MASON: A Java Multi-Agent Simulation Library

Sean Luke, Gabriel Catalin Balan, and Liviu Panait
George Mason University
http://www.cs.gmu.edu/~eclab

We present MASON, a new multiagent simulation library written for Java.
MASON is a general-purpose, single-process, discrete-event simulation library in-
tended to support diverse multiagent experiments ranging from 3D continuous robotics
to social complexity networks to discretized ant foraging algorithms.

MASON is of special interest to the social insect algorithm community because
its primary design goal is to support very large numbers of agents efficiently. As such,
MASON is faster than scripted systems such as StarLogo' or Breve?, while still remain-
ing portable and producing guaranteed replicable results. In other papers submitted to
this workshop, we have successfully used the system to develop by hand, and to apply
evolutionary computation to search for, ant foraging behaviors involving thousands of
ants and multiple pheremones.

Many multi-agent simulation environments are designed to meet the needs of a
particular discipline; for example, TeamBots® emphasizes robotics, while RePast*, As-
cape’, and Swarm® emphasize discrete environments with networks of interacting so-
cial agents. In contrast, MASON’s second design goal is to make it easy to build a wide
variety of multi-agent simulation environments (in our case, to test machine learning
and artificial intelligence algorithms). Rather than provide an all-encompassing, rigid
framework to meet this generalist criterion, MASON is a small, portable core around
which specialized tools may be built for different tasks.

MASON consists of two parts: the simulator model library proper, and tools for
visualizing and manipulating the model via a graphical interface. The model and the
visualization libraries are completely separated. This separation fulfills a third design
goal of the simulator: to run efficiently while headless on back-end server machines,
but permit the experimenter to view or modify checkpointed simulations during an
experimental run. The model may be serialized to and recovered from storage at any
time, and the visualization system may be added or removed from the model at any
point. Runs may be repeated on any platform with identical results.

MASON’s model library contains a discrete-event schedule to represent time, plus
various spatial representations called neighborhoods. MASON has no prescribed set

Thttp://education.mit.edu/starlogo

2http://www.spiderland.org

3http://www.teambots.org

“http://www.repast.org
Shttp://www.brook.edu/dybdocroot/es/dynamics/models/ascape/
Shttp://www.swarm.org



of spatial models: at present the library comes with plain and toroidal models for 2D
discrete, 2D hexagonal, 2D continuous, 3D discrete, and 3D continuous spaces. We
plan to add graph and multigraph neighborhoods. Any object may be stored in these
neighborhoods, and the models may be used in any combination and any number in
a given simulation. MASON separates the notion of an “agent” from embodiedness:
agents are simply objects which may be scheduled to be executed. When executed,
agents typically manipulate objects stored in the neighborhoods. Like any other object,
agents may be embodied in the neighborhoods if this is appropriate to the simulation
proper.

To enable complete separation of model from visualization, MASON adopts the
notion of portrayal objects which are tasked to display various neighborhoods or indi-
vidual objects within those neighborhoods. Portrayals also permit a user to graphically
manipulate the objects and neighborhoods. The library provides basic, easily extended
portrayals for all of its model environments, including ones which draw 2D models in
3D.

MASON comes with several built-in example applications, including ant foraging,
flocking behaviors in continuous 2D and 3D, continuous models simulating virus in-
fection and cooperative target observation, and 2D discrete and hexagonal heat bugs.
We expect to release MASON as open source by the end of Summer, 2003.



