is no consensus on the correct spelling of the name of the field: some researchers
use Multiagent Systems, while others like to use a hyphen (Multi-Agent Systems) to
emphasize the origin of the short form of the name (MAS). We feel it is about time
for a single name to be accepted and used throughout the community. We opt for
the first form of the name, Multiagent Systems, the same one used in many recent
influential publications.
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correctly encompasses a large number of papers and interesting issues usually
associated with multiagent learning.

The main two categories of techniques are team and teammate learning.
Team learning involves a single process that adjusts the behavior of the en-
tire set of agents. This category of approaches is further decomposed into three
subcategories based on the degree of heterogeneity imposed a priori on the team
composition. As such, we distinguish between learning homogeneous and hetero-
geneous team behaviors. An additional new class of hybrid techniques combine
the homogeneous and heterogeneous approaches in an attempt to further reduce
the learning search space and to speed up the learning process.

The second category of techniques, teammate learning, contains approaches
where each individual agent conducts its own learning process. We categorize
work in this section based on the main focus of the investigation. Accordingly,
we identifiy four directions of research. The first one includes papers that analyze
the optimality of the learned behaviors in usually simple multiagent domains.
Next, there is a set of papers investigating the impact of using different de-
grees of locality for the reinforcement received by individual agents. This issue
is related to the credit assignment problem, and it appears to directly influence
the emergent heterogeneity of the team and its final performance. A third class
consists of papers that deal with issues related to the relation among agents in
the multiagent learning setting. If in team learning the agents work together
to improve the performance of the team, there is no predetermined cooperative
setting in teammate learning. Rather, agents may be at times in competitive
or cooperative situations among each other. At other times, their rewards may
be completely uncorrelated, meaning that agents are not cooperating, nor com-
peting. Further, the relations among agents may change over time, complicating
further the learning task. A last class of papers investigate the task of creating
models of the other agents.

Aside from the two main categories of multiagent learning, we investigate a
number of issues that are common to both. We consider that dividing the work
into subsections for the team and teammate learning might have apparently
reduced the significance of the topics. Therefore we decided to allocate entire
sections for the topics.

A first such topic is related to decomposing the learning task into simpler
subcomponents that can be much easier solved by the learning process. This
includes, among others, hierarchical learning approaches and shaping.

The second topic studies communication in relation to learning. Communica-
tion allows agents to share knowledge about the environment and their progresses
toward individual or team goals. We identify three categories of communication
and discuss issues associated with each of them. The first such category includes
rapidly decaying information, the most widely used communication technique
in the literature. A second type of communication uses slowly decaying infor-
mation to convey the desired information for longer periods of time. The use of
pheromones is an example of such slowly decaying communication mechanisms.
The last category involves agents acting as brains associated with bodies (such
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Agents Interactions Environments
number of agents range predictability

heterogeneity of team bandwidth richness of resources
complementarity of goals frequency episodicity

control architectures persistence discrete/continuous
roles in the team (un)structured
sensing abilities signal/knowledge
effective abilities directory service

representation abilities variability
infrastructure

Table 1. Degrees of variation for Multiagent Systems according to (Weiß, 1999; Huhns
and Singh, 1998)

as in robotics applications), where the actual bodies can be used (by acquiring
certain positions or by changing locations) to signal specific information.

The survey continues with a brief description of multiagent systems, followed
by a presentation of multiagent learning and existing taxonomies for multiagent
learning. The next sections describe team and teammate learning, with sub-
sections for each of the major topics of interest. They are followed by sections
on problem decomposition and communication in connection with multiagent
learning. Later sections describe open research issues, and present information
on commonly used problem domains and resources available in published form
or on the internet. The paper ends with a set of conclusions, acknowledgments
to the many people that helped create this document, and an extensive list of
references.

2 Multiagent Systems

As the name implies, Multiagent Systems are concerned with distributed so-
lutions involving multiple agents that interact to solve the problem. Unfortu-
nately, the term agent has been and is currently used with a very large number
of meanings. In this paper, we consider that agents are entities that exhibit a
high degree of autonomy. Agents are capable of observing the current state of the
environment, and can perform actions that change the state of the environment.
According to Wooldridge and Jennings (1995), there are two general usages of
the term agent:

– Weak agents exhibit , social ability (interact via some communication lan-
guage), reactivity (perceive the environment and respond to it accordingly)
and pro-activeness (plan for the future).

– Strong agents may have beliefs, desires, intentions, knowledge, commitments
and other human characteristics.

Work in Multiagent Systems differs along several directions in terms of types
of agents, types of interactions and types of environments. A collection of degrees
of variation taken from (Weiß, 1999; Huhns and Singh, 1998) is presented in Ta-
ble 1. Despite this large variation in characteristics, Jennings et al. (1998) suggest
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that most Multiagent Systems applications have a set of common settings: indi-
vidual agents have incomplete information about the environment, there is NO
centralized system control, information is decentralized and distributed through-
out the environment, and computation is asynchronous.

An important issue in Multiagent Systems is the possibility of agents to
communicate with each other. Communication consists of modifying the state
of the environment such a way that other agents can perceive the modification
and decode the information. Agents can use communication to share information
about the environment or about their goals and means to achieve them.

Depending on their interest, several authors provided different taxonomies for
MAS applications. For example, Dudek et al classify swarm robotics applications
in terms of teamsize, range, topology and bandwidth for communication, team
composition and reconfigurability, and the processing ability of individual agents.
In a collection describing application of Distributed Artificial Intelligence in the
industry, Van Dyke Parunak (1996) differentiates between agent characteristics
(heterogeneity of team, control architectures, input/output abilities) and system
characteristics (for example, communication settings). Stone (1998); Stone and
Veloso (2000) explicitly distinguish between homogeneous non-communicating,
homogeneous-communicating, heterogeneous non-communicating and heteroge-
neous communicating teams, and also presents issues associated with each of the
three categories. The authors make the interesting observation that a MAS sys-
tem with communicating agents where the communication has unlimited range
and bandwidth is equivalent to a centralized system.

3 Multiagent Learning

We define multiagent learning broadly: it is the application of machine learning
to problems involving multiple agents. We think that there are two features
of multiagent learning which . First, because multiagent learning deals with
problem domains involving multiple agents, the search space involved can be
unusually large; and due to the interaction of those agents, small changes in
learned behaviors can often result in unusual, often unpredictable changes in
the resulting macro-level (“emergent” ) properties of the multiagent group as a
whole. Second, multiagent learning may involve multiple learners, each learning
and adapting in the context of others; this introduces game-theoretic issues to
the learning process which are not yet well understood.
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This survey is mainly concerned with collaborative multiagent learning,
rather than competitive learning methods. However, it is worth mentioning one
important class of competitive multiagent learning problem domains: learning
to play games. In fact, one of the earliest, and still celebrated, machine learn-
ing papers is concerned with learning to play checkers (Samuel, 1959). However,
the bulk of learned game-playing work has been relatively recent. In particular,
evolutionary computation has been successfully used to learn good perform-
ing players in competitive domains. For example, Luke (1998) learned soccer-
playing softbot teams, and Fogel (2001) evolved a highly human-competitive
checkers program called Blondie24. Evolutionary computation was also used to
find game-players for Tic-Tac-Toe (Angeline and Pollack, 1993), Backgammon
(Pollack et al., 1997; Pollack and Blair, 1998), Mancala (Davis and Kendall,
2002), Othello (Smith and Gray, 1993), pursuit-evasion (Cliff and Miller, 1995;
Harvey et al., 1997), Go (Lubberts and Miikkulainen, 2001), Chess (Kendall and
Whitwell, 2001), Poker (Kendall and Willdig, 2001) and Tag (Reynolds, 1994).

Another large class of learning in multiagent systems that we will ignore in
this survey includes cases where a single agent learns while the other agents’
behaviors are fixed. One of the many examples of such learning investigations
is presented in (Grefenstette, 1991). This is single-agent learning: there is only
one learner, and the behaviors are plugged into only one agent, rather than
distributed into multiple agents.

The survey will discuss a number of issues in multiagent learning, but we
introduce some themes which will recur several times during the survey and
deserve some mention up-front:

Credit Assignment. When evaluating an agent, an important problem that
needs to be solved is that of deciding which one of a series of actions the agent
performed led to the reward received from the environment. Additionally, when
the reward is attributed to a team’s behavior, assessing the credit an agent
receives, and its due part of the team reward, can also be very important to the
learning process. The two subproblems are known as the intra-agent (deciding
among an agent’s actions) and extra-agent (deciding among a team’s agents)
credit assignment problems (Weiß and Sen, 1996).

Game-theoretic Problems: Competition vs. Cooperation. An important related
issue is how to cast a given multi-agent problem as a cooperative problem (as
opposed to a competitive one, or one with other game-theoretic features). This
is not a trivial problem: many multiagent learning problems can exhibit unex-
pected interactions between agents as they gravitate towards equilibium with
one another. Here we will approach the issue only by defining cooperation, com-
petition, etc. in a relatively extreme fashion. If increasing the reward received
by one agent leads to increasing the reward for another agent, we say that they
are cooperating. If increasing an agent’s reward leads to decreasing the reward
received by another agent, we consider that the two are competing. If there is
no relationship between the two (they are completely independent), we say that
they are one another.
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Co-adaptation. Another interesting, game-theoretic multiagent learning issue
concerns the fact that the learning processes are not independent, but they affect
each other. Consider: at some point in time, an agent observes the environment
(containing other agents as well) and tries to improve its performance. This leads
to a modification in its behavior. This modification is then sensed by the other
agents, who change their behaviors in order to improve their performances as
well. This “moves the goalposts” on the original agent: its newly-learned behavior
may no longer be appropriate. Thus as the agents co-adapt to one another, the
agent environment is essentially changing beneath their feet. Learning in the face
of this dynamic is not easy: such co-adaptation can result in cyclical or chaotic
adaptive behavior, or to gravitation towards balanced equilibrium rather than
an optimum.

3.1 The Survey Layout

We have divided cooperative multiagent learning papers into two broad cate-
gories. The first category applies a single learning process to improve the per-
formance of the entire team of agents. We call this category Team Learning
because the learning process adjusts the behavior of the entire team as a whole.
The other category applies an individual learning process , while still assessing
the quality of the agents as a team. We term this approach Teammate Learning.

Research in Team Learning has broken down along different lines than that
of Teammate Learning, primarily because of differences in the dynamics of the
techniques. Accordingly we subdivide the research in each category along these
lines. Team Learning has largely focused on issues of agent homgeneity ver-
sus heterogeneity and various hybrid methods. Teammate learning instead has
focused on game-theoretic issues such as co-adaptation, credit assignment, co-
operation versus competition, and modeling other agents.

We then discuss specific issues common across multiagent problems: methods
of performing task decomposition (); the effect of inter-agent communication on
the learning process, and approaches to performing communication; and the
challenges of scalability and adaptive dynamics.

Other surveys have broken the field down in other ways than we have chosen
here. Stone and Veloso categorize multiagent work only along two dimensions:
team heterogeneity and presence of communication (Stone and Veloso, 2000;
Stone, 1998). They use this taxonomy to discuss issues associated with learning
approaches for the four categories of systems: homogeneous non-communicating,
heterogeneous non-communicating, homogeneous communicating and heteroge-
neous communicating. Weiß (1997, 1999) uses a taxonomy based on the main
focus of the research at hand. Weiss categorizes multiagent learning research
into approaches dealing with learning to cooperate and compete, modeling other
agents and learning and communications.
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4 Team Learning

In team learning, there is a single learner involved: but this learner is discovering
a set of behaviors for a team of agents, rather than a single agent. While this
lacks the game-theoretic aspect of multiple learners, we argue that team learning
is interesting in that because the team of agents interact with one another, the
joint behavior arising from their interactions is often unexpectedly complex: this
notion is often dubbed the emergent complexity of the multiagent system.

Team learning is an easy approach to multiagent learning because it can use
standard single-agent machine learning techniques: there is a single entity that
performs the learning process. This sidesteps the difficulties arising from the co-
adaptation of several learners that we will later encounter in teammate learning
approaches. Another advantage of a single learner is that the agents tend to act
to maximize the team reward rather than their individual rewards. This makes
agents behave altruistically rather than greedily. As we will see later, selfishness
creates significant problems in teammate learning.

With a single learner, the issue of credit assignment among the agents may
generally be ignored: it is often reasonable simply to divvy up credit evenly
throughout the team. However in some situations it can be helpful to assign
credit in order to determine which parts of the team need the most improve-
ment2.

Team learning has some disadvantages as well. A major problem with team
learning is the increasingly (usually exponentially) larger state space for the
learning process. For example, if agent A can be in any of 100 states and agent
B can be in any of another 100 states, the team formed from the two agents can
be in as many as 10, 000 states. This explosion in the state space size can be
overwhelming for learning methods that explore the space of state utilities (such
as reinforcement learning), but it may not as drastically affect techniques that
explore the space of behaviors (such as evolutionary computation) (Salustowicz
et al., 1997, 1998; Sen and Sekaran, 1996).

A second disadvantage is the centralization of the learning algorithm: all
resources need to be available in the single place where all computation is per-
formed. This can be burdensome in domains where data is inherently distributed.

Among the several chaMLmachine learning techniques, evolutionary com-
putation seems particularly apropos to team learning. That is because EC is a
sparse learning method: it does not build up a full model of the learning problem.
Thus EC scales linearly in memory requirements with each additional agent.

Team learning may be divided into two broad categories: homogeneous and
heterogeneous team learning. Homogeneous learners develop a single agent be-
havior which is used by every agent on the team. Heterogeneous team learners

2 It can be argued that assigning credit is essentially applying different quality assess-
ments to each agent, and if the learner tries to locally improve each agent based
on its quality assessment, this is equivalent to a multiple-learner (teammate learn-
ing) situation. We have chosen to put such gray-area models in the team learning
category.
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can develop a unique behavior for each agent. Heterogeneous learners must cope
with a larger search space, but hold the promise of better solutions through agent
specialization. There exist approaches in the middle-ground between these two
categories: for example, dividing the team into squads, with squadmates sharing
the same behavior. We will refer to these as hybrid team learning methods.

4.1 Homogeneous Team Learning

In homogeneous team learning, all agents use the same learned behavior. Because
all agents have the same behavior, the search space for the learning process
is drastically reduced. The appropriateness of homogeneous learning depends
on the problem: some problems do not require agent specialization to achieve
good performance. For other problem domains, particularly ones with very large
numbers of agents (“swarms”), the joint behavior search space is simply too
large for heterogeneous learning, even if heterogeny would ultimately yield the
best results.

Much of homogeneous team learning concerns itself with communication is-
sues. We discuss such literature in Section 7, and particularly in Section 7.3.

Burke et al. (2002) applies homogeneous genetic programming to the N-
prisoners puzzle. The problem consists of N agents, each assigned a boolean
value. Each agent does not know its own value, but it knows the values of all
other agents. The agents must figure out what boolean values they have been as-
signed without communicating with each other. Each agent can state its believed
boolean value to be true or false, or it can pass. All agents act simultaneously.
They all receive no reward if any of them states an erroneous value, or if all pass;
otherwise, they all receive some positive reward. Burke et al show that genetic
programming can learn non-trivial homogeneous strategies, but ones that are
inferior to the best known solutions.

Haynes et al. (1995b,a,c); Haynes and Sen (1995); Haynes et al. (1996) present
a series of results obtained by evolving behaviors for the predator-prey pursuit
domain. When using fixed (random or greedy) algorithms for the prey behavior,
the papers report results competitive to the best human-coded greedy algo-
rithms, both with and without using information on the position of the other
predators. However, when coevolving the prey and predator behaviors, the ge-
netic programming system employed discovers a strategy for the prey that evades
all previously reported hand-coded, greedy, and evolved strategies. The authors
suggest that improved performances may be obtainable with communicating
agents. Jim and Giles (2000) follow this direction and allow a genetic algo-
rithm system to additionally evolve a communication language. The authors
experiment with increasingly complex language constraints, and report that the
evolved communicating agents exhibit performances superior to all previously
reported work in this domain.

Quinn et al. (2002) investigate the use of evolutionary computation tech-
niques for a team formation problem. Three agents start from random positions
at relatively small distances apart (each agent can sense the others with its sen-
sors). They are required to move the team centroid a specific distance while
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avoiding collisions and remaining within sensor range. Quinn et al investigate
the roles of team members by removing the agents one at a time. They conclude
that the rear agent is essential to sustain locomotion, but it is not essential to the
other two agents’ ability to maintain formation. The middle agent is essential to
keep the two others within sensor range, and the front agent is crucial to team
formation. Therefore, even though the agents are homogeneous, they specialize
(based on their relative positions) to better perform as a team.

Bassett and De Jong (2000); Bassett (2002) investigates the evolution of
homogeneous teams for a cooperative surveillance task. The authors treat the
work with homogeneous agents as a first step towards the more challenging
evolution of heterogeneous teams. Their results show good performance, but the
authors mention expecting improvements when using heterogeneous teams or
coevolution in future work.

Salustowicz et al. (1997, 1998) compare PIPE and CO-PIPE (population-
based algorithms similar evolutionary computation) and Q-learning in a sim-
ulated soccer domain. The results show that Q-learning has serious learning
problems, attributed by the authors to the algorithm’s need to search over all
state utilities. On the other hand, both PIPE and CO-PIPE search directly
in the behavior space and show good performance. The authors conclude that
searching in behavior space may be preferable in other multiagent domains. A
similar result is reported in (Sen and Sekaran, 1996), where a “Bucket-Brigade”
evolutionary algorithm proves competitive with Q-learning in a coordinated nav-
igation problem. An opposing result is reported in (Wiering et al., 1999), where
a modified Q-learning outperforms the methods earlier reported in (Salustowicz
et al., 1997, 1998).

Cellular Automata Arguably, cellular automata (CA) is a notable and oft-
neglected problem domain for homogeneous team learning. A CA a field (a row
or grid) of agents, each with its own internal state, plus a homogenous state-
update agent behavior (the rule) applied by all the agents synchronously. This
rule is usually based on the current states of an agent’s nearby neighbors. CAs
have many of the hallmarks of a multiagent systems: iteractions and communi-
cations are local, and behaviors are performed independently. A good survey of
existing work in learning cellular automata rules is presented in (Mitchell et al.,
1996).

One common CA problem, the Majority Classification3 task, asks whether
there exists an update rule which can — given any arbitrary initial configuration
of agents each with an internal state of 1 or 0 — correctly classify the initial
configuration as having more 1’s than 0’s or more 0’s than 1’s. This is done by
repeatedly applying the update rule for some N iterations; if the agents have
converged to all 1’s, the rule is said to have classified the initial configuration
as majority-1’s. If it has converged to all 0’s, the rule has classified the initial
configuration as majority-0’s. If it has not converged, the rule has not classified

3 Also known as Density Classification.
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the initial configuration. It is known that such a rule does not exist: the goal is
to discover a rule which classifies most configurations correctly.

Mitchell et al. (1994) identifies four epochs of innovation for genetic algo-
rithms when applied to the Majority Classification task. The first two epochs
consist of correctly converging when the majority state is clearly distinguishable
by a wide margin. In the last two epochs, the learning process discovers improved
collective behaviors that can additionally expand blocks of consecutive, almost
identical states.

Researchers have shown that coevolutionary methods can provide a better
gradient for learning the Majority Classification problem (Werfel et al., 2000;
Pagie and Mitchell, 2001; Juille and Pollack, 1998). In particular, Juille and Pol-
lack (1998) present a set of rules with classification accuracy of around 86.3%.
The best previous results was learned using genetic programming and has accu-
racy 82.326% (Andre et al., 1996). In comparison, the best human hand-coded
result was proposed by Das et al. (1994) and has accuracy 82.178%.

4.2 Heterogeneous Team Learning

In Heterogeneous Team Learning, the team is composed of agents with different
behaviors, and the single learning process aims to improve the performance of
the entire team. This approach allows for more diversity in the team at the cost
of increasing the search space. An interesting question is if this tradeoff pays
off within the limited computation time allowed4. Further answers to comparing
homogeneous and heterogeneous team learning are reported in the next section.

Quinn (2001a) reports improved results when sampling the team members
from a population of individuals compared to cloning behaviors to obtain com-
pletely homogeneous teams. Further investigations suggest that heterogeneity is
not always desirable, and homogeneous teams can have superior performances in
domains such as foraging. Balch (1998) suggests that domains where single agents
can perform well are particularly suited for homogeneous learning, while other
domains that require task specialization are more suitable for heterogeneous ap-
proaches. His results are confirmed by Bongard (2000), who hypothesizes that
heterogeneity may be a better performant on inherently decomposable domains.

Potter et al. (2001) suggest that domain difficulty may not be the major fac-
tor that requires a heterogeneous approach. They experiment with increasingly
difficult versions of a multiagent herding domain obtained by adding predators.
Potter et al show that increasing the number of skills required to solve the do-
main (adding a predator requires both herding and defending strategies) leads
to significantly better results obtained when heterogeneous teams are used.

Andre and Teller (1999) applies genetic programming to learning a team
of soccer playing agents for the RoboCup simulator. The individuals encode

4 Because homogeneous teams are particular instances of heterogeneous ones, we ex-
pect a better performance if enough computation time is allowed. However, the
question is whether better teams can be obtained in a limited amount of time in the
larger search space.
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eleven different behaviors (one for each player). Andre and Teller mention that
the crossover operator (between teams of agents) exchanged “most of the time”
genetic material between equivalent players (genetic material from player 8 in
one team was exchanged with genetic material from player 8 in the other team).
This is somewhat similar to the restricted breeding studied by Luke and Spector
(1996).

Luke and Spector (1996) investigate possible alternatives for evolving teams
of agents. In the experiments, Luke and Spector compare homogeneous, hetero-
geneous with restricted breeding (breeding enforced only among behaviors for
the same agent) and heterogeneous with no breeding restrictions. The authors
suggest that the restricted interbreeding works better than free interbreeding
for heterogeneous teams, which may imply that the specialization allowed by
the heterogeneous team representation conflicts with the inter-agent genotype
mixture allowed by the free interbreeding.

Haynes and Sen (1996b, 1997b,a) investigate the evolution of homogeneous
and heterogeneous teams for the predator-prey pursuit domain. For heteroge-
neous teams, each predator in the team has a strategy represented in each indi-
vidual in the population. The authors present several crossover operators that
may help the appearance of specialists within the teams to some extents. The
results indicate that team heterogeneity can significantly help despite the appar-
ent domain homogeneity. The authors suggest that this may be due to deadlocks
generated by identical behaviors of homogeneous agents when positioned in the
same quadrants (when receiving identical inputs, homogeneous agents will be-
have identically). Harvey et al report that the most successful crossover operator
(TeamUniform) allows arbitrary crossover operations between strategies for dif-
ferent agents, a result contrasting the one reported in (Luke and Spector, 1996).

Another interesting approach to evolving team behaviors is presented by
Bull and Holland (1997), where team agents are sampled from an evolutionary
computation population of individuals. This leads to heterogeneous teams that
perform well in their investigation.

4.3 Hybrid Team Learning

Luke (1998); Luke et al. (1997) report on a combination of homogeneous and
heterogeneous approaches to team learning. Their work concentrates on evolving
soccer teams for the Robocup competition, and they mention that the limited
amount of time available before the competition diminished the probability of
obtaining good heterogeneous teams. Instead, they compare the fully homoge-
neous results with a hybrid combination that divides the team into six squads of
one or two agents and then evolves six separate behaviors (all represented in an
individual’s genome). The authors report that homogeneous teams performed
better than the hybrid approach, but mention that the latter exhibited initial
offensive-defensive squad specialization and suggest that hybrid teams might
have outperformed the homogeneous ones if more time was allowed.

Hara and Nagao (1999) present an innovative method for hybrid group learn-
ing. Acknowledging the superiority of heterogeneous teams, but admitting the
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problem of increasingly larger search spaces when many agents are present, the
authors suggest an automated grouping technique. Their method is called Auto-
matically Defined Groups (ADG), and in this paper it is successfully applied to a
simple load Transportation problem and a modified Tile-World domain. In ADG,
the team of agents is composed of several groups of homogeneous agents (similar
to (Luke, 1998; Luke et al., 1997)); however, ADG allows for automatically dis-
covering the right number of groups. Additionally, the acquired group structure
may give insights into the cooperative behavior that solves the problem.

Miconi (2001) presents a variation where all agents have a behavior repre-
sented as an individual in the evolutionary computation system. The population
represents in fact the entire set of behaviors for the team members. Local se-
lection and mating, combined with a form of elitism, result in an interesting
evolutionary learning algorithm. Miconi mentions that the algorithm allowed for
the appearance of subspecies whose sizes varied depending on the content of
the population. This led to an emergent formation of squads of different sizes,
similarly to the work of Hara and Nagao (1999).

5 Teammate Learning

The most common alternative to team learning in cooperative multi-agent sys-
tems is teammate learning, where each agent on the team independently learns
how to improve its performance and the performance of the team as a whole5.
While team learning decentralizes the agents while they are acting in the environ-
ment, teammate learning further decentralizes the agents’ learning procedures
as well. Some research has presented domains where teammate learning outper-
forms both homogeneous and heterogeneous team learning (Iba, 1996, 1998).
However, other investigations suggest that team learning may be preferable in
certain situations (Miconi, 2003).

There are many teammate learning papers in reinforcement learning, but
the notion is of some special interest to evolutionary computation, because of
its close relationship with coevolution. In EC, coevolution divides the popula-
tion into multiple subpopulations (separate evolutionary computation learning
systems). The quality of agents drawn from those subpopulations are assessed
by testing them together. For example, competitive coevolution might pit robotic
agents against each other in a game of capture-the-flag. Cooperative coevolution,
popularized by Potter et al. (1995); Potter and De Jong (1994); Potter (1997);
Potter and De Jong (2000), treats each subpopulation as a source for agents
which must work together in a team: for example, a cooperative coevolutionary

5 Another possibility is to have some degree of partial decentralization, whereby joint
behaviors for subgroups of agents (“squads’) are independently learned. By grouping
learned behaviors by squad, the behaviors a team of M agents can be learned by
some N < M learners. This approach may have the advantage of separately learning
relatively uncorrelated behaviors, while still jointly learning the highly correlated
ones. However, we are not aware of any paper investigating this approach.
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Fig. 1. Joint reward information for the actions pairs of two agents. The 64 actions of
each agents is represented on the X and Y axes. The joint reward is represented on the
Z axis.

system might evolve two separate subpopulations, drawing an agent from each
to be tested together in a joint two-agent cooperative block-pushing exercise.

The primary advantage of teammate learning is that it explicitly breaks the
large joint team search space into separate, smaller, individual search spaces.
If the problem can be decomposed such that individual agent behaviors are
relatively disjoint, then this can result in a dramatic savings in computational
complexity. Another related advantage is that breaking the learning process into
smaller chunks permits more flexibility in the use of computational resources to
learn each process because they may, at least partly, be learned independently
of one another. On the other hand, an advantage of team learning is that the
system need only be concerned with a single learner, simplifying the design of
the learning process itself.

A third advantage is the reduction in the search spaces for the learning tasks.
Remember that in team learning of heterogeneous teams, the learning system
had to learn a strategy for each of the individual agents. On the other hand, team
learning has each learning process to only search in the space of behaviors for a
single agent. Unfortunately, the reduction in the search space is accompanied by
usually accompanied by a degradation in the quality of information that each of
the agents receives as reinforcement.

The central challenge to teammate learning is that with multiple learners,
each learner is adapting its behaviors in the context of other co-adapting agents
over which it has no control. As the agents learn, they modify their behaviors,



15

Fig. 2. Reward information for the actions of one of the agents in the Two Peaks
domain described in Figure 1. Each action is paired with the ideal action for the other
agent.

Fig. 3. Reward information for the actions of one of the agents in the Two Peaks
domain described in Figure 1. Each action is paired with a set of five random actions
(uniformly distributed) for the other player, and the maximum of the joint rewards
is plotted. The process is repeated three times, with one curve for each try.

which in turn can ruin other agents’ learned behaviors by making obsolete the
information collected by other the agents during earlier explorations. Agents may
then need to re-explore the environment again and change their behaviors in this
new agent context, but as soon as they do so, their new learned behaviors may yet
again make obsolete each other’s learned assumptions (and so on). The mutual
co-adaption inherent in teammate learning presents evolutionary game-theoretic
dynamics which are relatively new to the machine learning field; and there is so
far relatively little agreement on how to deal with the problem, especially under
in multi-agent environments with little or no communication.

This challenge manifests itself in a number of interesting problems. One such
problem with teammate learning is keeping the agents focused on the perfor-
mance of the team, rather then on their individual performances. This issue can
be cast in game theoretic terms: a multi-agent learning system can have multiple
Nash equilibrium points, and once the set of agents reaches one of the equilib-
ria, no single agent has motivation to change its behaviors “for the good of the
team”. Only two or more agents simultaneously changing to a new behavior can
get the team out of the equilibrium point. This creates a problem whenever the
equilibrium point is a suboptimal team behavior.
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Fig. 4. Reward information for the actions of one of the agents in the Two Peaks
domain described in Figure 1. Each action is paired with a set of five random actions
(uniformly distributed) for the other player, and the average of the joint rewards is
plotted. The process is repeated three times, with one curve for each try.

Fig. 5. Reward information for the actions of one of the agents in the Two Peaks
domain described in Figure 1. Each action is paired with a set of five random actions
(normally distributed with mean 16 (the lower wider peak) and standard deviation 10)
for the other player, and the maximum of the joint rewards is plotted. The process is
repeated three times, with one curve for each try.

Another problem: when centralized performance measures are used, how can
the learning system assess the contribution of each agent to the joint measure?
This credit assignment problem may be sometimes very difficult to correctly solve
or approximate. In some cases, equal shares of payoff are assigned to each agent.
This may slow down the learning process because “lazy” agents receive rewards
primarily due to other agents’ sustained efforts, and so have little incentive to
change their ways. On the other hand, equal shares of global reward can keep the
agents focused on team (rather than individual) performance. The other extreme
is to locally assess each agent’s performance based on its individual behavior.
This can lead to local, greedy behavior rather than globally optimal behavior.
Several papers, discussed later, investigate the tradeoffs between these the two
approaches and middle-ground methods which combine them.

A related concern with teammate learning is that “all-star teams” composed
of best behaviors learned for each of the individual agents may not perform well
together, because those best behaviors were learned in the context of specific
other agents which are now not on the all-star team. For example, (Gordin et al.,
1997) considers the situation where two agents must negotiate for resources; an
optimal situation is where agent A allows agent B to have all the resources (or
conversely, agent B allows agent A to do so). But forming an all-star team out
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Fig. 6. Reward information for the actions of one of the agents in the Two Peaks
domain described in Figure 1. Each action is paired with a set of five random actions
(normally distributed with mean 48 (the higher narrower peak) and standard deviation
10) for the other player, and the maximum of the joint rewards is plotted. The process
is repeated three times, with one curve for each try.

of agent A from one situation and agent B from the other results in two agents
which compete for the resources to neither’s benefit.

Teammate learning literature breaks down along different lines than team
learning literature. Since each agent is free to learn separately, heterogeneity
versus homogeneity has been considered an emergent aspect rather than a design
decision in teammate learning (for example, (Balch, 1997, 1999) has argued that
the more local a reinforcement signal, the more heterogeneous the final team).
Further, relatively little teammate learning work has been done in the area of
communication.

Thus we have broken the teammate learning literature down into the follow-
ing four groups. First: papers which analyze the optimality of performance when
using teammate learning. The interest stems from the desire to have individual
agents learn how to perform as well as possible as a team despite being rewarded
individually. Second: papers dealing with the impact of locality of reward on the
learned behaviors. The locality of reward, directly related to the problem of
credit assignment among agents, seems to affect the heterogeneity of the learned
behaviors and their performance in different types of domains. Third: papers
examining interesting issues in competition versus cooperation. Fourth: papers
which deal with modeling other agents in other to improve the interaction with
them.

5.1 Optimal Team Behavior

Many studies in optimal team behavior (or the lack thereof) in teammate learn-
ing tend to examine the problem from a game-theoretic perspective.

Repetitive games In a repetitive game, two or more agents interact repeatedly,
and after each interaction each agent may receive some reward. When all agents
receive the same reward each time (this may be thought of as a “team reward”),
the domain is called “fully cooperative” (Boutilier, 1996). Through repeated
interactions, each agent adjusts its strategy in order to maximize the received
payoff. Boutilier (1996) surveys a number of issues associated with repetitive
games, focussing on pathological but generally unrealistic game situations, and
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encourages further theoretical analysis. Claus and Boutilier (1998) proposes two
benchmark games (climb and penalty) and shows that convergence to global
optima is not always achieved in these games even if agents use reinforcement
learning based on the joint-action information (rather than each agent’s indi-
vidual action). This result is disturbing, given the fact that agents had complete
information about the team and the environment, and provides a strong incen-
tive for developing better multiagent learning algorithms with guarantees on
convergence to optimal results.

Lauer and Riedmiller (2000) suggest updating an agent’s policy (Q-values)
by estimating the likely best cooperation possible for the agent’s action, and
proves that this will converge to the optimum in deterministic environments.
Kapetanakis and Kudenko (2002b,a) point out possible flaws in Lauer’s approach
when dealing with stochastic domains, and present a modified exploration strat-
egy that improves cooperation under these new conditions. Panait et al. (2003)
point out that standard coevolutionary approaches, when applied to Lauer’s
fully-competitive problem domains, are sometimes driven by “balance” consid-
erations rather than performance. Similar to Lauer, Panait et al show that
evaluating an agent in the context with agents chosen as estimates to its best
possible collaborators yields significantly improved results over the standard co-
evolutionary methods. Other investigations of learning algorithms for repetitive
games are presented in (Banerjee et al., 2000; Chang and Kaelbling, 2001).

Stochastic games Stochastic games are repetitive games in which the game out-
come (and corresponding reward per agent) is a stochastic, rather than deter-
ministic, function of the agent’s interactions. Bowling and Veloso (2000) examine
a number of game theory and reinforcement learning approaches to stochastic
games, and describes the differences in assumptions they make. Hu and Well-
man (1998a) introduce a reinforcement learning algorithm for solving general-
sum stochastic games: this proof is corrected and revised with addditional con-
straints in Bowling (2000). Bowling and Veloso (2001) describe two desirable
properties for learning agents, namely rationality (the agent should converge
when the other agents are fixed to stationary strategies) and convergence (un-
der the specified conditions, all agents will converge to stationary strategies),
and present a learning algorithm that exhibits these two properties. Bowling
and Veloso (2002a) investigate the existence of equilibria points for agents with
limitations. Another investigation of learning in multiagent stochastic games is
presented in (Bowling and Veloso, 2002b). Most of the work on stochastic games
assumes the uniqueness of the globally optimal cooperation strategies; a notable
exception is presented in (Suematsu and Hayashi, 2002)

Other Analysis Coevolution may be cast into an evolutionary game theoretic
framework, though not exactly as a repetitive or stochastic game. Wiegand has
analyzed the conditions under which coevolutionary systems gravitate towards
Nash optima rather than providing globally optimal solutions for the team as
a whole; and approaches to assessing the external performance of the learners
despite their sensitivity to the other agents involved (Wiegand, 1998; Wiegand
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et al., 2001, 2002a,b). (Zhao, 1998) presents a societal model to cooperative co-
evolutionary algorithms. Gordin et al. (1997) report that a shared memory data
structure containing the best-discovered-so-far teams of agents yields superior
team performance when using the cooperative coevolution in a room-painting
domain.

In a series of papers, Schmidhuber et al examine the rates of team perfor-
mance improvement rather than final team performance. Schmidhuber and Zhao
(1996) apply the related “success-story algorithm”: agents periodically check
their performance and undo behavioral modifications that were not observed to
lead to lifelong reward improvements.
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5.2 Credit Assignment and the Locality of Reward

One facet of the credit assignment problem is the degree to which reward should
be local to individual agents. Consider a gold-mining problem, where reward is
given to agents based on how much gold they extract. If an agent was rewarded
only for his own gold extraction, agents would revert to greedy behaviors, having
no incentive to inform other agents of rich lodes that the whole team could work
on. On the other hand, if all agents were rewarded equally for any gold extracted,
“lazy” agents would have no incentive to mine gold at all — they would be
rewarded regardless.

The “laziness” effect generally means that local reward methods tend to re-
sult in faster learning rates (Balch, 1997, 1999). But Balch shows that whether lo-
cal or global reward mechanisms lead to better performance tends to be problem-
domain dependent. Balch (1997, 1999) the use of global (Rglobal) and local
(Rlocal) reinforcement policies; Rglobal depends on the team performance, while
Rlocal depends only on whether the agent scored a goal or not. The results sug-
gest that local rewards lead to better performance in a foraging task (Balch,
1999), but better results are obtained when using global rewards in a simulated
soccer domain (Balch, 1997): teams of agents trained using Rglobal outscore on
average 6 goals to 4 a fixed control team, while teams of agents trained with
Rlocal lose by an average of 4 points to 6.

The previous two papers also suggest that the locality of rewards affects
the heteorgeneity (diversity) of the learned behaviors. In both the foraging and
simulated soccer domains, using local rewards results in homogeneous behaviors,
while global rewards lead to heterogeneous teams. .

In a related approach, Tangamchit et al. (2002) use local and global rewards
in combination with average (Monte-Carlo) or discounted (Q-Learning) rein-
forcement in a foraging domain. The authors suggest that discounting leads to
robots learning actions targeting for immediate payoff, hampering better col-
laborations. At the other extreme, average reinforcement, combined with global
reward leads to much better results.

5.3 Cooperation, Competition and In-Betweens

5.4 Teammate Modeling

A final area of research has been in teammate modelling: learning about other
agents in the environment so as to make good guesses of their expected behavior,
and to act accordingly. As other agents are likely modeling you, modeling them
in turn brings up the spectre of infinite recursion: “Agent A is doing X because
it thinks that agent B thinks that agent A thinks that agent B thinks that
...” This must be rationally sorted out in finite time. Vidal and Durfee (1997)
categorize agents based on the complexity they assume for their teammates.
A 0-level agent believes that none of its teammates is performing any learning
activity and it does not consider their changing behaviors as “adaptive” in its
model. A 1-level agent models its teammates as 0-level agents; in other words,
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it considers his teammates do not model any other agent (including the 1-level
agent). In general, an N-level agent models its teammates as (N-1)-level agents.

Mundhe and Sen (2000a) present an initial investigation on the use of 0-level,
1-level and 2-level modeling agents. The authors report a very good performance
for the 0-level learners, suggesting that for some domains teammate modeling
may not be necessary. Similar results showing good coordination without mod-
eling other agents are reported in (Sen et al., 1994; Sen and Sekaran, 1998),
where a couple of robots successfully learn to cooperatively push a box without
either even being aware of the other’s presence. However Mukherjee and Sen
(2001) present an experiment in which 1-level agents model each others’ action
probability distribution; this produces a form of mutual trust which yields better
performance.

When dealing with larger numbers of teammates, another modeling approach
is to presume the entire team is formed of homogeneous agents (). (Haynes and
Sen, 1996c,a; Haynes et al., 1996) use this approach complemented with a case-
based learning mechanism. Nagayuki et al. (2000) present a similar approach for
heterogeneous teams

While their work was applied to competitive games, Wellman and Hu (1998);
Hu and Wellman (1996) present a result that is important for cooperative mod-
eling as well, namely that when learning models of other agents in a multiagent
learning scenario, the resulting behaviors are highly sensitive to the agents’ ini-
tial beliefs. Depending on these initial beliefs, the final performance may be no
better than when no teammate modeling is performed — agent modeling may
prevent agents from converging to optimal behaviors. A similar conclusion is
reported by Hu and Wellman (1998b): the authors suggest the best policy for
creating learning agents is to minimize the assumptions about the other agents’
policies.

Suryadi and Gmytrasiewicz (1999) present an agent modeling approach using
influence diagrams (similar to belief networks). The approach consists of learning
the beliefs, capabilities and preferences of the teammates in order to improve
cooperation. As the correct model cannot be usually computed, the system stores
a set of such models together with their probability of being correct. Then the
set of models is adjusted according to observations about the behaviors of the
other agents.

We conclude this section with work in agent modeling under communication.
Ohko et al. (1997) use a communication protocol for agents to subcontract sub-
tasks to other agents. Ohko et al investigate the use of case-based reasoning
to reduce the communication effort for task announcements by enabling agents
to acquire and refine knowledge about other agents’ task solving abilities. With
the embedded learning algorithm, communication is reduced from broadcasting
to everyone to communicating exact messages to only those agents that have
high probabilities to win the bids for the tasks. A related approach is presented
in (Bui et al., 1998, 1999): here, Bayesian learning is used to incrementally up-
date models of other agents to reduce communication load by anticipating their
future actions based on their previous ones.
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6 Learning and Problem Decomposition

The state space of a large, joint multi-agent task can be overwhelming. An
alternative is to reduce complexity by heuristically decomposing the overall task
into simpler subtasks that agents can more easily approach. Humans are not
perfect, and our application of domain-specific knowledge to perform such a
heuristic decomposition could inadvertantly bias the learning procedure so as to
remove the optimal areas of the solution space. However, for large and complex
problems, the savings in computational complexity are often worth it.

Squads One approach to decomposition is to group agents into squads, with each
squad following the same behavior, rather than all the agents learning separate
behaviors.6 These squads are then placed in specific situations, or endowed with
different abilities, to encourage the development of separate behaviors believed
necessary to solve the joint task. For example, a team of eleven soccer-playing
robots might be grouped into squads of forwards, midfielders, attackers, and
a goalie (Luke, 1998; Luke et al., 1997). The number of such squads can also
be learned, giving the team some freedom in problem decomposition (Hara and
Nagao, 1999).

Layered Learning In layered learning, each individual behavior is decomposed
into a hierarchy of behaviors, each using the ones beneath it. Some of the be-
haviors may be hardcoded, while others are modified by learning processes. The
method was successfully used to learn behaviors for robotic soccer (Stone, 1998,
1997). Further applications of the technique are reported by Gustafson (2000);
Gustafson and Hsu (2001); Hsu and Gustafson (2002). The authors present an
interesting application of genetic programming to the Keep-Away Soccer do-
main, where three learned offensive players face off against a single hard-coded
defender who can move at twice their speed. The genotype of an individual
encodes a single homogeneous behavior that is applied to each offensive agent
in the environment. Gustafson and Hsu compare a layered learning approach
to traditional genetic programming techniques in learning this behavior. The
authors teach the offensive team the behaviors for several basic subtasks, then
teach it to solve a more complex joint behavior which relies on them.

Shaping Shaping consists of decomposing the learning task into a series of incre-
mentally difficult tasks (Singh, 1992). The first task in the series is very simple
and the agents can relatively easily and quickly learn it. As soon as that happens,
the problem changes to solving the second task in the series, then the third, and
so on. The process continues until the agents have learned to perform the most
difficult task (and the only relevant one). This differs from layered learning in

6 Indeed one might argue that a homogeneous multiagent behavior approach is the
extreme end of the squad method: by grouping all the agents into a single “squad”,
the experimenter is essentially heuristically betting that agents need only learn a
single unified behavior to solve the problem.
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that the previous tasks are not explicitly used as “modules” on which later tasks
rely. Instead the problem has been decomposed under the assumption that the
system will on its own learn how to modify a solution to an easier task into a so-
lution for a harder task. Balch (1999) introduces a shaped reinforcement reward
function (Rshaped) (also used in (Mataric, 1997)) which depends on the number
of partial steps fulfilled for accomplishing the task. The author shows that using
Rshaped leads to similar results to using a local reward function Rlocal, but in a
significantly shorter time. The results are also better than those obtained when
using a global reward function Rglobal.

Team Behavior Decomposition Guestrin et al. (2002) present an interesting ap-
proach to applying reinforcement learning to multiagent domains. The authors
note that in many domains the actions of some agents may be independent.
Taking advantage of this, they suggest creating partially decomposing the joint
Q-values of agents based on a coordination graph that heuristically spells out
which agents must interact in order to solve the problem. This partial decom-
position permits a heuristic middle-ground between learning a full joint utility
table and learning separate independent tables. The authors propose a series
of coordinated reinforcement algorithms by which agents coordinate both their
action selection and policy updates.

7 Learning and Communication

To solve some problems, it can be critical for agents to communicate; for others,
communication may still increase agent performance. We define communication
very broadly: altering the state of the environment such that other agents can
perceive the modification and decode information from it. Among other reasons,
agents communicate in order to coordinate more effectively, to distribute more
accurate models of the environment, and to learn subtask solutions from one
another.

But are communicating agents really multi-agent? Stone and Veloso (2000)
have noted that large, unrestricted communication also reduces a multiagent
system to something isomorphic to a single-agent system. They do this by not-
ing that this permits all the agents to send complete external state information
to a “central agent”, and to execute its command in lock-step, in essence acting
as effectors for a single agent. A central agent is not even necessary: as long as
agents can receive all the information they need about the current states of all
the other agents, they can make independent decisions knowing exactly what the
other agents will do, in essence enabling a “central controller” on-board each indi-
vidual agent, picking the proper sub-action for the full joint action. Thus we feel
that a true multi-agent problem necessitates restrictions on communication. At
any rate, while full, unrestricted communication can orthogonalize the learning
problem into a basic single-agent problem, such an approach requires very fast
communication of large amounts of information. Real-time applications instead
place considerable restrictions on communication, in terms of both bandwidth
and speed.
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Explicit communication can also significantly increase the learning method’s
search space, both by increasing the size of the external state available to the
agent (it now knows state information communicated from other agents), and by
increasing the agent’s available choices (perhaps by adding a “communicate to
agent i” action). As noted in (Durfee et al., 1987), this increase in search space
can hamper learning an optimal behavior more than communication itself can
help. Thus even when communication is required for optimal performance, for
many applications the learning method must disregard communication, or hard-
code it, in order to simplify the learning process. For example, when learning in a
predator-prey pursuit domain, Luke and Spector (1996) assume that predators
can sense each others position no matter what distance separates them, and
Berenji and Vengerov (2000b) use a blackboard communication scheme to allow
agents to know of other agents’ locations.

7.1 Communicating to Improve Team Performance

Learning agents may communicate in order to improve team performance, com-
monly through discovering how to signal one another during the task. For ex-
ample, Yanco and Stein (1993) experiment with two mobile robots application
in a cooperative movement task, and endowed with a fixed but undefined com-
munication vocabulary. The two robots have an initial fixed and uninterpreted
communication vocabulary. The robots learn to associate different meanings to
words in different trials. Additionally, when circumstances change, the robots
learn to adjust their communication language (or their behaviors) to the new
situations.

A similar approach is reported in (Jim and Giles, 2000), where a genetic algo-
rithm is used for language learning in a predator-prey domain. The authors use
the blackboard communication scheme and show that increasing the language
size improves the performance. Additionally, they show that evolved communi-
cating predators perform better than all previous reported results and present a
rule for determining a pessimistic estimate on the minimum language size that
should be used for multiagent problems. A particularly active researcher in the
evolution of communication is Luc Steels at the Free University of Brussels. Ex-
periments he reports in (Steels, 1996a) show the emergence of a spontaneous
coherent lexicon that may adapt to cope with new meanings during the lifetime
of the agents. Steels and Kaplan (1999) continue this investigation on evolv-
ing the communication and shows that agents are able to create general words
by collective agreement on their meanings and coverage. Similar approaches to
evolving communication languages are presented in (Steels, 1995; Saunders and
Pollack, 1996; Steels, 1996b,c, 1997, 2000; Cangelosi, 2001).

7.2 Communicating to Speed Learning

Some research, particularly in reinforcement learning, has presumed that the
agents have access to a joint utility table or to a joint policy table to which
each may contribute in turn, even though the agents are separate learners. We
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argue that this is an implicit hard-coded communication procedure: the learners
are teaching each other learned information. For example, Berenji and Vengerov
(2000a) argue that multiple Q-learners sharing a joint Q table can learn signifi-
cantly faster than independent learners.

Teaching can also be done implicitly, and can be mixed with signaling.
Tan (1993) uses a predator-prey pursuit domain and shows that teams with
learning agents that share knowledge about the task significantly outper-
form independent learners. The sharing of knowledge is done in three ways:
sharing immediate sensor information (state), sharing episodes (sequences of
〈state, action, reward〉 experienced by an agent), or sharing policy information
(in the form of 〈state, action, utility〉).All learning benefits are obtained at the
expense of increased communication usage.

7.3 Pheromones: Communicating via Slow, Locally-sensed State

Changes

Pheromones permit agents to leave markers in the local environment which last
a long time, as opposed to the rapid- and global- information methods discussed
above. This is analagous to Hansel and Gretel’s leaving bread crumbs in order to
find their way back home while wandering in the forest. Most work in this area
is inspired by social insects such as ants and termites, which communicate by
laying pheromones on the ground: pheromones are chemical compounds whose
presence and concentration can be sensed by the insects (Bonabeau et al., 1999).
For example, while foraging for food, an ant drops pheromones to mark the trail
connecting the nest to food source (Hölldobler and Wilson, 1990). The ant uses
pheromone trails both to find its way back to the food source, and also to recruit
other ants to forage from food source. In some situations, pheromones may diffuse
or evaporate.

In some sense, pheromone deposits can be seen as a giant blackboard or state-
utility table shared by all the agents; it is different from this in that pheromones
can only be detected locally. Pheromones are not a random-access memory.
Nonetheless, the similarities between pheromone information and other joint
memory mechanisms is interesting. Pheromones can be (more or less) static
until updated by other agents. Agents can often disambiguate among similar
states by storing different amounts or different types of pheromones. Agents can
also propose generalizations over classes of similar states by depositing similar
amounts of pheromones at those locations.

Several pheromone-based learning algorithms have been proposed for forag-
ing problem domains. A series of reinforcement learning algorithms have adopted
a fixed pheromone laying procedure, and use current pheromone amounts as ad-
ditional sensor information while exploring the space or while updating the state-
action utility estimates (Leerink et al., 1995; Monekosso and Remagnino, 2001;
Monekosso et al., 2001, 2002; Monekosso and Remagnino, 2002). Evolutionary
computation techniques have also been applied to learn exploration/exploitation
strategies using pheromones deposited by hardcoded mechanisms. For example,
(Sauter et al., 2001, 2002) show how EC can be used to tune an agent policy in
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an application involving multiple digital pheromones. A similar idea applied to
network routing is presented in (White et al., 1998).

An interesting research question is whether agents can learn not only to use
pheromone information but to deposit the pheromones in a rational manner.
This question was first examined in AntFarm, a system that combines commu-
nication via pheromones and evolutionary computation (Collins and Jefferson,
1992, 1991). AntFarm uses multiple colonies of homogeneous ants, each colony
in a separate 16x16 grid environment. The ants use a single pheromone to mark
trails toward food sources, but use a compass to orient themselves on the short-
est path back to the nest. The system uses a neural network representation and
plans to evolve only the foraging strategies, while the ones for returning home
are hardcoded. In the future work section of the paper, Collins and Jefferson
admit not having observed the evolution of cooperative behaviors (Collins and
Jefferson, 1992). The authors suggest the problem comes from the incapability
of the system to discover how to create nice uphill gradients of pheromones for
ants to use during the foraging process.

Panait and Luke (2004a) present an algorithm that exhibits good perfor-
mance at various foraging tasks. This algorithm uses multiple pheromones, and
in doing so it eliminates the explicit requirement for ants to precisely know the
direction towards the nest from any point. Rather, ants use pheromone informa-
tion to both guide themselves back to the food source and to the nest. The new
algorithm exhibits good performance in the presence of obstacles. Additionally,
the authors mention an interesting hill-climbing effect that leads to straight (and
locally optimal) paths. In an extension of their work, Panait and Luke (2004b)
successfully apply evolutionary computation to learn a pheromone-based forag-
ing task. In a series of three experiments, the authors show that a colony of
agents can learn to both deposit pheromones and to use that information in
successful foraging behaviors. A comparison of the results on increasingly com-
plicated environments shows that behaviors learned for more complex domains
exhibit good performance in simpler problems as well.

7.4 Communication via Embodiment

In many domains, agents are acting as “brains” that control “bodies” performing
specific tasks. This nearly always is the case in robotics applications, where the
robots (in simulation or in reality) act as the bodies, while the agents are software
or humans that control them. In such domains, agents can sense (via the sensors
located on the robots) other nearby robots. This makes it possible for agents
to communicate with each other by just changing or setting the position of
their respective robots. For example, by positioning the robot in the middle of a
doorway, an agent can signal to other robots that they should avoid the room.

Quinn (2001b) argues that this is a form of communication by citing Wilson’s
statement that communication “is neither the signal by itself, nor the response,
it is instead the relationship between the two” (Wilson, 1975). This definition
suggests that a shared dedicated channel is not necessary for communication.
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Quinn (2001b) investigates evolution of strategies in a two-agent collaborative-
movement domain and reports that robots were able to coordinate by commu-
nicating their adopted roles of leader or follower via sequences of moves. For
example, after initial phases of alignment, the robots use rotation and oscilla-
tory back-and-forth movements to decide who leads the way and who follows.
Quinn terms this “communicative behavior”, because it is a sequence of actions
meant to convey information from one agent to the other.

8 Two Challenges: Scalability and Adaptive Dynamics

Multiagent learning is a new field and as such its open research issues are still
very much in flux. However we believe that two specific areas have proven them-
selves important challenges to overcome in order to make multiagent learning
more broadly successful as a technique. Both of these challenges arise from the
multi in multiagent learning, and may eventually require new learning meth-
ods special to multiple agents, as opposed to the more conventional single-agent
learning methods (case-based learning, reinforcement learning, traditional evo-
lutionary computation) now common in the field.

8.1 Scalability

Scalability is a problem for many learning techniques, but especially so in mul-
tiagent learning. The dimensionality of the search space grows rapidly with the
complexity of possible agent behaviors, the number of agents involved, and the
size of the network of interactions between them. This search space grows so
rapidly that it seems clear that one cannot learn the entire joint behavior of
a large, heterogeneous, strongly intercommunicating multiagent system. Effec-
tive learning in an area this complex requires some degree of sacrifice: either by
isolating the learned behaviors among individual agents, by reducing the hetero-
geneity of the agents, or by reducing the complexity of the agent’s capabilities.
Techniques such as learning hybrid teams, or partially restricting the locality of
reinforcement, provide promising solutions in this direction, but it is not well
understood under which constraints and for which problem domains these re-
stricted methods will work best.

8.2 Adaptive Dynamics

Multiagent systems are typically dynamic environments, with multiple learn-
ing agents vying for resources and tasks. This dynamicism presents a unique
challenge not typically found in single-agent learning: as the agents learn, their
adapting to one another changes the world scenario. How do agents learn in an
environment where the goalposts are constantly being moved? This dynamicism
also presents the interesting problem of quality assessment. In a decentralized
domain, such quality assessment is relative to or in the context of other agents in
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the environment. Thus in many cases there is no absolute quality measure that
can be assigned to an agent.

Co-adapting multiagent systems may be thought of in game-theoretic terms,
suggesting a convergence to stable equillibria; as opposed to actual optima. Re-
searchers, especially coevolutionary theorists, have used Nash equilibrium points
to investigate the learning algorithms for multiagent systems, and have discov-
ered much of the art of cooperative multiagent learning is figuring out how
to warp the space so that equilibria are likely to be near-optimal. For exam-
ple, cooperative coevolution has revealed that the multiagent learning process
is sometimes guided by “balance” considerations, rather than performance im-
provements. The adaptation of single-agent learning algorithms to the multiagent
domain neglects an important fact: how well an individual performs in a typical
team is not well-related to the individual’s performance in a good team, much
less an optimal one. Panait et al. (2003) showed that when an agent is evaluated
in the context of its ideal collaborators, the dynamics of a coevolutionary ap-
pracoh reduce to a simple evolutionary algorithm for learning multiagent teams.
That is, the closer one can get to assessing individuals with their optimal col-
laborators, the more likely one was to optimize the system in an evolutionary
computation sense.

9 Problem Domains and Applications

Despite the relative young age of the field, the multiagent systems area contains a
very large number of problem domains. The list in this survey is by far complete,
but it contains many of the benchmark problems. The problem domains are
divided in three classes: cooperative robotics, game-theoretic environments, and
applications to complex real-world problems.

9.1 Embodied Agents

The cost of robots have decreased significantly, making it feasible to purchase
and use several (tens, hundreds, or even thousands of) robots for a variety of
tasks. This drop in cost has spurred research in multiagent cooperative robotics.
Additionally, computer hardware is cheap enough that what cannot be performed
with real robots can now be done in simulation; though the robotics community
still strongly encourages validation of results on real robots.

This sections lists several problem domains from the cooperative robotics or
simulation community. Most of them are well-known benchmark problems for
multiagent learning techniques.

Predator-Prey Pursuit This is one of the most common environments in multia-
gent learning research, probably because it is easy to implement. Pursuit games
consist of a number of agents (predators) cooperatively chasing a prey. Individ-
ual predator agents are usually not faster than the prey, and often agents can
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sense the prey only if it is close by. Therefore, the agents need to actively coop-
erate in order to successfully capture the prey. Our earliest known work using
this domain is (Benda et al., 1986), but many variations have been studied since:
discrete and continuous environments; variable numbers of predators, available
sensing and communication; time constraints, etc).

Foraging The domain consists of a large map with agents (robots) and items
to forage (pucks or cans). The task is to carry the items to specially designated
areas. Variations may include multiple item locations, item types, or drop loca-
tions. The efficiency of an approach can be defined by how quickly it completes
the foraging task (Mataric, 1994), or by the number of items collected in a fixed
amount of time. Ostergaard et al. (2001) provide an extended taxonomy accom-
panied by useful examples of previous work. Teams of agents using either local or
global reward information have been shown to have similar performances (Balch,
1999), suggesting that locally optimal (greedy) agent behaviors can be composed
to form good performing teams.

Box Pushing This domain involves a two-dimensional bounded area containing
obstacles and a number of boxes. Agents in this environment need to arrange
the boxes to specified final positions by moving near them and pushing them.
Sometimes a robot is capable of pushing one box by itself (see for example the
single-agent experiments reported in (Mahadevan and Connell, 1991)). A more
complicated version requires two or more agents to cooperate in order to move
a single box in simulation (Zhang and Cho, 1998), or on real robots (Mataric
et al., 1995).

Soccer The game of soccer, both in simulation and with real robots, is one of
the most widely used domains for recent research in multiagent systems (Kitano
et al., 1997). The domain consists of a soccer field with two goals, a ball, and two
teams with a number of agents (from 5 to 11, depending on the sizes of the robots
and of the field). The performance of a team is usually assessed based on the
difference in number of goals scored opposing teams. Other performance metrics
have included length of time in control of the ball, successful interceptions, and
average location of the ball. . The strong interest in this domain has led to
several annual “world cup” robot soccer championships. The most well-known
such competition, RoboCup (www.robocup.org), has different leagues divided by
continent and by type of robot or simulation environment. RoboCup’s goal is to
“develop a team of fully autonomous humanoid robots that can win against the
human world soccer champion team”.

Keep-Away Soccer Gustafson and Hsu (2001) use a simpler version of the Soccer
domain which contains only one offensive and three defensive players and a ball.
The defensive player is twice as fast than the offensive ones, and the ball, when
passed, can move at twice the speed of the defensive player. The objective is to
keep the ball away from the defensive player by moving and passing; there is
a penalty each time the defensive player is within one grid unit away from the
ball. A similar domain is presented in (Stone and Sutton, 2002).
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Cooperative Navigation The task, as described in (Balch, 1998), is to have a team
of agents move across a field in minimal time without colliding with obstacles or
other robots. Each agent selects from a number of predefined strategies, and the
performance is assessed based on the maximum time necessary for the agents to
accomplish the task. The questions investigated in this thesis include benefits
from formation participation and impact of diversity on performance.

Cooperative Target Observation Introduced in (Parker, 2000b), this domain in-
volves a two dimensional bounded area in which a number of robots have to keep
several moving targets under observation. Performance is based on the total num-
ber of targets within the “observable” distance to any team-member robot during
the time period. Parker investigates an initial approach to learning behaviors for
this domain and reports improvements over naive, random approaches, but also
notes the superiority of the hand generated solutions. Additional research inves-
tigations using this domain include (Fernandez and Parker, 2001; Parker et al.,
2001; Parker, 2002).

Herding (Schultz et al., 1996) introduces a new domain where a robot must
herd another robot into a designated area. The second robot (the sheep) tries to
avoid obstacles, but can either move randomly or try to avoid the herding area.
The herder moves close to the sheep robot to encourage the sheep to move in
the desired directions. Later investigations (including (Potter et al., 2001)) try a
multi-shepherd version of the domain, where many faster and “stubborn” sheep
require coordination from the several herding agents. Additionally, predators
(“foxes”) exist in the environment and try to kill the sheep while avoiding the
shepherds, thus complicating the shepherds’ task.

9.2 Game-Theoretic Environments

As discussed in Section 8.2, many multiagent systems may be cast in game-
theoretic terms; essentially as strategy games consisting of matrices of payoffs
for each agent based on their joint actions. In addition to game-theoretic analysis
of multiagent systems, some common problem domains are also taken from game
theory.

Iterated Prisoners’ Dilemma In the classic Prisoner’s Dilemma domain, two
prisoners are questioned about the crime they jointly committed. Each has the
opportunity to either cooperate with the other (not say anything) or to defect
(squeal on him) without knowing about the other agent’s action. The reward or
punishment for cooperation or defection is described numerically, with higher
numbers being better. If both cooperate, they each receive a reward of 3. If one
defects and the other cooperates, the defector receives a reward of 5, while the co-
operator receives 0. If both defect, they each receive a reward of 1. In the iterated
version of the game, the scenario repeats a number of times, enabling the agents
to each learn from the other’s behavior and adapt their actions appropriately.
The Iterated Prisoner’s Dilemma is considered a cooperative game because the
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better pairs of agents tend to cooperate with one another (Axelrod, 1984, 1987).
A three-person coordination game inspired by the Iterated Prisoner’s Dilemma
is presented in (Akiyama and Kaneko, 1995).

Social Dilemmas These problems concern individual decisions of several agents,
all of which receive a joint reward (Glance and Huberman, 1994). The Tragedy of
the Commons, Braess Paradox and Santa Fe Bar are examples of social dilemma
games. In the Tragedy of the Commons, a number of agents share a resource of
limited capacity. When the joint usage of the resource exceeds the capacity, the
service deteriorates, and so do the rewards received by the agents. In the Braess
Paradox problem, agents share two resources. The dilemma arises when agents
must decide to start accessing the less utilized of resources: if all agents decide
to do so, it will become overwhelmed and rewards will drop. Further details
on the two problems, accompanied by a coevolutionary approach to learning
solutions to them, can be found in (Mundhe and Sen, 2000b). In the Santa Fe
Bar problem, a large number of agents individually must decide whether to go
to a bar in Santa Fe. If too many or too few agents opt to go, their satisfaction
is lower than when a reasonable number of them decide to go (Arthur, 1994).

9.3 Real-World Applications

This section describes a set of problems inspired from real-world domains. The
problems described in this section have been used previously in MAS investi-
gations. Many of the described problem domains are logistics, planning, and
constraint-satisfaction problems requiring real-time, distributed decision mak-
ing. Because the applications are often very complex and highly distributed,
learning techniques have rarely been applied to them, and so they are presented
here as example challenge problems for multi-agent learning.

Distributed Vehicle Monitoring The task in this domain is to maximize the
throughput of cars through a grid of intersections. Each intersection is equipped
with a traffic light controlled by an agent. The agents need to coordinate to deal
with fluctuations in traffic (Lesser et al., 1987).

Air Traffic Control For security purposes, the air space is divided into three-
dimensional regions used by air traffic controllers to guide the airplanes to their
final destination. Each such region has an upper bound (called the sector capac-
ity) on the number of airplanes it can hold at any time. The task is to guide the
planes from sector to sector along minimal length routes, while ensuring that
constraints are met; the solution needs to be fast to handle real-time data. A
multiagent approach for this domain is reported in (Steeb et al., 1988).

Network Management This domain consists of a large, distributed network of
interacting entities. Agents are deployed in network infrastructures in order to
distributively and cooperatively control and manage the network, handle failures,
and balance its load (Weihmayer and Velthuijsen, 1994).
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Electricity Distribution Management Here the problem is to maintain an opti-
mal power grid configuration that keeps all customers supplied and minimizes
losses; while at the same time dealing with possible damage to the network, vari-
able demand from customers, scheduled maintenance operations, and equipment
failures and upgrades (Varga et al., 1994).

Distributed Medical Care This domain applies AI to assist clinical staff in mak-
ing diagnoses, decide on therapy and tests, determine prescriptions, and other
matters related to medical care ((Huang et al., 1995)). The problem is particu-
larly suited for multiagent systems because of the decentralization of data and
resources, high costs for obtaining comprehensive information, and stochasticity
and dynamicity of data.

Factory Production Sequencing This classic planning and scheduling problem
involves managing the process of producing complex items through a series of
steps, where there are different constraints and costs associated with each step.
The task consists of building a plan (a production sequence) that specifies the or-
der of operations for different items such that the production costs are minimized
while satisfying customer orders (Wooldridge et al., 1996).

Hierarchical Multi-Agent Systems Problems Some multiagent domains are of
particular interest because of the different levels at which problems can be for-
mulated. For example, in the “Transportation” problem, several trucking com-
panies transport goods between locations. Depending on problem formulation,
agents can represent whole companies, sets of trucks from the same or from
different companies, or even individual trucks. The task is to complete requests
from customers under specific constraints (maximum time required to finish the
job, minimal cost of delivery, etc.). A multiagent approach to this domain is re-
ported in (Fischer et al., 1993). The “Loading Dock” is a similar problem, where
several forklifts load and unload trucks according to task requirements; either
individual forklifts or groups of forklifts may be modeled as an agent (Muller
and Pischel, 1994). A related “Factory Floor’ problem is investigated in (Peceny
et al., 1996), where products are manufactured from raw material by several ma-
chines under time and cost minimization constraints, and agents can represent
individual machines or groups of machines.

Models of Social Interaction Many natural and social systems have very large
numbers of interacting agents. Accordingly, such interactions need also be
present in simulations of these natural phenomena. Examples of interesting work
in this area include Craig Reynolds’ work on collective behaviors such as flocking
Reynolds (1987); learning behaviors for complex artificial creatures in virtual
worlds, such as those in the game of Creatures (Grand et al., 1997); and the
modeling of the formation of early countries Cederman (1997).

Other multiagent systems domains investigated include particle accelerator con-
trol (Jennings et al., 1993), intelligent document retrieval (Mukhopadjyay et al.,
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1986), spacecraft control (Schwuttke and Quan., 1993), concurrent engineering
(Cutkosky et al., 1997), job-shop scheduling (Morley and Schelberg, 1993), steel
coil processing (Mori et al., 1988). Further applications of Distributed AI in
industry are reported in (Van Dyke Parunak, 1996).

10 Resources

Machine Learning in Multiagent Systems is a relatively new research topic, with
a large increase in the number of research papers published in the last few
years. General material on the topic can be found in (Weiß, 1999, 1997, 1995;
Imam, 1996; Weiß and Sen, 1996; Sen, 1996; Huhns and Weiß, 1998; Weiß, 1998;
Sen, 1998). Other surveys of existing work in multiagent learning and related
domains include (Stone and Veloso, 2000; Weiß and Dillenbourg, 1999; Van Dyke
Parunak, 1996; Brazdil et al., 1991; Cao et al., 1997; Decker et al., 1989, 1999;
Durfee, 1992; Durfee et al., 1989; Lesser, 1999; Parker, 2000a; Sen, 1997; Luck
et al., 1998; Weiß, 1994). There are also several PhD theses investigating different
aspects of the multiagent learning field: (Mataric, 1994; Balch, 1998; Potter,
1997; Gmytrasiewicz, 1992; Carmel, 1997; Stone, 1998; Crites, 1996; Grecu, 1997;
Nagendra-Prasad, 1997; Dowell, 1995) Good pointers for news, conferences and
journals, courses, laboratories, people, companies and laboratories, may be found
on web sites such as http://www.multiagent.com and http://agents.umbc.edu.

11 Conclusions

This paper surveyed the multiagent learning area, presenting a novel categoriza-
tion of previous work, accompanied by discussions on key aspects of interest.
We argued that learning in multiagent systems can be done at a higher “team”
level, where a single learner improves the behavior of the entire team, but also
at a finer “teammate” level, where individual agents conduct their own learning
processes in order to better fit the team.

In particular, Team Learning has received a significant share of interest. It has
been previously neglected as a special category of learning in multiagent systems.
We presented approaches to learn behaviors for homogeneous, heterogeneous and
hybrid homogeneous/heterogeneous teams, accompanied by several comparative
investigations of these approaches.

The second part of the paper surveyed Teammate Learning. We surveyed
papers investigating the optimality of the learning approaches, the impact of lo-
cality of reward information, cooperation or competition relations among agents,
and modeling other agents in the domain.

Later sections dealt with other issues of interest related to problem decom-
position and communication. In terms of communication, we divide the work ac-
cording to the mechanism used for communication. The first class includes tech-
niques using regular communication, such as via fiber optic, cables, or wireless.
A second set of methods use slowly decaying information such as pheromones;
this mechanism allows for longer duration of the information, and it can be used
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as a shared memory capacity where agents read and write information associ-
ated with different states of the environment. A last class of papers deals with
communication via embodiment in domains such as robotics where agents act
as brains for actual bodies.
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