
Evolving Foraging Behaviors

Liviu Panait and Sean Luke
George Mason University

http://www.cs.gmu.edu/∼eclab

Insects are particularly good at cooperatively solving multiple complex tasks. Some
such tasks, such a foraging for food far away from the nest or clustering objects into
piles, can be solved through relatively simple behaviors in combination with communi-
cation mechanisms using pheromones. As task complexity increases, however, it may
become difficult to determine the proper simple rules which yield the desired emergent
cooperative behavior; or to know if any such rules exist at all. For such tasks, machine
learning techniques like evolutionary computation (EC) may prove a valuable approach
to searching the space of possible rule combinations.

As a first step towards this goal, we present a proof of concept experiment de-
signed to show that learning techniques can successfully discover good performing
foraging strategies which use only pheromone information. The significant contri-
butions of this work are twofold. First, this paper presents a successful approach to
learning both the pheromone-depositing and movement-decision-making aspects of an
ant colony foraging strategy. Previous work has mainly described methods to learn
only movement-decision-making. Second, this paper presents the first learning method
which solely uses pheromone information rather than, as was done in previous work,
providing hand-coded procedures for returning to the nest.

We performed four experiments to demonstrate the efficacy of EC to learning multi-
pheromone problems. Our experimental substrate was a toroidal grid environment with
a single nest and point food source, and between 50 and 500 ants. For each approach,
we drew a sample of ten runs, and applied a Welch two-sample statistical test at 95%.
In the experiments we used the ECJ1 evolutionary computation system, and new multi-
agent simulation library, MASON, introduced in another paper submitted to this work-
shop.

To evolve ant behaviors, we used strongly-typed genetic programming (GP) [Koza
1992]2. In the common form of genetic programming, which we adopted, evolutionary
individuals (candidate solutions) use a parse tree structure representation. Leaf nodes
in the parse tree return parameters representing external state values for the ant. In-
ternal nodes in the tree return functions applied to the return values of their subtrees.
Crossover swaps subtrees among individuals. In strongly-typed GP, type constraints are
placed on which nodes may be added as children of other nodes: we used strong typing

1http://www.cs.gmu.edu/∼eclab/
2Koza, J. 1992. Genetic Programming: on the Programming of Computers by Means of Natural Selec-

tion. MIT Press.

1



to enable a large set of available functions operating on vectors, scalars, and directional
information. Even so, the representational complexity available to the GP learner was
significantly less than that afforded in the hand-coded designs we discussed in another
paper submitted to this workshop. Further EC details will appear in the workshop
paper.

EC individuals consisted of two GP trees: the evaluation of one tree yielded the
amount of pheromone to deposit, and the evaluation of the other tree yielded the di-
rection to move. To test an EC individual, all ants would iteratively apply the individ-
ual’s GP trees to their own local situations. The quality of an EC individual was the
total amount of food brought back to the nest during its test period. Ants used two
pheromones (the “food pheromone” and the “nest pheromone”). We suspected that in
any ideal solution an ant would apply the same algorithm to forage as it would in car-
rying food back; but the particular pheromones used would be swapped (food for nest,
and vice versa). This heuristic symmetry allowed us to simplify the state space, using
two trees rather than four, and swapping the pheromone inputs and outputs based on
the ant’s current state.

Our first three experiments scaled in the number of ants (50, 50, 500), number of
simulation time steps (501, 1001, 2501), and world size (10x10, 33x33, 100x100).
In each case the EC populations converged rapidly to simple but reasonably high-
performing ant foraging behaviors. Increasing the world size led to longer conver-
gence times (from a mere two generations in the 10x10 case to ten generations on av-
erage in the 100x100 case). Interestingly, these behaviors were different in meaningful
ways from one another, but all three learned behaviors yielded pheromone-depositing
schemes similar to those used by hand in the companion paper at this workshop. This
scheme, which “topped off” the pheromone value to the maximum of its current value
and some desired value, considerably outperformed the more common scheme in the
literature, namely simple addition.

This led to our fourth experiment, in which we selected the highest-performing
behavior from each of the experiments, and compared the ten runs each of the three
behaviors in all three experimental environments. The results of this experiment were
interesting. In the 10x10 environment, all three behaviors produced statistically iden-
tical results. In the 33x33 environment, the 10x10 learned behavior fell short, bring-
ing in only one ninth of the food of the other two. In the 100x100 environment, the
100x100 behavior was statistically significantly better than 33x33 environment, bring-
ing in twice the total food. In this environment, the 10x10 behavior brought in almost
nothing. In summary, we saw a total ordering among behaviors: the behaviors evolved
on larger environments did as well as others on smaller environments, and outper-
formed them on larger environments.

For future work, we aim to scale this experiment to more complex behaviors, such
as foraging multiple food sources that can become depleted with time, and additional
tasks such as guarding the foraging trails from predators. However, even with a fast
simulator, evolving solutions to these tasks may be daunting, requiring a large amount
of computing power. To scale successfully, we will also need to examine approaches to
speeding up the learning process: for example, adjusting the evolution procedure and
representation, or “bootstrapping” complex behaviors by seeding them with decom-
posed, learned simpler behaviors.

2


