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Abstract

Parka is a symbolic, semantic network knowledge representation system that takes advantage of the
massive parallelism of supercomputers such as the Connection Machine. The Parka language has
many of the features of traditional semantic net/frame-based knowledge representation languages
but also supports several kinds of rapid parallel inference mechanisms that scale to large knowledge-
bases of hundreds of thousands of frames or more. Parka is intended for general-purpose use and
has been used thus far to support A.L systems for case-based reasoning and data mining.

This document is a user manual for the current version of Parka, version 3.2. It describes
the Parka language and presents some examples of knowledge representation using Parka. Details
about the parallel algorithms, implementation, and empirical results are presented elsewhere.
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Chapter 1

Overview

1.1 Introduction

This document is the user manual for the Parka Knowledge Representation System, version 3.2
(“Parka 3”). The purpose of this document is to describe the features of the Parka system and
to provide some examples of how knowledge can be represented using the Parka language. Details
on the research issues addressed by Parka and the Parallel Server operation can be found in other
documents described below.

Parka has much in common with typical frame-based knowledge representation systems. What
distinguishes Parka is its ability to perform certain types of very useful inferences faster than any
existing system we know of. This speed is accomplished through the use of massively parallel
hardware, such as the Connection Machine (CM-2 and CM-5) supercomputer made by Thinking
Machines Corporation. If a parallel machine is not available, Parka can still be run in serial mode.
If a CM is available as a parallel server, certain inferences will be done more quickly in parallel.

Parka has been developed by the Parallel Understanding Systems A.l. Research Group, under
the direction of Prof. James Hendler, in the Department of Computer Science at the University of
Maryland at College Park. The original version of Parka was designed and implemented by Matt
Evett and Lee Spector. Bill Andersen designed and implemented Parka 3. Some aspects of the
Parka 3 language design were suggested by Brian Kettler. Sean Luke implemented a graphical
browser and graphical query window for Parka 3. Merwyn Taylor assisted in the testing of Parka
3.

To obtain and install Parka, see the instructions available on our Worldwide Web page, described
in Section 1.1.2, or send mail to parka-users-request@cs.umd.edu.

1.1.1 Guide to This Document

This chapter presents a brief overview of Parka. Section 1.2.3 describes the major changes from
the previous version. In Chapter 2 the concepts and features of the Parka language are described.
Chapter 3 describes the facilities of the Parka system for end-user interaction and knowledge-base



(KB) maintenance.! The syntax of Parka commands is described in Appendix A.

1.1.2 Other Sources of Information on Parka
Research Papers

Details and results for the fast inferencing algorithms of Parka can be found in [2, 1].

The Parka Internals Manual describes the internals of the Parka implementation in detail
including the serial client/simulator and the parallel server.?

The original Parka language and its use for knowledge representation is described in [5, 4].
These documents are largely superseded by this document.

Several Parka applications are being built including a case-based planning system, CaPER [3]

and a hybrid knowledge-base/database system.

Mailing List

A Parka mailing list exists (parka-users@cs.umd.edu). To be added to this list, send email to
parka-users-request@cs.umd.edu.

Worldwide Web

A Parka Worldwide Web (WWW) page has been set up at URL
http://www.cs.umd.edu/projects/plus/Parka/parka.html .

We expect this to be the primary source for the latest information available on Parka. Information
on obtaining and installing Parka can be found here. Updated versions of this document will also
be posted there.

1.1.3 Acknowledgements

Thanks to Matt Evett and Lee Spector for their previous work on Parka and input on the current
version. Thanks to the Scott Andrews, Dave Rager, Kate Sanders, Merwyn Taylor, and Clare Voss
for reviewing various drafts of this manual and to Kutluhan Erol for his IATpX advice.

This research was supported in part by grants from NSF(IRI-9306580), ONR (N00014-J-91-
1451), AFOSR (}'49620-93-1-0065), the ARPA/Rome Laboratory Planning Initiative (F30602-93-
C-0039), and the ARPA I3 Initiative (N00014-94-10907) and by ARI (MDA-903-92-R-0035, sub-
contract through Microelectronics and Design, Inc.) Dr. Hendler is also affiliated with the UM
Institute for Systems Research (NSF Grant NSF EEC 94-02384).

!Parka KBs are also called “nets”.

2This document is in progress.



1.2 Overview of Parka

Parka is a frame-based knowledge representation system that is intended to provide extremely
fast inferences — especially inheritance inferences. It is also designed to accommodate very large
knowledge bases (KBs) on the order of millions of frames. Even on very large KBs, Parka can
perform “top-down” inheritance inferences (e.g., “What is the color of every truck?”, or “Which
trucks are yellow?”) in a few hundredths of a second. Parka’s speed is possible through the use of
massively parallel hardware. The system has been implemented to date on the CM-2 and CM-5
parallel supercomputers.

Parka can perform multiple top-down inferences almost as fast as a single inference.® This is
possible through the use of a parallel processing technique called “pipelining”, in which multiple
operations in various stages of completion can be active simultaneously in disjoint subsets of the
CM’s processors. 4

Certain tradeoffs have been made in the design of Parka in order to facilitate fast query pro-
cessing. One such tradeoff is that more work may be done at KB update time so that less work
needs to be done at query time.

1.2.1 Parka Architecture

The main components of the Parka system are the front-end system and the back-end system.
The front-end system runs on a serial machine. This system interacts with an end-user, or, more
commonly, a user application. This user application may be running on a machine remote from
that of the front-end machine.®

The Parka back-end system runs on a parallel machine. This system typically communicates
with the serial front-end system via TCP/IP. Thus the front-end serial machine may reside at a
location remote from the parallel system.

1.2.2 Implementation Platforms

The back-end (parallel) code of Parka is currently implemented on the CM-2 (Parka version 2) and
the CM-5 (Parka version 3) supercomputers made by Thinking Machines Corporation (TMC). The
implementation language is *Lisp (version 4.1 by TMC).

The front-end (serial) code of Parka is currently implemented in Common Lisp and has been
tested to date on Macintosh Common Lisp (version 2 by Apple Computer and Digitool, Inc.).

®A naive implementation (simply performing the multiple inferences in series) would require O(dm) time for m
inferences where d is the depth of the semantic net KB. Through pipelining, Parka can perform these inferences in
O(d+m) time. A serial system, in contrast, could perform these inferences in O(nm) time, where n is the size of the
KB.

*Due to its greater variety of inference mechanisms, the pipelining capability in Parka 3 may differ from that in
previous versions.

®The mechanisms for interaction between the front-end and a remote user application are still being developed.
It is anticipated that the front-end will play the role of a remote knowledge server (perhaps processing queries in the
KQML/KRSL formats) with transactions passing over the Internet. Details about the client-server interface will be
described in a subsequent version of this document.



1.2.3 Major Changes from Previous Versions

Parka 3 is intended to be a “shrink wrapped” product: users can write Al systems to exploit Parka’s
speed without having to know anything about programming parallel machines. Parka 3 offers a
much richer set of representation facilities than previous versions. The purpose of the first two
systems as research projects was to create and analyze novel parallel algorithms for performing fast
top-down inheritance inferences. Parka 3 includes these algorithms as well as other representational
features found in well known knowledge representation systems such as KL-ONE and KRYPTON.
In the spirit of the original versions of Parka, expressiveness is sacrificed for the sake of speed. Thus
features that would slow down any of the core inference algorithms have not been included in the
language.

The other major change that Parka 3 represents is the introduction of a loosely coupled
client/server architecture, which allows client Al systems running on remote machines to have
access to a Parka server running on a Connection Machine. This decoupling also allows Parka
clients to be implemented in a number of different languages. The initial offering will include only
a Lisp-based client, however.

For a detailed list of changes see Appendix C.



Chapter 2

The Parka Language

2.1 Conceptualizing Parka
Knowledge .
Level 9 Entities Relations
Ontological Categories | Instances | Predicates | Assertions
Level
Frame Category Instance Predicate Frame Slots
Level Frame Frame Frame
(semantic
network) (node) (node) (node) (arcs)
Implemen-
tation low-level data structures
Level

Figure 2.1: Conceptual Levels of Parka

Knowledge representation in Parka can be conceptualized on several levels, as shown in Figure
2.1. Though the boundaries between these levels may not be sharply delineated, this framework
provides a way to understand the concepts of Parka.

Figure 2.2 shows part of a KB, drawn as a semantic network, that will be used to illustrate
these concepts. The series of Parka commands used to create this KB can be found in appendix
D.1.

At the knowledge level, things in the world and their properties can be viewed in terms of
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Figure 2.2: A Sample KB

father=

entities and relations, respectively. The knowledge level is independent of a particular knowledge
representation system such as Parka.

At the ontological level in Parka, entities and relations are represented using categories, in-
dividuals, and predicates. Categories represent sets of entities: e.g., the category Bird represents
the set of all birds. Categories may have members (instances). Individuals represent a particular
object: e.g., the individual Tweety represents a particular bird, Tweety. Every individual is an
instance (member) of at least one category. Individuals are also termed instances if they are not
categories. Categories and instances are described in detail in Section 2.2.

Predicates represent relations among entities. A binary predicate represents a binary relation
between two entities. All predicates in Parka are binary predicates, i.e. taking two arguments.
The arguments for a binary predicate can be two categories or a category and an instance. For
example, the predicate instanceOf represents the set-membership relation and relates an instance
to a category it belongs to. A predicate with its arguments represents a particular relation and is
termed an assertion. For example, the assertion (instanceOf Tweety Bird) represents the fact that
Tweety is a member of the set of all Birds, where Tweety is an instance representing Tweety and
Bird is a category representing the set of all Birds. Predicates and assertions are described in detail
in Section 2.3.

At the frame level in Parka, the main concepts are frames, a high-level data structure used
by Parka, and slots, components of frames. Frames are used to specify categories, instances, and
predicates to Parka. More specifically, category frames, instance frames, and predicate frame specify
categories, instances, and predicates, respectively. For example, the frames #/Bird, #!Tweety, and



#!hasColor specify the category Bird, instance Tweety, and predicate hasColor.

Frame names have the prefix “#!”. By convention this prefix is followed by an uppercase letter
for the names of category frames and instance frames and a lowercase letter for the names of
predicate frames. Parka does distinguish case for frame names: e.g, #/Foo names a different frame
than #!foo.

A frame can have one or more slots used to specify assertions about a frame. A slot s of
frame f consists of a predicate frame p and a value », where v is a frame or an immediate value.
For example, the frame #!/Canary might have a value #!Yellow for its #!hasColor slot. Slots
correspond to assertions. For example, the assertion that a canary has color yellow by default —
(hasColor Canary Yellow) — can be specified by the frame #!/Canary having the value #!Yellow for
its #!/hasColor slot. Making this assertion is equivalent to specifying a value for this slot (termed
“filling the slot”).

Frames and slots can also be viewed as nodes and arcs (links) in a semantic net, respectively.
See Figure 2.2 for an example of this. Frames and slots are described in detail in Section 2.4.

At the implementation level in Parka, frames and slots are implemented using lower-level
data structures. The details of this implementation can be found in the Parka Internals Manual.

10



2.2 Categories and Instances

Categories and instances are used to represent entities in the real world. Categories represent sets
and instances represent individuals.! Because categories (instances) are specified using category
frames (instance frames), the term “category” and “category frame” will be often used interchange-
ably in this discussion, as will “instance” and “instance frame”.

For example, the set of all canaries is represented by category Canary, which is specified by the
category frame #/Canary. A particular canary, Tweety, represented by the instance Tweety, can
be specified by the instance frame #!Tweety.

Categories can have members, which are termed “instances” of the category. For example, the
category Canary may have Tweety as one of its instances. In other words, Tweety is an element
of the set of all canaries. Category membership is indicated by the “instance of” relation (see
Section 2.3.3). Certain properties (see Section 2.3.2) may be specified as common to all members
of a category. These properties are inherited by all members of a category and all member’s of the
category’s subcategories (see Section 2.6).

Category frames can be instances of categories too. For example, every category is by definition
an instance of the category frame #!/Category, the set of all categories. Thus, category frame
#!Bird will be an instance of category frame #!/Category. Because it represents a set, frame
#!Bird is still termed a “category frame”, rather than an “instance frame”. A frame can be an
instance of multiple categories. Instance frames are also referred to as Individuals, because they
represent individuals in the real world and every instance frame is an (by transitivity) instance of
the category Individual, represented by the category frame #!/Individual.? A category can have
subcategories and supercategories, corresponding to subsets and supersets, respectively, of the set
the category represents. For example, category #/Bird might have supercategories #!/Mammal and
#!Flying Thing and subcategories #!Canary, #!/Robin, etc. Category inclusion is indicated by the
“is a” relation (see Section 2.3.3).

An instance of a category is also an instance (member) of all of that category’s supercategories
(supersets). Thus if category #/Canary is an instance of category #!Bird, #!Tweety, an instance
of #!Canary, is also an instance of #/Bird (though this need not be represented explicitly — see
Section 2.6).

Frames that are categories must be designated as such when they are defined. A frame desig-
nated as a category may have instances. Instance frames cannot have instances of their own.

Categories and instances are defined using the Parka new-category and new-instance com-
mands, respectively. Certain categories are “special frames” which have particular significance to
Parka. These are listed in Appendix B.

2.2.1 Prototype Instances

To facilitate querying about a category, a prototype mechanism has been added to Parka. Some
instance frames are prototypes. In fact, Parka automatically creates an special instance of each

1A category in Parka represents the extensional definition of a concept, i.e. the set of all instances of the concept.
?More specifically, if z is a individual, the following assertion (#leveryInstanceOf s #!ndividual) holds
automatically.

11



category called a “prototype” and fills the category’s #/prototype slot with this instance frame.
Prototype instances are normally not accessed directly by the user. The user cannot make assertions
about prototypes. They exist to provide a mechanism for querying about a category’s instance
properties: those properties common to all instances of the category (see Section 2.3.2).

Prototype instance frames created by Parka have the prefix “#!%P-”. For example, when the
category #!Canary is defined by a user, the prototype instance frame #!%P-Canary is created by
Parka and is made the value of #/Canary’s #!prototype slot.

12



2.3 Predicates and Assertions

Predicates and assertions are used to represent relationships among entities in the real world.
Predicates define a relation and assertions specify occurrences of the relation. For example, the
predicate hasColor might define the “has color” relation that relates things to colors. The assertion
(hasColor Canary Yellow) would be used to specify that canaries are (by default) yellow. Parka
currently supports only binary predicates: a predicate that takes two arguments. An assertion for a
binary predicate consists of the predicate plus two arguments, each of which is a category, instance,
or predicate.

Predicates are specified to Parka by predicate frames. For example, the predicate hasColor is
specified by the frame #/hasColor. Thus the terms “predicate” and *“predicate frame” will often
be used interchangeably in this discussion. Predicate frames are instance frames: i.e., a predicate
frame is an instance of some category frame such as #!Inheritable Predicate. Predicate frames may
have slots (like any other frame) and can inherit slot values from their category frames.

Predicates are defined using the Parka new-pred command. Certain predefined predicates are
“special frames” which have particular significance to Parka. These are described in appendix B.

Assertions are specified to Parka using the Parka assert! command. An assertion (p f v)
consists of a category/instance frame f, a predicate frame p, and a value v (see Section 2.4.1).

Unlike categories, slots, and predicates, assertions are not represented internally in Parka as frames.
3

2.3.1 Domain and Range of Predicates

All (binary) predicates have a domain and range for the relation they represent. The domain is
a category to which the first argument of the predicate must be an instance of. The range is a
category to which the second argument of the predicate must be a subcategory or an instance of
(see Section 2.4.1).

For example, the predicate #/hasColor might have a domain of #!PhysicalObject and a range of
#!Color. This means that the “has color” relation maps instances of #!PhysicalObject to instances
of #!Color. Thus the assertion (#!hasColor #!Canary #!Yellow) is legal and means that every
instance of #!/Canary has color #!Yellow (by default). The assertion
(#!hasColor #!Canary #!Chair) is illegal because #!Chair is not an instance of #/Color.

Predicate domain and ranges are specified using the Parka commands new-pred (i.e., when a
slot is defined) or assert! (i.e., after a slot is defined).

2.3.2 Category and Instance Predicates

Category predicates are predicates whose domain includes set of all categories. Thus the first
argument of a category predicate is a category. Category predicates are used to represent properties
of the set represented by the category. Since categories are sets (i.e., non-physical, mathematical
entities), they cannot have physical properties (e.g., color). For example, predicate #/numMembers
could be defined with domain #/Category and range #!Integer Value. This means that the predicate

*In other words, assertions are not reified in Parka.

13



is “defined” over all instances of the domain #/Category: i.e., the set of all categories. Thus the
assertion (#nmumMembers #!Canary 1000) could be used to represent the fact that the set of
canaries has 1000 members.

Instance predicates are used to represent properties common to all members of a set, rather
than the set itself. Instance predicates do not have #!/Category or a supercategory of #!Category
(e.g., #!Thing) for their domains. For example, the predicate #!/hasColor has a domain of #!Phys-
icalObject. This means that #!hasColor is defined for all instances of PhysicalObject. Thus the
assertion (#/hasColor #!Canary #!Yellow) could be used to represent the fact that every instance
of Canary is yellow (by default). In this case the predicate #!/hasColor applies to members of the
set, rather than the set itself.

Category and instance predicates are handled differently by the IDO inheritance mechanism
(see Section 2.6).

2.3.3 Instance-Of and Is-A

Two predicates, instanceOf and isa, deserve special attention because they are treated specially
during IDO inheritance (see Section 2.6.1). Assertions containing these predicates along with the
categories and instances in the KB form the “Is-A Hierarchy” of a KB.

The predicate #linstanceOf represents the set-membership relation. Assertions for #linstance Of
have the form (#linstanceOf x y), where z is an instance frame and y is a category frame, and
means that the individual represented by z is an element of the set represented by y. x is called
an “instance”, “member”, or “element” of y. y is called a “category” of z. Note that z may be an
instance of more than one y.

The predicate #/isa represents the subset relation. Assertions for #!isa have the form (#!isa
z y), where z and y are category frames, and means that the set represented by z is a subset of
the set represented by y. z is called a “subcategory”, “subset”, or “is-a child” of y. y is called a
“supercategory”, “superset”, or “is-a parent” of x. Note that  may be a subcategory of more than
one y.

2.3.4 Predicate (Slot) Inverses

The inverse mechanism in Parka saves the user from having to make some assertions. For example,
the user could define a predicate #!father= with domain #!Animal and range #/Male. Then, one
could state that Sweety’s father is Tweety with the assertion (#/father= #!Sweety #!Tweety).
Suppose one has also defined #!fatherOf, the inverse predicate of #!/father=. Rather than the
user also having to assert (#!fatherOf #!Tweety #!Sweety), the system will do so automatically
if #lfatherOf is specified as inverse of #!father=. Note that the domain of #/fatherOf should be
defined as #/Male and the range as #/Animal (the opposite of #!father=).

To specify that a predicate frame p; is the inverse of predicate frame po, one must assert
(#!linverse py p1) after both p; and p; have been defined. A predicate may be its own inverse: i.e.,
p1 and pg can be the same frame. A predicate may not have more than one inverse. Note that
p1 is a many-to-one relation, then its inverse py should be defined as a one-to-many relation by
specifying a cardinality of #/MultiValue (see section 2.4.1).

14



Note that the system explicitly asserts an inverse of an assertion when that assertion is made
by the user (i.e, at update time). It does not compute the value of the inverse slot at query time.
An additional example of slot inverses is given in the example in Figure 2.4.

2.3.5 Superpredicates (Superslots)

The superpredicate mechanism in Parka saves the user from having to make some assertions. For
example, the user could define a predicate #/father= with domain #!/Animal and range #!Male.
Then, one could state that Sweety’s father is Tweety with the assertion (#!father= #!Sweety
#!Tweety). Suppose one has also defined #!parent=. Rather than the user also having to assert
(#!parent= #!Sweety #!Tweety), the system will do so automatically if #/parent= is specified as
a superpredicate of #/father—=. Note that the domain of #/father—= should be defined as #/Animal
and the range as #/Animal (where #!Male is a subcategory of #!/Animal).

To specify that a predicate frame p; has predicate frame py as its superpredicate, one must
assert (#/superSlot py py) after both p; and py have been defined. A predicate may have more than
one superpredicate.

Note that the system explicitly asserts the “superslot” assertion when the “subslot” assertion
is made by the user (i.e., at update time). It does not compute the value of the superslot at query
time. An additional example of slot inverses is given in the example in Figure 2.4.

2.3.6 Inheritance Methods and Predicates

The slots for certain predicates may be inheritable. Parka’s built-in inheritance methods include
inferential distance ordering (IDO), transitivity, transfers-through, composition, and no inheritance.
They are described in section 2.6. Fach inheritable predicate has an inheritance method associated
with it that is used to compute inherited slots for that predicate.

The value of a predicate’s #/toCompute slot, v, specifies the inheritance method for that pred-
icate. The inheritance method associated with predicate p is typically specified implicity when p is
defined using the new-pred command. new-pred allows the user to specify value ¢ for its optional
:instance-of parameter. Thus p will be an instance of category ¢, where the default value for ¢ is
#!nheritable Predicate, and p will inherit a particular value for » from ¢ as shown in the following

table:
Inheritance Method | Category (c) toCompute Value (v)
1DO InheritablePredicate #!DOinheritance
Transitive TransitivePredicate #!Compute Transitive
TransfersThrough TransfersThroughPredicate | #!/Compute Transfers Through
Composition CompositePredicate #!Compute ByComposing
None DoesNotInheritPredicate #!Nolnheritance
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2.4 Frames and Slots

Frames are the basic high-level data structures in Parka. Categories, instances, and predicates are
specified via category frames, instance frames, and predicate frames, respectively. A frame may
have slots, which correspond to assertions made about the frame.

Category, instance, and predicate frames are created by the Parka commands new-category,
new-instance, and new-pred, respectively.

2.4.1 Slots

Slots consist of a predicate and a value and correspond to assertions made about a frame. For each
assertion (p f v), a p slot is created for frame f with value v. Assertions are made using the Parka
command assert!. Making an assertion fills a slot with a value.

Explicit Slot Values

Explicit values for slots are those specified by the user via assertions. The simplest type of slot
value is a single frame or immediate value. Immediate values may be numbers, boolean values,
strings, and symbols. Numbers may be of type integer or float. Boolean values are T (true) or NIL
(false).

The type of value allowed for a slot is specified by the range value for the slot’s predicate. If the
range is a non-special frame the value of the slot must be a frame that is transitively a subcategory
or instance of the range. For example, if predicate #!/hasColor has range #!Color, the #!hasColor
slot of any frame must be filled with a frame that is (transitively or directory) a subcategory or an
instance of #/Color such as #!Yellow.

The following special frames are used as range values for predicates whose slots can have im-
mediate values:

Boolean #!Boolean Value
Float  #!Float Value
Integer #!IntegerValue
String  #!String Value
Symbol #!SymbolValue

For example, to specify that a person’s last name has an immediate value of type string, one
would define the range of predicate #/lastName= as #!String Value.

Multiply-Filled Slots

Some predicates can be defined so that there can be multiple assertions for the predicate for a given
frame. In other words, the slot for that predicate for a given frame can be filled with multiple values.
For example, to specify that the U.S. Flag has the colors red, white, and blue, one could define the
predicate #!/hasColor with a range of #!Color and multiple cardinality (the value of #/cardinality for
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#lhasColoris #!MultiValue instead of #!Single Value, the default). Once #!/hasColoris defined, one
may then make the assertions: (#!/hasColor #!US-Flag #!Red), (#!hasColor #!US-Flag #!White),
and (#!hasColor #!US-Flag #!Blue). This will fill the #!/hasColor slot for #!US-Flag with the 3
frame values: #!/Red, #!White, and #!Blue.

A slot can also be filled with multiple immediate values, if the predicate’s range is defined
appropriately (see the previous section).

Set-Valued Slots

It is possible to have a slot filled with a set (the Lisp data type list). Elements of the set must
be in the range of that slot’s predicate. One can have a set of frames or a set of immediate values.
All elements of the set must be in the same range set. Set-valued slots differ from multiply-filled
slots in that the set is treated as an atomic object by Parka. Parka cannot “look” inside a set when
processing a query.

For example, one could define #/color-set=to have range #/Color and slot format of #!SetFor-
mat. This means that one could then assert (#/color-set= #!US-Flag (#!Red #!White #!Blue))
The difference between this and the example of the previous section is that here we have 1 value
(a set) for #!US-Flag’s #!color-set= slot versus 3 values (each individual frame) for #/US-Flag’s
#!hasColor slot. In the latter case, we can query about the particular values in the set.

To specify a slot can be filled with a set, one asserts (#/slotFormat p #!SetFormat), where p is
the predicate frame of the slot.

Vector-Valued Slots

It is possible to have a slot filled with a vector (the Lisp data type vector). Elements of the
vector must be in the range of that slot’s predicate. One can have a vector of frames or a vector
of immediate values. All elements of the vector must be in the same range set. Vector-valued slots
differ from multiply-filled slots in that the vector is treated as an atomic object by Parka. Parka
cannot “look” inside a vector when processing a query. They differ from set-valued slots in that
the elements of the vector are assumed to be ordered.

For example, one could define #lactions= with to have range #/Action and slot format of
#!VectorFormat. This means that one could then assert (#lactions= #!Jane #(#!Hop #!Skip

#lJump)).
To specify a slot can be filled with a vector, one asserts (#/slotFormat p #!VectorFormat),
where p is the predicate frame of the slot.
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2.5 Other Language Features

2.5.1 Update Methods

Unlike previous versions of Parka, Parka 3 is capabable of limited forms of procedural attachment.
Users can specify a (Lisp) function to be run under the following conditions:

¢ before an assertion is performed (a before-asserting method)
e after an assertion is performed (an after-asserting method)
o before an assertion is retracted (a before-retracting method)
e after an assertion is retracted (an after-retracting method)

Functions must take three arguments: the predicate and the two arguments of an assertion. For
on-asserting methods, the function is run only if the assertion has not already been explicitly made
in the current KB. For on-retraction methods, the function is run only if an assertion has been
explicitly made in the current KB. A particular predicate may have multiple methods for each of
the above types associated with it.

The following is an example of one use of an update method. This method (used internally by
Parka) causes an inverse assertion to be added when an assertion is made on a predicate for which
an inverse predicate was specified. For example, if the following method is specified for predicate
#lfoo with inverse #/bar, the inverse assertion (#/bar b a ) will be made by the method when (#/foo
a b) is initially asserted.

(defun maintain-inverse/assert (pred argl arg2)
;3 Assert (pred arg2 argl ctxt) for inverse
(assert2 (pred-inverse pred) arg2 argl))

To specify a function for a method for a particular predicate, one must make an assertion of the
form: (assert! ’(p, p f)), where p,, is a predicate specifying the type of method — #/before-
AssertingMethods, #lafterAssertingMethods, #lafterDeletingMethods, or #!beforeDeletingMethods;
p is the predicate frame that the method is being associated with); or f is the name (symbol) of
the function (e.g., maintain-inverse/assert).
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2.6 Inheritance

Inheritance allows a slot for predicate p to be inferred for frame f; from one other frame f;. The
particular inheritance method determines which frame fs, if any, a slot for p will be inherited from
by frame fy. A slot for predicate pis inherited only by frames which do not already have an explicit
slot for p (an explicit slot is one created by the assert! command). The value inherited for fi’s
p-slot can be a single value (frame or immediate value) or multiple values depending on whether
f2’s p-slot is singly-valued or multiply-valued, respectively. Parka supports multiple inheritance: a
particular frame f; can inherit slots from multiple frame, but f; inherit a slot for any particular
predicate from one frame only.

Parka’s built-in inheritance methods include inferential distance ordering (IDO), transitivity,
transfers-through, composition, and no inheritance. They are described in the following sections.
Each predicate has an inheritance method associated with it. Section 2.3.6 describes how to specify
an inheritance method for a particular predicate.

2.6.1 Basic IDO Inheritance

This form of inheritance allows properties (slots) describing a category’s instances to be inherited
by instances of that category (direct instances) or by instances of that category’s subcategories
(indirect instances). Thus properties are passed “down” over one or more #/isa links and a sin-
gle #linstanceOf link. Only slots for instance predicates (see Section 2.3.2) are inherited. The
predicate must be specified as inheritable (see Section 2.3.6). In the sample net of Figure 2.2, the
slot (#!hasColor #!Yellow) will be inherited from the category frame #!/Canary by its instance
#!Tweety.

Sometimes a conflict may occur when an instance belongs to multiple categories, each of which
has a slot (explicit or inherited) for the same predicate. This is a conflict because a frame can
inherit a slot for a particular predicate from one other frame only. For example, consider the net in
Figure 2.3. From which of its categories does the Richard Nixon inherit the slot for the predicate
pacifist?.

To resolve these kinds of conflicts, Parka uses an approximation of the Touretzky’s IDO (infer-
ential distance ordering) algorithm. The details of Parka’s algorithm can be found in [2]. When a
frame f can inherit from multiple “parent” frames (categories in Parka), Parka uses the topological
depth numbers to resolve the conflict. These topological depth numbers are calculated by down-
ward traversal in parallel of the #!isa/#!instanceOf hierarchy. Parka’s IDO approximation cannot
resolve inheritance conflicts of the sort in figure 2.3 if a slot can be inherited for the predicate from
multiple frames with the same topological sort numbers (e.g., if #/Republican and #!Quaker had
the same topological sort numbers). If an inheritance conflict cannot be resolved, Parka randomly
chooses one of the frames to inherit the slot from.

Inheritance of Instance and Category Slot Values

A category-predicate slot is a slot whose predicate is a category predicate; an instance-
predicate slot is a slot whose predicate is an instance predicate (see Section 2.3.2). Category-
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pacifist?

Figure 2.3: A Problematic Net for Inheritance (“The Nixon Diamond”)

predicate slots that are explicitly valued for a (category) frame are not inherited by the frame’s
subcategories nor instances. Instance-predicate slots that are explicitly valued for a (category)
frame are inherited by the frame’s instances (unless the slot is specified as noninheritable).

To continue the example from Section 2.3.2, the #numMembers slot (and its value of 1000)
will not be inherited by subcategories and instances of #!/Canary, because #numMembers is a
category predicate. Thus #!Tweety will have no value for #ZmumMembers. On the other hand, the
#lhasColor slot (and its value of #!Yellow) can be inherited by instances of #!/Canary, because
#!hasColor is an instance predicate. Thus unless #!/Tweety is explicitly valued for #/hasColor, it
will have the value #!Yellow for #!hasColor.

2.6.2 Transitive Predicate Inheritance

The transitive inheritance mechanism allows some assertions to be inferred at query time. If a
predicate is declared to be transitive (see section 2.3.6), then frames with slots for that predicate
can obtain values both explicitly and through transitivity. For example, if predicate p is asserted
to be transitive and the assertions (p f v) and (p f w) made (where f is a frame, v and w are
values), then f’s p slot would have both the explicitly asserted value v and the inferred value w.

The following example shows how transitive predicates, slot inverses, and superslots can be used
to represent group membership (a kind of partonomy). In the net in Figure 2.4 (created by the
commands in Appendix D.2), we represent the following facts: Captain Picard, Commander Riker,
and Mr. Data are members of the Bridge Crew; Dr. Crusher is a member of the Enterprise Crew
(but not of Bridge Crew); and the Bridge crew is a subset of the Enterprise Crew.

Direct membership is represented using the predicate #!/member= with domain #!Group and
range (one or more instances of ) #!/Person: e.g., the value of #!/Bridge-Crew’s #!member=slot is the
frames #!Capt-Picard, #!Cmdr-Riker, and #!/Mr-Data. The inverse of #!member=is the predicate
#Imember-Of with domain #!Person and range #!/Group: e.g., #!Capt-Picard’s #!member= slot
has the value #!Bridge-Crew.
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Figure 2.4: A Sample Net for Transitive Inheritance (created using commands in Appendix D.2).

If  is a member of y and y is a member of z, then z is a member of z by transitivity. Transitive
membership is represented using the predicate #tmember=, with domain #!Group and range
(one or more instances of) #/Person, and by the inverse predicate #/tmember-Of, with domain
#!Person and range #!Group. Both #ltmember= and #!tmember-Of are specified as transitive
predicates. The predicate #/tmember—is specified as a superslot of predicate #/member—= because
the transitive member relation represented by the former subsumes the direct member relation
represented by the latter. This is also the case with #/tmember-Of and #!'member-Of.

The following are some queries on the net in Figure 2.4 showing transitive inheritance via the
predicates #/tmember and #/tmember-Of. The query syntax is described in Section 2.7 (Note that
lines in the following dialog prefaced with “?” are the user’s input to Lisp).

; What are the (direct) members of the Bridge Crew?
? (query! ’(#!member= #!Bridge-Crew 7x))
(((?X . #!Capt-Picard)) ((?X . #!Cmdr-Riker)) ((?X . #!Mr-Data)))

; What are the (direct) members of the Enterprise Crew?
? (query! ’(#'!'member= #!USS-Enterprise-Crew 7x))
(((?X . #!Bridge-Crew)) ((?X . #!Dr-Crusher)))

; What are the (direct and) transitive members of the Enterprise Crew?
? (query! ’(#!tmember= #!USS-Enterprise-Crew 7x))

(((?X . #!Capt-Picard)) ((?X . #!Cmdr-Riker)) ((?X . #!Mr-Data))

((?X . #!Bridge—Crew)) ((?X . #!Dr-Crusher))

((?X . #'USS-Enterprise-Crew)))

; What crew(s) is Riker a (direct) member of?
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? (query! ’ (#'!'member-0f #!Cmdr-Riker ?7x))
(((?X . #!Bridge-Crew)))

; What crew(s) is Rider a (direct and) transitive member of?
? (query! ’(#!tmember-0f #!Cmdr-Riker ?7x))
(((?X . #!USS-Enterprise-Crew)))

2.6.3 Transfers-Through Inheritance

The transfers-through inheritance method allows some assertions to be inferred at query time. One
predicate p; can be declared to transfer through another predicate py (see Section 2.3.6). If frame
x lacks an explicit slot for py, = has a slot for p, filled by frame y, and y has value v for its p; slot,
then z will have the inferred value v as the value of its p; slot.

For example, if predicate #/lastName=is asserted to transfer through #/father=. This specifies
that last names are obtained from the frame filling the #/father= slot. #!Sweety has no slot for
#llastName= but has #!Tweety for its #lfather= slot. #!Tweety has the string “Bird” as the
value of its #llastName= slot. Thus a value of “Bird” will be inferred for the #/lastName= slot of
#!Sweety.

2.6.4 Predicate Composition Inheritance

The predicate composition inheritance method allows some assertions to be inferred at query time
though the composition of other assertions. The user can specify that a particular predicate p is
composed of one or more other predicates py, pa,...p, (p; itself may be a composite predicate).

For example, the predicate #/uncle can be defined as a #!/Composite Predicate that is the com-
position of the predicates #/parent and #!brother. Thus if the assertions (parent Tom Dick) (i.e.,
Tom’s parent is Dick) and (brother Dick Harry) (i.e., Dick’s brother is Harry) hold, the assertion
(uncle Tom Harry) will be inferred (i.e., Tom’s uncle is Harry). A sample example of the commands
to define predicate composition is in Appendix D.3.

Other inheritance methods that run at query time (i.e., transfers-through, transitive, IDO) can
use composite predicates. For example, the slot value for some other predicate could be asserted
as transferring through the preciate #!uncle.
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2.7 Querying

Parka’s query facility provides access to the assertions contained in the KB using Parka’s parallel
inference mechanisms.

2.7.1 Simple Queries

Simple queries have the syntax (query! °’(p z y)), where p is predicate frame; z is a frame or
variable; and y is a frame, immediate value, or variable. Parka query variables are Lisp structures
that are specified by a “?” prefix: e.g., foo, ?bar, etc. Immediate values are those described in
section 2.4.1. The command query! returns NIL or a list of sets of bindings if argument x or y
is a variable. Otherwise, query! returns NIL or the list (((T . T))). A set of bindings contains
one binding for each variable in the query. Bindings are of the form: (v.z), where v is a variable
specified for argument z or y; and z is a frame or immediate value that is bound to v by the
matcher.

Thus the following types of queries can be issued depending on the type of arguments specified

for (query! °(p z y)):

Arg. x| Arg. y Description
1 | frame frame or Does frame z have y filling
immed. value | its p slot?
2 | frame variable What fills frame z’s p slot?
3 | variable | frame or Which frames have y filling

immed. value | their p slot?

4 | variable | variable Which frames have anything
filling their p slot?
Queries of type in (1) and (2) are “bottom-up queries”. Queries of type in (3) and (4) are “top-
down” queries, which can be answered extremely quickly via Parka’s parallel inference methods.
The following are same queries corresponding to the above query types for the sample KB shown
in Figure 2.2. (Note that lines in the following dialog prefaced with “?” are the user’s input to
Lisp).

;55 1. Is Tweety yellow?
? (query! ’(#'hasColor #!Tweety #!Yellow))
(((T . T))) ; answer is true

;35 2. What color is Tweety?
? (query! ’(#'!'hasColor #!Tweety ?7y))
(((?Y . #!Yellow))) ; answer is yellow

;35 3. What is yellow?
? (query! ’(#'hasColor 7x #!Yellow))
(((?X . #!%P-Canary)) ((?X . #!Tweety)) ((?X . #!Sweety)))

; answer is the prototypical canary, Tweety, and Sweety

;33 4. What is colored?
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? (query! ’(#'!'hasColor ?x ?7y))

; ?X is the colored thing, ?Y is the color
(((7x . #!Y%P-Canary) (?Y . #!Yellow))

((?X . #'Tweety) (7Y . #!'Yellow))

((?X . #'Sweety) (7Y . #!'Yellow))

((?X . #'%P-Bird) (7Y . #!Brown)))

In addition to simple queries, Parka supports conjunctive queries consisting of multiple simple
queries. These conjunctive queries are of two types: recognition queries and structure queries.

2.7.2 Recognition Queries

Recognition queries are of the form “find all frames x such that pi(z,y1) and pa(2,y2) and ...
and p,(z,y,)”, where p; is a predicate frame, z is a variable, and y; is a frame or immedi-
ate value. Recognition queries have syntax: (query! ’(:and (p1 2z ¥1) (p2 @ y2) ... (P,
z y,)). Note that recognition queries have only a single variable (i.e., ). The elements (clauses)
following “:and” can be in any order.

The following query on the sample net in Figure 2.2 finds all things that are yellow and covered
by feathers:

? (query! ’(:and (#'hasColor ?7x #!'Yellow)
(#'coveredBy ?x #!Feathers)))
(((?X . #!Tweety)) ((?X . #!%P-Canary)) ((?X . #!Sweety)))

This query correctly returns all canaries in the KB (including the prototypical canary).

2.7.3 Structure Queries

Structure queries are similar to recognition queries. Unlike recognition queries, however, structure
queries can contain multiple variables. Structure queries are of the form “find all subgraphs in the
semantic net (graph) of the KB that match a probe graph”.

The syntax for structure queries is (query! ’(:and ¢y ¢ ... ¢,)), where ¢; is a “con-
straint”. Each ¢; has the form (p; z; y;), where p; is a predicate frame; z; is a variable; and y; is a
variable, frame or immediate value. If y; is a frame or immediate value, ¢; is a “unary constraint”.
If y; is a variable, ¢; is a “binary constraint”. Variables correspond to nodes in the probe graph
(variables are not allowed for edges). Constraints correspond to edges in the probe graph. A unary
constraint is an edge connecting a node corresponding to a constant to a node corresponding to a
variable. A binary constraint is an edge connecting two nodes that correspond to variables.

There are two special cases in which structure query constraint ¢; is not processed as a normal
unary or binary constraint. If ¢; is (#lequal x; y;) and z; and y; are both (different) variables,
then ¢; is interpreted to mean return all the sets of bindings where variables x; and y; are bound
to the same values. If ¢; is (#/neq z; y;) and x; and y; are both (different) variables, then ¢; is
interpreted to mean return all the sets of bindings where variables z; and y; are bound to different
values.
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Probe graphs are matched to the KB by the Parka Structure Matcher mechanism [1]. Probe
graphs must match the KB exactly. If an exact match is found, list of bindings for the variables in
the query are returned. Otherwise, NIL is returned.

isa

instanceOf

instanceOf

livesin

instanceOf
US-State

Figure 2.5: A Sample Net for Structure Querying

borders

instanceOf

For example, consider the semantic net (graph) in Figure 2.5, an extension of that in Figure 2.2,
and the query “find two canaries that live in neighboring states”. The probe graph corresponding
to this query is shown in figure 2.6. The darker edges in the probe graph are binary constraints.
The lighter edges are unary constraints. The following is the specification of the query and its
result (variables are prefixed with “?7):

? (query! ’(:and (#'!'instanceOf ?cani #!Canary) ; unary comnstr.
(#'instance0f ?can2 #!Canary) ; unary comnstr.
(#'instance0f ?statel #!US-State) ; unary constr.
(#'instance0f ?state2 #!US-State) ; unary constr.

(#'livesIn ?canl ?statel) ; binary constr.
(#'livesIn ?can2 ?state2) ; binary constr.
(#'borders ?statel ?state2) ; binary constr.

))

(((?CAN1 . #'Sweety) (7CAN2 . #!Tweety) (7STATE1 . #!Indiana)
(?STATE2 . #!0Ohio))
((?CAN1 . #!Tweety) (?CAN2 . #!Sweety) (?STATE1 . #!Ohio)
(?STATE2 . #!Indiana)))
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instanceOf

Figure 2.6: A Sample Probe Graph for Structure Querying.

Note that the two sets of bindings are returned, one for each combination of bindings to ¢can! and
Pcan (or ?statel and ?state?).

The constraints in a structure query can be specified in any order. Parka processes the unary
constraints first. Care should be taken to ensure that each variable has at least one corresponding
unary constraint that defines its domain (e.g., (#linstance Of x #!Foo)). Otherwise, the domain of
a variable defaults to #!Thing, which may result in longer query processing time and/or unintended
results being returned.

2.7.4 Built-in Queries

Certain frequently used queries can be issued using other query functions built into Parka. These
functions are provided for convenience and are listed in Appendix A. For example, the query
function instances returns all instances of a frame. The following commands are equivalent (though
they differ in the format of their results):

? (instances #!Canary)

(#'%P-Canary #!Tweety #!Sweety)

? (query! ’(#!instance0f ?x #!Canary))

(((?X . #!%P-Canary)) ((?X . #!Tweety)) ((?X . #!Sweety)))
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Chapter 3

The Parka System

3.1 Knowledge-Base Maintenance

A Parka KB (or Parka “net”) is built by first initializing the KB via the init-parka command. An
initialized KB will contain only the predefined frames and assertions of the Parka base ontology
(see Appendix B. The initialize KB is rooted at frame #!Thing.

A user can define frames and make assertions using the commands described in Appendix A. A
user can choose to save a KB via the Parka dump-kb command. This creates a binary file which
can then be loaded later using the load-kb command. Loading a binary file is much faster than
loading a file of Parka KB definition commands.

In the Macintosh Common Lisp version of Parka, a user can initialize a KB and dump/load a
binary file from the Parka menu on the Lisp menu bar.

Frames in a Parka KB can be viewed using the describe-frame command, which display
information about a frame textually, or the graphical frame browser described in the following
section. The frame-apropos command can be used to search for a frame name using part of a
name, or one may invoke the graphical frame-apropos dialog from the menu bar.!

For additional KB commands, see Appendix A.

!Currently this menu option is only available in the Macintosh Common Lisp implementation of Parka.
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3.2 The Graphical Browser

The Parka Browser is a graphical, hierarchical browser for viewing the Parka frame space. You can
create many simultaneous browsers, each showing different parts of the KB. The browser system
offers several different ways of finding frames to browse, and several different ways of viewing
browsable data.

The graphical browser is currently supported only on the Macintosh Common Lisp version of
the Parka front-end system.

3.2.1 A Walk-Through

Choose “New” from the “Browse” menu (shown in figure ). A default Parka Browser appears: a
three-column browser rooted at #/Thing (the built-in root frame of any Parka KB). A snapshot
of the browser is shown in figure . Each column in the browser represents a frame, the root (first)
frame being the leftmost colum. As you browse from frame to frame, new frames are added to the
right, scrolling the columns to make room if necesssary (you can scroll back and forth through your
past collection using the — and — buttons at the bottom). If you like, you may fit more columns
in the browser at one time by stretching the browser window.

D) Browser: inimal a00Q8f—————J=
Bird Canary Tweety
ety | nstance euery | ns tance documentation ﬁ
every lnstancelf every | ns tanced f equal
instance instance evatylnstancel f
instancedf instancelf fatheatr=
i=sa i=a instancel0f
rneq regq lastHama=
prototype prototype req | ]
=zubCat subCat ki
Canary FP-Canary “Bird" i
Sweety
Tueety

_ |
Q) E)E)E) e =

&
&

Figure 3.1: A Snapshot of a Browser Window
A browser column lets you examine a particular frame and all the slots and data associated

with it. A column consists of three items (from top to bottom): the frame’s name, a list of slots
in the frame, and (if you’ve selected one of these slots) a list of values for the selected slot. Values
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can be pointers to other frames, or non-frame data like strings, numbers, vectors, sets, or CLOS
methods, and the list of values changes depending on the slot you select.

When you select a value and that value is a pointer to a frame, this new frame appears in
the column to the right: you’ve “moved” to the frame. If the browser doesn’t have enough space
to display the new frame, it scrolls to the left to make room. This way the browser builds up a
history of previously-visited frames. Each frame-column is related to its “parent” column (its left
neighbor) by the parent’s selected slot and value. This hierarchy goes all the way back to the root
frame (often #/Thing) at the far left of the list. Figure 3.1 shows part of our Tweety ontology:
#!Canary is an instance of #!/Bird, #!Tweety is an instance of #!/Canary, and ”Bird” is the last
name of #!Tweety. The browser is rooted at #/Animal, which has been scrolled off the browser.

Whenever you select a slot or value, the slot or value also appears in the text field at the bottom
of the browser. For example, in the browser in figure 3.1), the value ”"Bird” appears, because ”Bird”
was last item selected). Since the columns in the browser aren’t very wide, this text field helps you
read slots or values wider than the width of a column.

3.2.2 Getting More Information

The ? button calls frame apropos on your current (rightmost) frame.
The All button brings forward a Fred window displaying all the slot and value information in
the entire frame.

3.2.3 Resetting Browsers

The <« button resets the browser, removes all the columns, and displays the root frame.

To re-root an existing browser to its far-right column (its “current” frame), choose “Root Top
Frame” from the “Browse” menu.

To completely remove all browsers and associated browser windows, choose “Reset Browsers”
from the “Browse” menu. This should be done whenever your Parka database accepted an action
which could create a data integrity problem with your existing browsers, such as adding any new
slot or value, deleting a slot or value, etc.

3.2.4 Choosing the Root for a Browser

There are several ways to create browsers rooted at something other than #!Thing:

e Choose “By Global List” from the “New...” submenu of the “Browse” menu.

This brings up a global list of all frames in the Parka database. Select a frame and press the
“New” button, and a browser rooted at that frame appears.

2

e Choose “From Top Frame” from the “New...” submenu of the “Browse” menu.

This brings up a new browser rooted at the frame in the far-right column of your current
browser. This does not remove your original browser.
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e Browse an item from Frame Apropos

There’s a “Browse” button in the Frame Apropos window. Pressing it will create a browser
rooted at your current selection in the Frame Apropos window.

e Browse an item from a Query window

You can browse constants and ground instances of variables in the Query window by choosing
“Browse Binding” from the “Query” Menu.

3.2.5 Changing the Browser’s Display

By default, the browser sorts its lists and displays just slots local to the frame. To display nonlocal
slots, deselect “Local” from the “Browse” menu. To display all lists unsorted (this is often much
faster for large databases), deselect “Sorted” from the “Browse” menu. Note that selecting or
deselecting either of these options automatically chooses “Reset Browsers” (see above), since both
options could create data integrity problems with the browsers.

Next to each slot in a slot list, the browser can display the number of values associated with the
slot, or (if there’s just one value for the slot) the value itself directly to the right of the slot. This
feature is convenient but often slow for large databases, so it’s turned off by default. To turn this
feature on, select “Display Info” from the “Browse” menu. This is a lazy feature, so frames will
start reflecting this choice only when redisplayed (by creating them fresh or resizing the window).

3.2.6 Tidbits

Double-clicking on a slot creates a new browser rooted on the slot itself.

Double-clicking on a vector or set value pops up a list of elements in the vector or set. From
this list you may choose a value—if the value is a frame, the browser moves to that frame. This way
you can browse not only frames but vectors and lists stored within them.

Double-clicking on a non-vector, non-set value does the same thing as the All button described
above.

You can manipulate the browser using only keystrokes. Type text and the slot list or value list
you’re currently working in will try to find the closest match to your typing. You can also scroll
these lists using the T and | keys, or Page-Up, Page-Down, Home, and End. Choose elements in
them by typing Enter, Tab, Return, or —. Go back to previous lists by typing «.
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3.2.7 Browser Commands

As an alternative to selecting items from the Browser Menu, a user or application program may
invoke the browser through the following commands.

new-browser (&optional (root #/Thing))
Creates a new browser rooted at frame root.

reset-browsers ()
Resets and closes all browsers and associated windows.
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3.3 The Query Window

A Query Window provides an interface to creating and reading queries in Parka. It does this by
presenting query data as a network where nodes in the network are data (frames, strings, variables,
etc.), and edges between the nodes are relationships (slot-values) between nodes. For example, if
we wanted to ask (query! ’(#lisa X #!Thing)), we’d create a node called ?X; a node called
#!'Thing, and an edge called #/isa connecting ¢X to #!Thing.

The Query Window is currently supported only on the Macintosh Common Lisp version of the
Parka front-end system.

3.3.1 A Walk-Through

Rather than lay out all the features of the system immediately, let’s do a walk-through tutorial on
using a Query Window.

Our Example Database

For our walk-through, we’ll use a small subset of the Tweety net shown in Figure 2.2. Enter the
following into Parka before starting the walk-through:

(new-category '"Canary")

(new-instance "Tweety")

(new-instance "Sweety'")

(new-pred "father=" #!Canary #!Canary)
(assert! ’(#'instance0f #!Tweety #!Canary))
(assert! ’(#'instance0f #!Sweety #!Canary))
(assert! ’(#'father= #!Sweety #!Tweety))

Before continuing, choose Reset Connection Cache from the Query menu. We'll explain
why this is necessary later.

Building a Simple Query
Choose New Query from the Query menu. The Query Window that appears has two parts:
¢ A query palette where you lay out your query graphically,

e A query list where the results for a query are shown.

Creating a Query

Click in the query palette area to create a node in the graph. A data input window appears.
Here you enter the name for the node. A node represents Parka data (a frame, variable, or other
data) that you will relate to other data.

In the data input window, type #/Canary and press Okay.
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The data input window accepts any lisp-readable form. If you want your node to be #!/Thing,
enter #!Thing in the window. If you want a variable, say, X, enter ?x in the window. All valid
Parka data can be entered here: variable symbols, strings, lists (sets), vectors, frames, integers or
other numbers.

A node called #!/Canary appears in the palette. The text is colored black, which indicates that
the node represents a constant (a non-variable). A variable’s text is colored red, and its name will

appear without the initial question-mark.

sS[0=——— Untitled luery 4
"Ouery” i

I g ﬁ

#1Canary

#! instancelf

\

EIRD

(-l i

Figure 3.2: Query Window with a Finished Simple Query

Create another node in the graph, and name it ?Bird (a variable). Now option-drag from ?Bird
to #!Canary. The Zconnection input window appears, listing all the predicates the Parka query

system knows about. From this list, choose #!instanceOYf.
Figure 3.2 shows the query you’ve created. The connection established between ?Bird and

#!Canary is the same as saying (query! ° (#linstanceOf ?Bird #!Canary)). The thicker end of
the connection line indicates the frame, and the thinner end of the line indicates the value in the

frame’s slot.

Submitting the Query

Choose Process Query from the Query menu. This submits the query we’ve created to Parka
and fills the query list with the results. In this case, we should get three results back (#/Tweety,
#1Sweety, and #!Canary’s prototype instance, #!%P-Canary).The list will show them along with
the original query (still the first item in the list). The original query’s name, “Query”, changes
to “Query = 3” to indicate that there were three results returned.
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Choose any of the three new results in the query list. The query palette’s variable nodes
automatically get filled with the bindings for the result you picked. This way you can use the
Query Window not only to lay out and submit queries graphically, but to use the same system to

visualize them.

Building a Conjunctive Query

Add another node to the graph: ?Father (a variable). Don’t worry if there are bindings displayed
in your query palette; ignore them. If they bother you, choose the “Query = 3” to display just
your original query.

Option-drag from ?Bird to ?Father, and label the connection #/father=. Also, option-drag from
?Father to #!Canary, and label the connection #linstanceOf. Now choose Process Query from
the Query menu. Figure 3.3 shows the query we’ve created.

sS[0=——— Untitled luery 4

"Ouery = 1" i
CCPBIRD . #1

EE
&

#| Canary

#!l instancedf #!jinstanceldf

FATHER [——#!fathear= EBIRD

T{<aliii

Figure 3.3: Query Window with a More Complex Query

This submits the query: (query! °’(:and (#linstanceOf ?Bird #!Canary) (#linstanceOf
YFather #!Canary) (#lfather= ?Bird ?Father)). Clearly, there’s only one set of bindings that
matches this, so only one result is returned. Choose it, and see how the bindings fill in the nodes.

3.3.2 Other Features
Editing a Query
You can change the name of a node or connection by double-clicking on its name. To delete a

connection or node, click on it (selecting it and turning it blue), and press the Delete key. To
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delete all nodes and bindings in the window, choose Clear. To move a node, drag it with the
mouse. Lastly, you can reverse the order of a connection by clicking on the connection (selecting

it and turning it blue) and choosing Reverse Connection. For example, this would change the
connection (#lisa ?X ?Y) to (#lisa Y ?2X).

Describing Parallel Predicates

It might appear at first glance that you can’t create a query like (query! °’(:and (#/foo ?X ?2Y)
(#lbar ?X ?Y))), since you can only draw one line between two nodes. However, it’s perfectly
fine to create two nodes, each labeled ?X. Connect one to ¢Y for one predicate, and the other to
2Y for the second predicate.

File Operations

You can save queries to disk with Save Query... and load queries from disk with Load Query...

Previewing a Query

Choosing Preview Query will display (in a Fred Window) the actual Parka Query you’ve created.
Choosing Preview Query and Results will display not only the query, but the results of executing
the query (if it can).

Examining Bindings

You can browse a connection or the binding of a node by clicking on it (selecting it and turning
it blue) and selecting Browse Binding. Likewise, you can examine the full contents of the node
in a Fred window with Examine Binding. You can also examine the contents by option-double-
clicking on a node or connection.

Adjusting the Window

In addition to resizing and scrolling the Query Window, you can also change the amount of the
window taken up by the Query list by carefully dragging on the border between the query list and
the query palette. To make the query list appear from the top of the window instead of from the
left, choose Flip Query Window.

Predicates Not Appearing

To generate the connection input window, Parka must gather together all valid binary predicates.
If there are a large number of these, gathering them may take quite a while, so the Query Window
caches the results. If you add or delete predicates, this cache is no longer valid, so choose Reset
Connection Cache to tell Parka to re-gather the predicates.
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Creating a Query Window Programmatically
new-parka-query-palette (&optional (title size pos))

Creates a new Query Window with the title title, of size size, and located at position pos.

build-graphical-query (query-form)
Creates an initial graphical query for query-form. query-form must be of the same style as
required by query!
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Appendix A

Parka Version 3 Commands

A.1 Command Names (Commands Grouped Functionally)

¢ KB Modification

— new-category
— new-instance
— new-pred

— delete-frame
— assert!

— retract!

— set-range-constraint
¢ KB Querying (General)

— query!

— local-slots

— inherited-slots
— legal-preds

— category-prototype
— category-p

— predicate-p

— xval-p

— frame-p

— frame-to-name
— name-to-frame

— num-frames
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— num-assertions
e KB Querying (Isa/InstanceOf Relations)

— child-p, children

— parent-p, parents

— descendant-p, descendants
— ancestor-p, ancestors

— instance-p, instances

— instance-of-p, instance-of
— every-instance

— every-instance-of
e KB Querying (Predicates)

— pred-domain

— pred-range

— pred-cardinality

— pred-format

— pred-to-compute

— pred-inverse

— pred-transfers-through
— on-asserting-methods

— on-deleting-methods
¢ Other

— variable
— variable-name

— variable-p
¢ KB Display

— describe-frame, describe-all-frames

— frame-apropos, frame-apropos-list
¢ KB Maintenance

— init-parka
— dump-kb
— load-kb
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A.2 Command Syntax (Commands Listed Alphabetically)

In the command descriptions below, the following argument type designators are used:
catf | Category Frame

instf | Instance Frame (i.e., not a frame)
predf | Predicate Frame

f Any Frame (includes all of the above)

ancestor-p (catf; catfsy)
Returns T if cat fy is an ancestor (immediate or transitive supercategory) of cat f; (i.e., (query!
> (#lancestor catfy catfi)) is true) or if catfy is the same as cat f;.

ancestors (catf)
Returns ancestors (immediate and transitive supercategories) of category catf (i.e., all frames
x where (query! ’(#lancestor catf z)) is true). Ancestors include catf.

assert! (assertion)
Fills 2’s slot for pred with y. Returns NIL.
Argument | Type Description

assertion | (pred x y) | where pred is a predicate frame;
x is a frame;
y is a frame or immediate value.

category-p (f)
Returns T if f is a category frame (i.e., (query! ’(#linstanceOf f #!Category)) is true).

category-prototype (catf)
Returns category prototype for catf (i.e., frame & where (query! ’ (#/prototypeOf x catf))
is true).

child-p (catfy catfs)
Returns T if catf; is a child (immediate subcategory) of catfy (i.e., (query! ’(#lisa catf
catfy)) is true).

children (catf)
Returns children (immediate subcategories) of category catf (i.e., all frames  where (query!

*(#lisa x catf)) is true).

delete-frame (f)
Deletes a frame f from the KB and all references to f (in assertions, etc.).
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descendant-p (catfy catfs)
Returns T if cat f; is descendant (immediate or transitive subcategory) of catf; (i.e., (query!
 (#ldescendant catfy catfi)) is true) or if catfy is the same as cat f;.

descendants (catf)
Returns descendants (immediate and transitive subcategories) of category catf (i.e., all frames
x where (query! °’(#!descendant catf z)) is true). Descendants include catf.

describe-all-frames ()
Print information about all frames in KB.

describe-frame (f)
Print information about f.

dump-kb (file)
Save KB to file file. Saves a binary-encoded data file.

every-instance (catf)
Returns immediate and transitive instances of category catf (i.e., all frames  where (query!
 (#leveryInstanceOf © catf)) is true).

every-instance-of (instf)
Returns immediate and transitive categories of f (i.e., all frames @ where (query! ’(#lev-

erylnstanceOf instf x)) is true).

frame-apropos (s)
Print list of frames whose name contains s, a string or symbol.

frame-apropos-list (s)
Return list of frames whose name contains s, a string or symbol.

frame-p ()
Returns T if lisp object & is a frame.

frame-to-name (f)
Returns the name (string) of f.

inherited-slots (f)
Returns list of (pred value(s)), for each slot that is inherited by f.
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init-parka ()
Initialize KB (removes all user-defined frames and assertions).

instance-of (instf)
Returns immediate categories of instf (i.e., all frames x where (query! ’(#linstanceOf instf
x)) is true).

instance-p (catf instf)
Returns T if category catf has an immediate or transitive instance instf. (i.e., (query!
> (#linstanceOf instf catf)) is true)

instances (catf)
Returns immediate instances of category catf (i.e., all frames a where (query! ’(#!in-
stanceOf x catf)) is true).

instance-of-p (instf catf)
Returns T if instf is a direct instance of category catf (i.e., (query! ’(#linstance instf
catf)) is true).

legal-preds (f)
Returns list of predicates (frames) having domain frame d for which ’ (query! * (#leveryln-
stance Of #lframe d)) is true.

local-slots (f)
Returns list of (pred value(s)), for each slot that is local to (i.e., not inherited by) f.

name-to-frame (string)
Returns the frame with name string if it exists. Else, NIL is returned.

new-category (name &rest super-categories)
Defines a new category frame.
Argument Type Description

name string name for new frame

super-categories | list of frames | values for new frame’s #/isa slot

new-instance (name &rest instance-of)

Defines a new instance frame.
Argument | Type Description

name string name for new frame

instance-of | list of frames | values for new frame’s #/instanceOf slot
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new-pred (name domain range &key cardinality instanceOf format assertions)
Defines a new predicate frame.
Argument | Type | Description

name string | name for new frame
domain catf | domain for predicate (default: #!Thing)
range catf | range for predicate (default: #!Thing)

cardinality | frame | cardinality for predicate:

#1Single Value or #!Multi Value

instanceOf | catf | category for predicate (default: #!/Inheritable Predicate)

format frame | slot value format for predicate:

#!RegularFormat (default), #!SlotFormat, or #!VectorFormat)

num-assertions ()
Return number of assertions in KB.

num-frames ()
Return number of frames in KB.

on-asserting-methods (predf)
Returns list of on-asserting-methods for predicate predf.

on-deleting-methods (predf)
Returns list of on-deleting-methods for predicate predf.

parent-p (catfi catf;)
Returns T if catfy is a parent (immediate supercategory) of catfy. (i.e., (query! ’(#lisa
catfy catfi)) is true)

parents (catf)
Returns immediate supercategories of category catf (i.e., all frames @ where (query! ’(#lisa
catf x)) is true).

pred-cardinality (predf)
Returns the allowable cardinality (frame) for predicate predf.

pred-domain (predf)
Returns domain (frame) for predicate predf.

pred-format (predf)
Returns slot value format (frame) for predicate predf.
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pred-inverse (predf)
Returns inverse predicate (frame) for predicate predf.

pred-range (predf)
Returns range (frame) for predicate predf.

pred-to-compute (predf)
Returns inheritance method (frame) for predicate predf.

pred-transfers-through (predf)
Returns predicate (frame) that inheritance for predicate predf transfers through.

query! (form)

Simple query (see section 2.7.1). Returns list of bindings or NIL.
Argument | Type Description
form (pa y) | where pis a predicate frame;

x is a frame or variable;

y is a frame or immediate value or variable.

query! ((cand formy formg ... form,))
Recognition query (see section 2.7.2). Returns list of bindings or NIL.
Argument | Type Description
form; (pi © y;) | where pis a predicate frame;
x is a frame or variable;

y; is a frame or immediate value.

query! ((cand formy formg ... form,))
Structure query (see section 2.7.3). Returns list of bindings or NIL.

Argument | Type Description

form; (pi ; yi) where p is a predicate frame;

x; is a frame, variable,

y; is a frame or immediate value or variable.
(#lequal vary vary) | var; is a variable.

(#Ineq vary vary) | var; is a variable.

retract! (assertion)
Removes value y from 2’s slot for pred. Returns NIL.
Argument | Type Description
assertion | (pred x y) | where pred is a predicate frame;
x is a frame;
y is a frame or immediate value.
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set-range-constraint (pred lambda-expr &optional name)
pred is a predicate frame and lambda — expr is a lambda expression.

variable (s)
Returns a Parka variable with name s, where s is a symbol. E.g., (variable ’foo) returns
?F00.

variable-name (v)
Returns the name (symbol) of a Parka variable structure ». E.g., (variable-name ’?F00)
returns FOO.

variable-p (x)
Returns T if &, a Lisp objects, is a Parka variable structure. E.g., (variable-p ’>7F00) returns

T.

xval-p (predf f)
Returns T if f is explicitly valued for predicate predf. Else returns NIL.
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Appendix B

Parka 3 Base Ontology

The following frames are built into Parka and are collectively, along with their corresponding slots,
known as the Parka “Base Ontology”. Figure B.1 shows the top-level frames. Figure B.2 shows
the metadata frames of the base ontology: i.e., those frames used to represent properties of other
frames that are used by Parka.

Thing

Concept

Individual Category

AN

ValueCategory

Value

I IntegerValue
Legend: — FloatValue
. isa _— [— sStringValue
instanceOf ———»
other pred —* {—— SymbolValue

L__BooleanValue

Figure B.1: Top-level frames of Parka Base Ontology
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—DoesNotInheritPredicate

PredicateCategoryOrPredicate

PredicateCjtegory

Predicate

toCompute ——* Nolnheritance

BinaryPredicat

TransitifePredicate —— t&Compute ComputeTransitive
PredDescriptionPredicate
TaxonomicPredicate .
F TransfersThroughPredicate rangeConstraint
isa — safeToCache
ancestor subCat —— composePreds
descendant instanceOf — transfersThrough
instance — afterDeletingMethods
prototype — afterAssertingMethods
prototypeOf — beforeDeletingMethods
— beforeAssertingMethods
CompositePredicate—— toCompute —* ComputeByComposing inverse
— toCompute
— allSubSlots
yinstance
Legend: — slotFormat
— composePreds— <descendant,instance> superSlot
instanceOf ————— everynstanceOf —— cardinality
other  —— pred —* composePreds—* <instanceOf,ancestor> — range
—— domain

Figure B.2: Metadata frames of Parka Base Ontology
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Appendix C

Differences from Parka Version 2

C.1

New Parka Features in Version 3

Predicates are now first-class objects and are represented by frames. They have an associated
domain and range (Section 2.3) and optional update methods (Section 2.5.1).

Slots for a predicate can have inverses and superslots (sections 2.3.4 and 2.3.5, respectively).

Slots can have values that are inferred via transitivity or that transfer-through from another
frame (sections 2.6.2 and 2.6.3, respectively).

Slots can have multiple values (fillers) (Section 2.4.1).
Slots can have set or vector values (sections 2.4.1 and 2.4.1, respectively).
#linstanceOf links related category members (instances) to categories.

Category frames have automatically-created prototypes (Section 2.2.1).

C.2 Version 2 Features Changed/Removed

#lisa links now relate a category to its supercategories. #linstanceOf links are used for
representing category membership (previously #!isa links were also used for representing
category membership).

rrestriction and :definitional tags for individual slots (assertions) are no longer allowed (instead
see the domain/range specification for predicates in section 2.3).

set-union and set-intersection are no longer supported.

Aggregations are no longer supported (see Figure 2.4 for an example of how to represent
partonomies in Parka 3).

Slot (frame) names are now strings.
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e Parka is now sensitive to the case of frame names (strings).

e The batch update mechanism is no longer necessary and has thus been removed.

C.3 Commands Changed

Ver. 2 Command

Ver. 3 Command

all-slots
ancestor
ancestors
child-p

children
delete-isa
descendant
descendants
fill-slot
frame-name
frame-slot-value
frames-with
frames-with-all
frames-with-some
get-frame-slots
isa
make-category
make-instance
names-a-frame
name— >frame
parent-p
parents
structure-retrieve
unfill-slot

local-slots, inherited-slots
ancestor-p (instance-of-p)
ancestors (every-instance-of )
child-p (instance-of-p)
children (instances)
retract!

descendant-p (instance-p)
descendants (every-instance)
assert!

frame-to-name

query!

query!

query!

query!

local-slots

assert!

new-category
new-instance
name-to-frame
name-to-frame

parent-p (instance-p)
parents (instance-of)
query!

retract!

The following Version 2 commands do not exist in Parka 3:

e individual-p
e xrest

e xrest-p

e with-batch-update
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Appendix D

Sample Parka Commands

D.1 The Tweety Example

The following series of commands was used to create the KB shown in Figure 2.2.

(init-parka)

(new-category "PhysicalObject" #!Thing)
(new-category "Animal" #!'PhysicalObject)
(new-category "Male"  #!Animal)
(new-category "Female" #!Animal)

(new-category '"Bird" #!Animal)
(new-category "Canary"  #!Bird)
(new-category "Feathers" #!PhysicalObject)

(new-category "Color" #!Thing)
(new-instance "Yellow" #!Color)
(new-instance "Brown" #!Color)

(new-pred "hasColor'"  #!PhysicalObject #!Color #!MultiValue)
(new-pred "coveredBy" #!PhysicalObject #!PhysicalObject)
(new-pred "numMembers" #!Category #!IntegerValue)

(new-pred "father=" #!Animal #!Male)
(new-pred "fatherOf'" #!Male #!Animal #'MultiValue)
(assert! ’(#'inverse #!fatherOf #!father=))

(new-pred "parent=" #!Animal #!Animal)
(assert! ’(#!superSlot #!father= #!parent=))

(new-pred "lastName=" #!Animal #!StringValue)
(assert! ’(#!'transfersThrough #!lastName= #!father=))
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(assert! ’(#'coveredBy #!Bird #!Feathers))
(assert! ’(#'!'hasColor #!Bird #!Brown))
(assert! ’(#'hasColor #!Canary #!Yellow))
(assert! ’(#'numMembers #!Canary 1000))

(new-instance "Tweety'" #!Canary #!'Male)
(assert! ’(#!'lastName= #!Tweety '"Bird"))

(new-instance "Sweety'" #!Canary #!'Male)
(assert! ’(#'father= #!Sweety #!Tweety))

D.2 The Star Trek Example

The following series of commands was used to create the KB shown in Figure 2.4.

(init-parka)

(new-category "Group" #!Thing)
(new-category "Person" #!Thing)

;; slots member and member-0f are inverses

(new-pred "member=" #!Group #!Thing #!MultiValue) ; member=(group,mbr#*)
(new-pred "member-0f'" #!Thing #!Group #!SingleValue) ; member-0f (mbr,group)

;; transitive versions of above slots (slots tmember and tmember-0f are inverses)

(new-pred "tmember="  #!Group #!Thing #!MultiValue

:instance—-of #!TransitivePredicate) ; tmember=(group,mbr*)
(new-pred "tmember-0f" #!Thing #!Group #!SingleValue

:instance—-of #!TransitivePredicate) ; tmember-0f (mbr,group)
(assert! ’(#'inverse #!tmember—-0f #!tmember=))
(assert! ’(#'inverse #!member-0f #!member=))
; tmember= is a superslot of member=
(assert! ’(#!superSlot #!member= #!tmember=))

; tmember-0f is a superslot of member-0f
(assert! ’(#'superSlot #!member-0f #!tmember-0f))

(new-instance "Capt-Picard" #!Person)
(new-instance "Cmdr-Riker" #!Person)

(new-instance "Mr-Data" #!Person)
(new-instance "Dr—-Crusher'" #!Person)
(new-instance "Bridge-Crew" #!Group)

(new-instance "USS-Enterprise-Crew" #!Group)
(assert! ’(#!member= #!Bridge-Crew #!Capt-Picard))

(assert! ’(#!member= #!Bridge-Crew #!Cmdr-Riker))
(assert! ’(#!member= #!Bridge-Crew #!Mr-Data))
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(assert! ’(#!member= #!USS-Enterprise-Crew #!Bridge-Crew))
(assert! ’(#'member= #!USS-Enterprise-Crew #!Dr-Crusher))

D.3 An Example of Predicate Composition

The following series of commands was used to define a composite predicate #uncle, discussed in
section 2.6.4.

;; Make some categories to define family relations on:
(new-category '"Person")

;3 Define parent predicate. MNote that father and mother
;3 are subslots of parent:

(new-pred "parent" #!Person #!Person
:cardinality #!MultiValue
:instance-of #!BinaryPredicate)

;3 Define brother predicate
(new-pred "brother'" #!Person #!Person

:cardinality #!MultiValue

:instance-of #!BinaryPredicate)
;3 Define uncle predicate. We have to make it an instance
;3 of #!CompositePredicate in order to be able to compute
;3 1t by composition:
(new-pred "uncle" #!Person #!Person

:cardinality #!MultiValue

:instance-of #!CompositePredicate)
;3 This is how the composition is defined. We put the
;3 (vector) value #(#!parent #!brother) on the #!composePreds
;3 slot of the predicate #!uncle.
(assert! ’(#!'composePreds #'!uncle #(#'!parent #!'brother)))
;3 Make some people. These happen to be in my family:
(new-instance "Tom" #!Person)
(new-instance "Dick" #!Person)

(new-instance "Harry" #!Person)

;3 Assert family relatioms.
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(assert! ’(#'parent #!Tom #!Dick))
(assert! ’(#!'brother #!Dick #!Harry))

;3 Some sample query results:

(query! ’(#'uncle #!Tom ?uncle))
;35 => (((?UNCLE . #!'Harry))))

(query! ’(#'uncle ?who #'Harry))
s => (((?WHO . #!Tom)))
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