
Hierarchical Approaches for Reinforcement
Learning in Parameterized Action Space

Ermo Wei, Drew Wicke, Sean Luke
Department of Computer Science, George Mason University, Fairfax, VA USA

ewei@cs.gmu.edu, dwicke@gmu.edu, sean@cs.gmu.edu

Abstract

We explore Deep Reinforcement Learning in a parameter-
ized action space. Specifically, we investigate how to achieve
sample-efficient end-to-end training in these tasks. We pro-
pose a new compact architecture for the tasks where the pa-
rameter policy is conditioned on the output of the discrete ac-
tion policy. We also propose two new methods based on the
state-of-the-art algorithms Trust Region Policy Optimization
(TRPO) and Stochastic Value Gradient (SVG) to train such an
architecture. We demonstrate that these methods outperform
the state of the art method, Parameterized Action DDPG, on
test domains.

Introduction
Deep Reinforcement Learning (DRL) has achieved success
in recent years, including beating human masters in Go (Sil-
ver et al. 2016), attaining human level performance in Atari
games (Mnih et al. 2015), and controlling robots in high-
dimensional action spaces (Lillicrap et al. 2015). With these
successes, researchers have begun to explore new frontiers
in DRL, including how to apply DRL in complex action
spaces. Consider for example the real time strategy game
StarCraft, where at any time during play we may choose
among different types of actions to be able to finish our
goals (Vinyals et al. 2017). For example, we may need to
choose a building to construct and then select where to build
it; or choose a squad of armies and direct them to explore
the map. Critically, instead of having a single action set, we
may have several sets of actions, either continuous or dis-
crete, and to get a meaningful action to execute, we must
choose wisely among these sets.

In this paper, we explore how to apply DRL to tasks with
more than one set of actions. Specifically, we consider tasks
with parameterized action spaces (Masson, Ranchod, and
Konidaris 2016), where at each step the agent must choose
both a discrete action and a set of continuous parameters for
that action. Tasks with this kind of action space have been
proposed in the Reinforcement Learning (RL) community
for a long time (Stone et al. 2006) but have not been ex-
plored much.

One approach to handle a RL task with a parameterized
action space is to do alternating optimization (Masson, Ran-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

chod, and Konidaris 2016). Here, we break the task into
two separate subtasks by fixing either the parameters or dis-
crete actions and then applying RL algorithms alternating
between the induced subtasks. Although this method can
work, it has a huge sample complexity because every time
we switch the subtask, the previous experience is no longer
valid as the environment is different.

Thus, a sample efficient alternative is to train the poli-
cies for discrete actions and parameters at the same time.
There have already been steps in this direction. Hausknecht
and Stone simultaneously train two policies which can pro-
duce the values for discrete action and parameters respec-
tively and then select the action to execute based on their
values. There are two main drawbacks of this method. The
first is that the parameter policy does not know what dis-
crete action is selected at execution time. Thus, the parame-
ter policy needs to output all the parameters for all the dis-
crete actions at every step. As a result, the output size of the
parameter policy can explode if we have high dimensional
parameters with large discrete action sets. The second prob-
lem is that neither the policies nor the training method are
aware of the action-selection procedure after the action and
parameter values are produced. Therefore, the method may
be missing a crucial piece of information for it to succeed.

In this paper, we propose a new architecture for parame-
terized action space tasks. In our method, we condition our
parameter policy on the output of the discrete action policy,
thus greatly reducing the output size of the parameter policy.
Then we extend the state-of-the-art DRL algorithms to effi-
ciently train the new architecture for parameterized action
space tasks. In experiments we show that our methods can
achieve better performance than the state of the art method.

Background

Before we delve into the architecture and algorithms, we
first present a mathematical formulation of Markov Decision
Processes (MDPs) along with some relevant policy gradient
algorithms. Then we present Parameterized Action MDPs
(PAMDPs). Lastly, we discuss some of the previous work in
PAMDPs that is related to our paper.

MDPs and Policy Gradient Methods

Markov Decision Process A Markov Decision Process
(or MDP) can be used to model the interaction an agent has

The 2018 AAAI Spring Symposium Series

358

with its environment. A MDP is a tuple {S,A, T,R, γ,H}
where S is the set of states; A is the set of actions avail-
able to the agent; T is the transition function T (s, a, s′) =
P (s′|s, a) defining the probability of transitioning to state
s′ ∈ S when in state s ∈ S and taking action a ∈ A; R
is the reward function R : S × A �→ R; 0 < γ < 1 is a
discount factor; and H is the horizon time of the MDP, that
is, the MDP runs for only H steps.∗ An agent selects its ac-
tions based on a policy πθ(·|s), which is a distribution over
all possible actions a in state s parameterized by θ ∈ R

n.

Policy Gradient Methods One of the major approaches to
deal with continuous control problems in MDPs is to apply
a policy gradient method. In policy gradient methods, we
are trying to use gradient ascent to optimize the following
objective

J(θ) = Es∼ρπθ [V πθ (s)]

=

∫
S

ρπθ (s)V πθ (s) ds,
(1)

where s is the state visited, and ρπθ (s) is the distribution
over all states induced by executing policy πθ. Many algo-
rithms have been proposed to optimize this objective, in-
cluding REINFORCE (Williams 1992), GPOMDP (Bax-
ter and Bartlett 2001), and Trust Region Policy Opti-
mization (TRPO) (Schulman et al. 2015), where we col-
lect a set of trajectory samples with the form τ =
〈s0, a0, s1, a1, . . . , sH , aH〉 and use them to evaluate the
gradient of J(θ). It turns out that sometimes, it is ben-
eficial to learn an additional value function Q(s, a) or
V (s) to reduce the variance in estimating the gradient of
J(θ). This leads to a family of algorithms named “actor-
critic” algorithms where the “actor” is the policy π and the
“critic” is the value function. This family of algorithms in-
cludes the Stochastic Policy Gradient Theorem (SPG) (Sut-
ton et al. 2000), the Deterministic Policy Gradient The-
orem (DPG) (Silver et al. 2014), and so on. In addition,
DDPG (Lillicrap et al. 2015) is an extention of DPG to the
DRL setting by using a replay buffer to assist off-policy
learning.

Parameterized Action MDPs

The MDP notation can be generalized to deal with parame-
terized tasks, e.g., actions with parameters. Here, instead of
having just one set of actions, we have multiple sets of con-
trols: a finite set of discrete actions Ad = {a1, a2, . . . , an}
and for each a ∈ Ad, a set of continuous parameters Xa ⊆
Rma . Thus, an action is a tuple (a, x) in the joint action
space,

A =
⋃

a∈Ad

{(a, x)|x ∈ Xa}.

MDPs with this action space are called Parameterized Ac-
tion MDPs (PAMDPs) (Masson, Ranchod, and Konidaris
2016).

∗Any infinite horizon MDP with discounted rewards can be
ε-approximated by a finite horizon MDP using a horizon Hε =
logγ(ε(1−γ))

maxs,a |R(s,a)| (Jie and Abbeel 2010).

Previous Work on Parameterized Action MDPs

Tasks with parameterized actions have been a research topic
in RL for a long time (Stone et al. 2006). Zamani et al. con-
sidered tasks with a set of discrete parameterized actions
(2012). However, their algorithm which is based on Sym-
bolic Dynamic Programming, is limited to MDPs with inter-
nal logical relations.

We adopt the Parameterized Action MDP setting
from (Masson, Ranchod, and Konidaris 2016). In their work,
they train the policy in an alternative fashion. They first
fix all the parameter policies, and hence induce an MDP
with action set A of only discrete actions. Then they use
Q-learning to learn a discrete policy in that MDP, and upon
convergence, they fix the discrete policy, and start training
the parameter policy. They show that this method can con-
verge to local optima.

Rachelson, Fabiani, and Garcia used parameterized ac-
tions to deal with continuous time MDPs where the param-
eter for all the actions is the waiting time (2009). Thus, they
have a unified parameter space. Sharma, Lakshminarayanan,
and Ravindran did a similar approach where they extended
TRPO to control the repetition of the action, that is, how
many steps an action should execute (2017). They argued
that the repetition times can be considered as a parameter for
their original control signal. However, the repetition times
are drawn from a fix set of integers, which is not a continu-
ous signal.

The method that has the closest connection to our work
is (Hausknecht and Stone 2015), which extended the DDPG
to a parameterized action space. In this algorithm, the policy
outputs all the parameters and all the discrete actions, and
then selects the (a, x) tuple with the highest Q-value.

Hierarchical Approaches in PAMDPs

In this paper we propose a new, more natural architecture
to generate actions for parameterized action tasks. In our al-
gorithm, we have one neural network for the discrete policy
and one neural network for the parameter policy. Our pa-
rameter policy π(x|s, a) takes two inputs, the state s and the
discrete action a sampled from discrete action policy π(a|s).
Then the joint action is given by (a, x) ∼ π(a, x|s) =
π(a|s)π(x|s, a). Since the action a is known before we gen-
erate the parameters, we do not need the post processing step
of determining which action tuple (a, x) has the highest Q-
values. And since the parameter policy knows the discrete
action a, the output size of parameter policy remains con-
stant.

Previously, this architecture was not plausible in policy
gradient methods due to the fact that we have to sample the
discrete action in the middle of the forward pass, and the
gradient cannot flow back to the discrete action policy in the
backward pass due to the sampling operation. In this section,
we describe two algorithms, Parameterized Action TRPO
(PATRPO) and Parameterized Action SVG(0) (PASVG(0))
that solve this problem.

Before we delve into the algorithms, we first introduce
some notation. We use πΘ(a, x|s) to denote our overall pol-
icy, where a is the discrete action, x is the the parame-

359

ter for that action, and Θ is all parameters for the model.
Our policy can be broken into two separate policies using
conditional probability πΘ(a, x|s) = πc

θx
(x|a, s)πd

θa
(a|s),

where θa and θx are the parameters for discrete action policy
πd(a|s) and continuous parameter policy πc(x|a, s) respec-
tively, and Θ = [θa, θx].

Parameterized Actions TRPO

Among all the policy gradient algorithms, TRPO and DDPG
achieve the best performance as they are able to optimize
large neural network policies (Duan et al. 2016). Thus, we
consider how to apply these two algorithms in PAMDPs.

We first consider how to optimize our policy using
TRPO’s technique. In the TRPO, we are solving the follow-
ing optimization problem:

maximizeθ Lθ′(θ) = Es∼ρθ′ ,a∼πθ′

[
πθ(a|s)
πθ′(a|s)Qθ′(s, a)

]

subject to KLθ′(θ) = Es∼ρθ′ [DKL(πθ′(·|s)||πθ(·|s))] < δ,

where θ′ and θ are the parameter vectors before and after
each policy update respectively, and L is the surrogate loss.
Qθ(s, a) indicates the Q-function fitted using the samples
from policy parameterized by θ. The idea behind TRPO is to
optimize the policy in a stable way such that the new policy
distribution after each update will not be too different from
the old one. This is achieved through the KL-divergence
constraint between the policy distributions before and after
the parameter update.

A similar idea has been explored before in the natural
policy gradient (Kakade 2002), where the objective func-
tion is replaced with linear approximation ∂Lθ′ (θ)

∂θ (θ − θ′)
and the KL-divergence is replaced with a quadratic approx-
imation (θ′ − θ)TA(θ′ − θ). The positive semidefinite ma-
trix A in the quadratic term is the Hessian matrix of con-
straint, e.g., A = ∂2

∂2θKLθ′(θ). However, when the pol-
icy model becomes large, A becomes very expensive to
compute and store. What is special about TRPO is that it
uses a Hessian-free optimization method (Martens 2010;
Pearlmutter 1994) and conjugate gradient descent method
to avoid the explicit formation of the Hessian matrix. There-
fore, TRPO only has a slight increase in the computation
cost for optimizing large neural networks.

To apply the TRPO in PAMDPs, we first write down the
optimization problem using our notation, which is

maximizeΘ Es∼ρΘ′ ,(a,x)∼πΘ′

[
πΘ(a, x|s)
πΘ′(a, x|s)QΘ′(s, a, x)

]

subject to Es∼ρΘ′ [DKL(πΘ′(·|s)||πΘ(·|s))] < δ

The objective can be further expanded to

Es∼ρΘ′ ,(a,x)∼πΘ′

[
πc
θx
(x|a, s)πd

θa
(a|s)

πc
θ′
x
(x|a, s)πd

θ′
a
(a|s)QΘ′(s, a, x)

]

Notice that, in the objective function, the samples are col-
lecting using Θ′ instead of Θ. Thus, in training time, we can
just take the gradient of objective function w.r.t Θ to achieve
end-to-end training like normal supervised learning, and do
not need to use any trick.

However, some changes are needed to meet the constraint
of TRPO as there is no closed form solution for comput-
ing KL-divergence between two joint distributions. Here, we
rewrite the KL-divergence constraint into conditional diver-
gence using the chain rule.

Es∼ρΘ′ [DKL(πΘ′(·|s)||πΘ(·|s))]

=Es∼ρΘ′

[
DKL(π

d
θ′
a
(·|s)||πd

θa(·|s))

+ Ea∼πd
θ′a

(a|s)
[
DKL(π

c
θ′
x
(·|s, a)||πc

θx(·|s, a))
]]

=Es∼ρΘ′

[
DKL(π

d
θ′
a
(·|s)||πd

θa(·|s))
]

+ Es∼ρΘ′Ea∼πd
θ′a

(a|s)

[
DKL(π

c
θ′
x
(·|s, a)||πc

θx(·|s, a))
]

Thus, we can use samples to estimate both the objec-
tive function and KL-divergence. However, we notice that
we can further reduce the variance of estimating the KL-
divergence by using the analytical form of discrete action
policy π(a|s). That is, the KL-divergence can be written as

Es∼ρΘ′

[
DKL(π

d
θ′
a
(·|s)||πd

θa(·|s))
]

+ Es∼ρΘ′

[
π(a|s)DKL(π

c
θ′
x
(·|s, a)||πc

θx(·|s, a))
]

Using this form of constraint allows us to estimate the di-
vergence between two policies even when we do not have
samples for some discrete actions.

Parameterized Actions SVG(0)

Now we propose our second method based on the reparam-
eterization trick.

One thing that makes the policy gradient methods special
is that the samples we need to estimate the gradient come
from the policy we are optimizing. That is, the objective usu-
ally takes the following form,

Epθ(x)[f(x)].

We can write the gradient of expectation w.r.t θ in this way:
∂Epθ(x)[f(x)]

∂θ
=

∂

∂θ

∫
x

pθ(x)f(x) dx

=

∫
x

∂pθ(x)

∂θ
f(x) dx.

Since we lost the term p(x) in the integral after we take
the gradient, it’s no longer an expectation, hence, we can
no longer use samples from p(x) to estimate it.

To solve this problem, people made the following changes
to the gradient,

∂Epθ(x)[f(x)]

∂θ
=

∫
x

∂pθ(x)

∂θ
f(x) dx

=

∫
x

p(x)

(
1

p(x)

∂pθ(x)

∂θ

)
f(x) dx

= Epθ(x)

[
∂ ln pθ(x)

∂θ
f(x)

]

360

This trick is the foundation for most of the policy gradient
methods in RL.

Recently, another trick has been used to attack the same
problem in the unsupervised learning community (Kingma
and Welling 2013; Rezende, Mohamed, and Wierstra 2014).
The idea is that a continuous random variable z can be ob-
tained by first taking a noise variable ε and then determinis-
tically transforming it. For example, a gaussian random vari-
able z ∼ N (μ, σ2) can be reparameterized into a noise ran-
dom variable ε ∼ N (0, 1) with a deterministc transforma-
tion gμ,σ(z) = μ + σε. By applying this technique, we can
optimize an expectation using samples from a noise distri-
bution as follows

Epθ(x)[f(x)] =

∫
x

pθ(x)f(x) dx =

∫
ε

p(ε)f(gθ(ε)) dε

Then the gradient can be easily written as

∂Epθ(x)[f(x)]

∂θ
=

∫
ε

p(ε)

(
∂f

∂g

∂g

∂θ

)
dε = Ep(ε)

[
∂f

∂g

∂g

∂θ

]

This method has been successfully used in Variational Au-
toencoders (VAE) for various works (Walker et al. 2016;
Sohn, Lee, and Yan 2015). It has also been applied to RL
to train Stochastic Value Gradient (SVG) Learners (Heess
et al. 2015). Recently, Jang, Gu, and Poole (2016), Mad-
dison, Mnih, and Teh (2016) generalized the reparameter-
ization trick to deal with discrete random variables with
the Gumbel-Softmax trick. In the discrete case, a ran-
dom variable x can be drawn from a discrete distribution
{p(x1), p(x2), . . . , p(xn)} by the Gumbel-Max trick (Mad-
dison, Tarlow, and Minka 2014),

x = argmaxi[gi + ln p(xi)]

where gi ∼ Gumbel(0, 1). The Gumbel-Softmax trick re-
place the argmax operator in the above with a continuous
differentiable softmax operator. With this change, we can
now draw samples as

x =
exp

[(
(gi + ln p(xi)

)
/t
]

∑n
i=1 exp

[(
(gi + ln p(xi)

)
/t
]

where t is the “temperature” used to control the tradeoff be-
tween bias and variance. This trick has been applied to the
RL setting as well, including imitation learning (Baram et
al. 2017) and multiagent RL (Mordatch and Abbeel 2017).

For our problem, the key observation is that the two steps
of decision making in a parameterized action policy (choos-
ing from a discrete action and then determining the param-
eters for it), is very much like the paradigm in VAE (2013).
In the VAE setting, the encoder of the VAE takes a sample
x from the dataset, and generates a latent variable z from it.
Then the decoder takes z and reconstructs x out of it. For our
situation, the discrete action policy first takes the state s as
input and generates a discrete action a, then determines the
parameters x based on action a using the continuous param-
eter policy. Thus, we can roughly think of our discrete action
policy and continuous parameter policy as the encoder and
decoder in VAE respectively.

π(x|s, a)

η

Q(s, a, x)

st
xt

at

at
+

f(s, η)

Figure 1: The training flow of the PASVG(0) agent. The
black lines indicate the forward pass of the training, and the
dash lines indicate the backward pass of the training. The
dash box marks the reparameterized policy f .

We start with the objective function in (1) and write it in
parameterized action setting.

J(Θ) =

∫
s

ρπΘ(s)V πΘ(s)ds

= Es∼ρΘ

[∑
a

πΘ(a, x|s)Q(s, a, x)

]

= Es∼ρΘ

[∑
a

πθa(a|s)Q(s, a, πθx(x|s, a))
]

For the last step in the previous derivation, we use the DDPG
formulation. Then we apply the reparameterization trick.
Following the convention in (Heess et al. 2015), we use η
to represent the auxiliary noise variable instead of ε in the
VAE setting.

J(Θ) = Es∼ρΘ

[∑
η

p(η)Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]

where a = fθa(s, η) is the discrete action policy after reparame-
terization. Then the gradient w.r.t Θ is simply

∂J(Θ)

∂Θ
= EρΘEp(η)

[
∂

∂Θ
Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]

Since we are reparameterizing our stochastic policy for a
0-step value function (Q-function), similar to Heess et al.’s
method, thus we name our algorithm Parameterized Action
SVG(0) (See Figure 1 for the training flow).

However, there is one critical difference between our
work and Heess et al.. In our work, we do not need to in-
fer the noise variable since we are not using any dynamic
model. To see this, we rewrite the gradient estimation us-
ing the Bayes’ rule, following the method from (Heess et al.
2015),

∂J(Θ)

∂Θ
= EρΘ

Eπ(a,x|s)Ep(η|a,x,s)[
∂

∂Θ
Q(s, fθa(s, η), πθx(s, fθa(s, η)))

]
(2)

Heess et al. use this method to infer the noise ζ of
their reparameterized approximate dynamic model s′ =

361

Figure 2: Platform domain

g(s, a, ζ). Thus, they need to learn the p(ζ|s, a, s′) which
is similar to p(η|a, x, s) in our case. However, for us, we
use the sample η and generate a, x from it. Hence, we do
not need to learn the model p(η|a, x, s). Instead, we can just
record the value of η when we are collecting the training
samples.

The last part of the algorithm is to make the gradient esti-
mation not depend on the samples collected by π(a, x|s), as
the policy is constantly changing. We use the replay buffer
from DDPG to solve this issue and turn our algorithm into
an off-policy algorithm to improve sample efficiency.

Experiments

We conducted our experiments using the Platform domain
from (Masson, Ranchod, and Konidaris 2016) (See Fig-
ure 2). In this domain, we control the agents (cyan block) to
jump across several platforms while avoiding enemies (red
blocks) and falling off the platforms. This domain has three
discrete actions to choose from: run, jump, and leap. A jump
moves the agent over its enemies, while a leap propels the
agent to the next platform. Each of the actions take one pa-
rameter which determines the speed along the x-axis. More
details of the domain can be found in the original paper.

We implemented the Parameterization Action DDPG†
(PADDPG) algorithm from (Hausknecht and Stone 2015)
as our comparison baseline which is considered as the state
of the art. Specifically, we implemented the PADDPG algo-
rithm following the settings and parameters from the original
paper except for the size of the hidden layers. In the original
paper, PADDPG used a huge network with four hidden lay-
ers with size {1024, 512, 256, 128}, which is rare in DRL
community for tasks with continuous signals. We followed
the DDPG paper (Lillicrap et al. 2015), which used two hid-
den layers with sizes {400, 300} for the neural networks. We
also implemented their invert-gradient trick, as they claimed
that this was the only way to make the learning work in a
bounded parameter space.

For our PATRPO agent, we adopted the setting
from (Duan et al. 2016), where we had three hidden layers
with sizes {200, 100, 50} for the policies. We used ReLU
for activation, and Softmax and Tanh for the output layers of
the discrete action policy and continuous parameter policy
respectively. For our PASVG(0) agent, we also used neural
networks with two hidden layers of sizes {400, 300} and
ReLU for activation. For the output layer, we used Gumbel

†This is the DDPG algorithm for parametereized action spaces,
not to be confused with the DDPG algorithm from (Lillicrap et al.
2015) for continuous control.

Figure 3: Comparison on Platform domain of three learn-
ers. The x-axis shows the training epochs. The y-axis shows
the average reward. Solid lines are average value over five
random seeds. Shaded regions are standard deviation.

Softmax for the discrete action policy and Tanh for the con-
tinuous parameter policy.

We trained all the agents using 100 epochs with 10000
samples per epoch. For the online method, we had a replay
buffer with size 107 and we did not start the training until
we had 104 samples in the replay buffer, which is a stan-
dard setting in DRL experiments. We used 0.005 as the step
size for PATRPO agent and 10−3 and 10−5 as the learn-
ing rate for the value function and policies respectively for
the PASVG(0) agents. We fixed the temperature to 1.0 for
the Gumbel-Softmax layer and kept it for the entire training
process.

The experiment results are shown in Figure 3. The plot
of PADDPG is very interesting: we found that it can learn
to successfully finish the game at an early stage of learn-
ing, but would quickly unlearn that policy and converge to
something else.

We then noted that, although we are using Tanh to bound
the output of our parameter policy, which corresponded
to the squash-gradient method in (Hausknecht and Stone
2015), we managed to make it work for our methods, which
suggests that there are more training options than the invert-
gradient method suggested by (Hausknecht and Stone 2015).
Our PATRPO method achieved the best performance among
all three learners, and unlike PADDPG learner, it maintained
its performance after obtaining its best learned policy. The
PASVG(0) learner converged to a local optimum with aver-
age reward of around 0.4. By examining the game, we found
that this corresponded to avoiding the first enemy but failing
to land on the second platform. One of the possible reasons
was that the learner was conducting joint-learning, which
is very similar to cooperative multiagent learning, and thus
may converge to a local optima.

We further investigated this joint-learning issue by try-
ing two different step sizes for the PATRPO agent. Figure 4
shows the result of using larger step size parameters. As we
can see, both of the agents can achieve a good performance
in relatively short period of time with much lower variance.
But once they learn the optimal policy, their performance
starts to drop and the variance becomes much larger. How-
ever, PATRPO still manages to maintain a decent perfor-
mance which is far better than the PADDPG algorithm. This
shows that a more stable method is desirable for learning in

362

Figure 4: Different step size parameters for PATRPO agents.
δ = 0.05 in red and δ = 0.01 in green.

Figure 5: Comparison on the Platform domain for different
KL-Divergence estimation methods.

the parameterized action space.
Last, we conducted an experiment using different tech-

niques for estimating the KL divergence in PATRPO. The
experiment as illustrated in Figure 5 showed that none of
them makes much of a difference in this small domain.

We also tested our algorithm in the HFO domain intro-
duced by (Hausknecht and Stone 2015). In this domain (Fig-
ure 6), we controlled an agent to score a goal. For the sim-
plicity, we did not have a goalie. We had three actions in
this domain, dash with parameters power and direction,
turn with parameter direction and kick with parameters
power and direction. Thus, different actions required differ-
ent numbers of parameters. For our agents, if we outputed
more parameters than we actually needed, we just took the
first part of the output and ignored the remainder. This do-
main had a 59-dimensional state space, which was much
larger compared to the platform domain, and thus we trained
our agents using larger neural networks and with more sam-
ples. Due to time constraints, we only trained our PATRPO
agent and PADDPG in this domain for 100 epochs with
50000 steps per epoch. We used three hidden layers with size
{400, 300, 200} for both PATRPO and PADDPG agents.

Figures 7 shows the result on this domain. As we can see,
again, the PATRPO agent achieved stable performance in
this domain while PADDPG demonstrated a large variance
in its performance. We also note that the performance of the
PADDPG algorithm is far worse than in the original paper.
One of the possible reasons for this is due to the difference in
the neural network sizes. But since our PATRPO agent can
achieve stable learning in this domain with a much smaller
neural network, this suggests that a large neural network is
not necessary in this domain.

Figure 6: An example of Half Field Offense Domain, with
no goalie.

Figure 7: Comparison on Soccer domain for PATRPO and
PADDPG agents on three different random seeds.

Conclusion and Future Work

We presented two algorithms for learning effective control
in parameterized action space. We demonstrated that our
method can learn better policy in these setting compared to
PADDPG method. However, we found that learning could
be unstable due to the joint-learning between the discrete
action policy and parameter policy. An interesting future di-
rection would be to find more stable methods for this do-
main. We would like to study these methods in the context
of more complex domains (in soccer for example) particu-
larly involving more agents.

Acknowledgments

The research in this paper was conducted with the support of
research infrastructure developed under NSF grant 1727303.

References

Baram, N.; Anschel, O.; Caspi, I.; and Mannor, S. 2017.
End-to-end differentiable adversarial imitation learning. In
Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70, 390–399.
Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon policy-
gradient estimation. Journal of Artificial Intelligence Re-
search 319–350.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking deep reinforcement learn-
ing for continuous control. In Proceedings of The 33rd In-
ternational Conference on Machine Learning, 1329–1338.

363

Hausknecht, M., and Stone, P. 2015. Deep reinforce-
ment learning in parameterized action space. arXiv preprint
arXiv:1511.04143.
Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Informa-
tion Processing Systems, 2944–2952.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.
Jie, T., and Abbeel, P. 2010. On a connection between
importance sampling and the likelihood ratio policy gradi-
ent. In Advances in Neural Information Processing Systems,
1000–1008.
Kakade, S. M. 2002. A natural policy gradient. In Advances
in neural information processing systems, 1531–1538.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2016. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. arXiv preprint arXiv:1611.00712.
Maddison, C. J.; Tarlow, D.; and Minka, T. 2014. A* sam-
pling. In Advances in Neural Information Processing Sys-
tems 27, 3086–3094.
Martens, J. 2010. Deep learning via hessian-free optimiza-
tion. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 735–742.
Masson, W.; Ranchod, P.; and Konidaris, G. 2016. Rein-
forcement learning with parameterized actions. In AAAI,
1934–1940.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Mordatch, I., and Abbeel, P. 2017. Emergence of grounded
compositional language in multi-agent populations. CoRR
abs/1703.04908.
Pearlmutter, B. A. 1994. Fast exact multiplication by the
hessian. Neural computation 6(1):147–160.
Rachelson, E.; Fabiani, P.; and Garcia, F. 2009. Timdppoly:
An improved method for solving time-dependent mdps. In
Tools with Artificial Intelligence, 2009. ICTAI’09. 21st In-
ternational Conference on, 796–799. IEEE.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML-14), 1278–
1286.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In Proceedings

of the 32nd International Conference on Machine Learning
(ICML-15), 1889–1897.
Sharma, S.; Lakshminarayanan, A. S.; and Ravindran,
B. 2017. Learning to repeat: Fine grained action rep-
etition for deep reinforcement learning. arXiv preprint
arXiv:1702.06054.
Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic policy gradient al-
gorithms. In ICML.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sohn, K.; Lee, H.; and Yan, X. 2015. Learning struc-
tured output representation using deep conditional genera-
tive models. In Advances in Neural Information Processing
Systems, 3483–3491.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006.
Keepaway soccer: From machine learning testbed to bench-
mark. In Noda, I.; Jacoff, A.; Bredenfeld, A.; and Takahashi,
Y., eds., RoboCup-2005: Robot Soccer World Cup IX, vol-
ume 4020. Berlin: Springer Verlag. 93–105.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057–1063.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezh-
nevets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Aga-
piou, J.; Schrittwieser, J.; et al. 2017. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.
Walker, J.; Doersch, C.; Gupta, A.; and Hebert, M. 2016. An
uncertain future: Forecasting from static images using varia-
tional autoencoders. In European Conference on Computer
Vision, 835–851. Springer.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.
Zamani, Z.; Sanner, S.; Fang, C.; et al. 2012. Symbolic
dynamic programming for continuous state and action mdps.
In AAAI.

364

