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Summary Wireless low-power and lossy networks (LLNs) are a key enabling technology for
the deployment of massively scaled self-organizing sensor swarm systems. Supporting
applications such as providing human users situational awareness across large areas requires that
swarm-friendly LLNs effectively support communication between embedded and mobile devices,
such as autonomous robots. The reason for this is that large scale embedded sensor applications
such as unattended ground sensing systems typically do not have full end-to-end connectivity, but
suffer frequent communication partitions. Further, it is desirable for many tactical applications to
offload tasks to mobile robots. Despite the importance of support this communication pattern,
there has been relatively little work in designing and evaluating LLN-friendly protocols capable
of supporting such interactions.

This paper addresses the above problem by describing the design, implementation, and evaluation
of the MoRoMi system. MoRoMi stands for Mobile Robotic Multl-sink. It is intended to
support autonomous mobile robots that interact with embedded sensor swarms engaged in
activities such as cooperative target observation, collective map building, and ant foraging. These
activities benefit if the swarm can dynamically interact with embedded sensing and actuator
systems that provide both local environmental or positional information and an ad-hoc
communication system. Our paper quantifies the performance levels that can be expected using
current swarm and LLN technologies.

1 Introduction

There is currently significant interest in the use of low cost and commodity-level robotic systems
capable of performing collaborative actions using autonomous “swarm”-style intelligence.
Additionally, there also has been an explosion in the use of wireless low-power and lossy
networking (LLN) technology to support distributed autonomous environmental sensing
applications, building and home automation systems, and the Internet-of-things. Although the



desirability of communication and interoperation between mobile swarms of autonomous robotics
and embedded LLN sensing and communication systems has long been recognized, there has
been relatively little work in designing and evaluating LLN-friendly protocols capable of
supporting such interactions.

This paper addresses the above problem by describing the design, implementation, and evaluation
of the MoRoMi system. MoRoMi stands for Mobile Robotic Multi-sink. It is intended to support
swarms of autonomous mobile robots engaged in activities such as cooperative target
observation, collective map building, and ant foraging. These activities benefit if the swarm can
dynamically interact with embedded sensing and actuator systems that provide both local
environmental or positional information and an ad-hoc communication system [1]. Our paper
quantifies the performance levels that can be expected using current swarm and LLN
technologies.

MoRoMi is architected as an intentionally thin wrapper layer operating both within an open
swarm robotics architecture [2] and over RPL, one of the standard LLN communication routing
protocols [3]. The purpose of this design is to maintain compliance with evolving robotic and
networking standards and to offer designers and researchers a simple tool to develop
interoperable applications. MoRoMi supports multi-hop routing and communication between
mobile robot swarms and embedded LLN systems. One primary goal is to rapidly form routing
and forwarding ad hoc communication trees as robots enter and leave an LLN system without
disrupting any existing LLN communication patterns or reporting functions. While others have
described interactions between mobile robots and wireless LLN nodes [4], we are unaware of any
other work that focuses on simultaneous support for both swarm robotic communication and
preexisting LLN routing.

One of the greatest challenges we have faced is in maintaining frequently reconfigured routing
trees on resource-constrained LLN nodes as mobile robots traversed through the system. Our
objective is to minimize the time to form a new routing tree while maintaining acceptable levels
of throughput through the system and simultaneously supporting preexisting LLN communication
patterns. Our evaluation has shown that under common swarm communication requirements
MoRoMi is an effective approach for swarm robotic to LLN communication.

2 MoRoMi Design

We first describe our robot platform, then discuss issues in LLN implementation
2.1  The Flockbots

The Flockbots are an open robot architecture designed to pack a large amount of sensors and
useful effectors into as inexpensive a package as possible, so as to make it possible to build many
copies of the robot. The platform also tries to use largely off-the-shelf equipment to facilitate
this. The current Flockbot design is a differential drive design which uses an Arduino Uno
microcontroller, which handles most sensor and effector tasks, attached to a Raspberry Pi Linux
computer, which maintains a camera, 802.11 wireless communication, and USB. The Flockbot's
basic facilities include five Sharp IR infrared range sensors, two bump sensors, two encoded
wheels, an embedded gripper capable of collecting small cans, a surface for pushing boxes, and a
tilt-servoed camera, and I2C-driven display; it can run for many hours on NiMH batteries. To
this design we have attached a Tmote Sky sensor mote attached to the Raspberry Pi over USB.



Communications are facilitated by use of a socket API which allows for either processing by the
main processing system or for direct control of the hardware by redirecting the traffic through to
the Arduino board. The autonomous robots may be programmed either directly through dynamic
C libraries and Lua scripts on-board the Raspberry Pi, or may be controlled remotely via the
socket API interface.

As most computational tasks are performed on the Raspberry Pi, we
can use on the sensor motes a streamlined version of Contiki OS, the
operating system designed for LLNs [5]. This enables the Flockbot
to load and interact with LLN node devices directly, using termios
system calls to coordinate communications with the sensor mote.
Using our API implemented on both the robot and the LLN nodes,
we are able to not only program these devices on-board during
normal operations, but also control the various aspects of LLN
communications, to include transmission power levels and message
sending rates to each destination. The Figure at right shows a Figure I: A FlockBot
Flockbot outfitted with the sensor mote.

2.2 Wireless LLN Node Implementation

Our targeted class of wireless LLN applications typically have a multipoint-to-point
communication pattern, in which nodes collect or process information, and send their own
packets or relay the packets from others up a tree to a common sink. In an LLN wireless
environment, highly resource constrained systems generally use sink-oriented gradient routing
techniques to maintain this tree [6]. Each node continually calculates the cost towards the sink,
and forwards its packets along the cheapest gradient. The primary gradient protocol used in
current systems is the IPv6-based Routing Protocol for Low-Power and Lossy Networks

(RPL) [3].

RPL gradients take the form of Directed Acyclic Graphs (DAGs). Each DAG instance can be
specified by its sink node, the set of basic metrics collected by each node about the quality of the
link, a per-DAG method to combine these metrics into a single link metric, and a per-DAG
method for determining path costs. Sinks are advertised to the network through the use of a
Destination Oriented DAG Information Object, or DIO. Recent research has described some of
the difficulties in using RPL under hostile but common LLN conditions. For instance, in [7] the
authors evaluate the performance of RPL in a large testbed using both stable and node-failure
scenarios. They observed that the path forwarding topology took a long time to stabilize and
required a large amount of IPv6 control packet overhead.

Our approach in MoRoM i is to support multiple DAGs by establishing, on demand, gradients
towards each mobile sink. As each sink enters the environment, it transmits a DIO to announce
an Instance of the RPL network. Each of these Instances provide their own DAG to be formed.
These DIO messages are broadcast wirelessly and are received by nodes within its transmission
radius. Once received, each node will add information on this new DAG and rebroadcast the DIO
using a higher rank, which is used to denote its own relative distance from the sink. This process
will continue to form the initial DAG as well as periodically to ensure both the integrity of the
DAG, and to enable nodes to change their logical parents as network conditions change. As a
robot moves the gradient will shift reflecting its new position in the network, causing the DAG to
adjust to ensure that communications are maintained with each respective sink.



As in [7] we found that stabilization was highly sensitive to beaconing and retransmission
intervals. The trickle timer, as described by RFC 6550 [3] and implemented in Contiki, governs
retransmission intervals of these DIO messages. This timer reduces activity by doubling the time
between each message is sent, up to a default maximum interval of 2.3 hours between each
message sent. One consequence of this is that a dynamic DAG consisting of many node-
connected robots may suffer from delays in reforming. As a rapidly moving robot drives through
its own DAG, each node receiving a DIO direct from the mobile sink will tend to accept it as a
preferred parent, leaving a large DAG heavily disturbed and partitioned.

MoRoMi addresses this problem within the Contiki RPL implementation by adding an additional
step during the forwarding process. When a MoRoMi node receives a message, it first examines
the packet for routing information. In the most common occurrence, this message is destined for
a distant sink and is immediately retransmitted to the current parent of the node for the
appropriate DAG Instance, as indicated by the RPL option headers of the packet. During this
routing process, the node reports the rerouting action and the message payload to the host robot,
enabling forward dissemination of data upwards as it travels to the root of the DAG.
Furthermore, MoRoMi reports each change in the preferred parent of a node in order to give the
host information as to its own relative place in the DAG. Frequent parent changes, for instance,
may indicate that the DAG is undergoing an adjustment, and MoRoM:i tailors its routing message
update rate to achieve rapid re-convergence.

3 Evaluation

Our evaluation has focused on determining the amount of time required for a newly introduced
static robot to establish a new gradient routing path without disrupting pre-existing routing paths,
gauging the ability of MoRoMi in support routing to mobile robotic sinks as the routing trees are
reformed, and understanding both the velocity of the sink and the throughput of the system. For
all results shown, all pre-existing communication patterns were maintained with no tree
disruption and minimal variation in packet delivery rate.

3.1 Experimental Results

We conducted a number of experiments using the Flockbots and Tmote Sky LLN nodes. We
present the results from one particular set of experiments, which are typical of the other results.
We created a linear topology of seven Flockbots, with one Flockbot at each end acting as a sink.
We then simulated a hierarchical swarm environment, where each of the sender robots generate
and send a message to each of the two sinks in the environment. As each sink came online, it sent
a DIO to the environment announcing its presence. Each Instance was used to identify and form
its own DAG. After an initialization period one of the two sink Flockbots was driven from its
initial location to a position on the other side of the perimeter. This represented a swarm leader
performing a data gathering mission over the network. During mobility, the DAG of the mobile
sink was disrupted as each node attempted to reassess and select the sink as a direct parent. As
the robot was only in range of each node for a short duration, this parent information became stale
and each node was forced to wait for a new DIO to be received before adjusting to the proper
parent for the new configuration.

The mobile robot sink began at one end of the linear topology, then drove to the other end and
dwelled for a specified period before returning. We observed eight states or phases during



operation. These phases were (1) the initial time after activation for the network to form, (2) the
initial configuration operation, (3) the movement to the dwell location, (4) the time to reform at
the dwell location, (5) the post-convergence operation at the dwell location, (6) the movement
back to the initial position, (7) the time to reform at the initial location, and (8) the post-
convergence operation at the initial location.
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Figure 2: Convergence Times for Implementation and Simulator
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Figure 3: Packet Delivery Rates for the Live and Simulated Mobile Instances

From a practical perspective we were interested in how long the swarm would be disrupted. This
time is also known as the time fo convergence. We also compared our actual results to the widely
used Cooja simulator, part of Contiki. Convergence times were measured in the three phases (1,
4, and 7) wherein the robot was motionless and awaiting reform. Figure 2 shows the differences
in times to converge for the mobile sink RPL Instance during these three phases for both the live
implementation and an average of seven simulated runs using the same scenario in Cooja. As
mentioned, the static sink RPL Instance shows negligible interference across both models.
Except for phase 7, we have concluded that the Cooja simulated runs show a consistent view of
the same test under the same conditions. Packet Delivery Rates (PDR) for the mobile sink were
also similar in each phase, as shown in Figure 3. All PDR analyses of the mobile RPL Instance
showed a drop during mobility due to parent reconfiguration. Along with other experiments, we



have concluded that a swarm application requiring approximately 3 messages a minute could be
reliably supported with disruption periods lasting approximately no more than one minute.

3.2  Simulation Study

We have developed a Cooja-friendly software tool, Tamara, to rapidly generate and evaluate
simulated swarm-LLN interactions. Tamara allows us to specify a variety of Flockbot
applications and mobility patterns. Using this tool, we evaluated the impact of mobile swarm
robots interacting with static robots or LLN nodes in both a linear and a star topology. We are
particularly interested in the impact of mobility on convergence time and PDR.

The linear topological model was generated by placing the first sink device at the origin. Each
subsequent non-sink node started with an initial placement along a line at 75% of the radio
transmission range of the prior placed node. This initial placement location was then adjusted
using a random normal distribution provided by the Box-Muller method to add some variance. As
Box-Muller produces a normally distributed value with a mean of 0 and unit variance, we
multiplied each of the two resulting values by 5% of the transmission range before adding the
results to each respective coordinate of the placement location. The process of coordinate
adjustment was assessed and repeated if the resulting placement did not lie between 50% and
100% of the transmission range of the prior placed node. The same process was used again for
placing the final device, the mobile sink, within transmission range of the final non-sink node on
the opposite end of the topology from the starting sink.

Our tests involved a specified dwell period at the target location before returning to the original
position.
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Figure 4: Convergence Times for Various Mobility Speeds
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Figure 5: Convergence Times for Various Mobility Speeds

Figure 4 shows the convergence times at each of the key phases for a mobile sink that traverses
the topology at a given rate. As expected, the faster the mobile sink traveled, the longer it took to
achieve convergence once it arrived at its target destination. Figure 5 shows the impact of node
velocity in terms of PDR. As the velocity of the mobile sink increased, it took longer for
convergence to occur, which lead to disjoint graphs and undeliverable messages. This effect
occurred primarily as a result of the DIO send rate on the mobile sink and was exacerbated by
hysteresis in the routing objective function. This lead to nodes accepting the passing mobile sink
as a parent and then maintaining that parent selection even after the sink was no longer within
range. The results showed that as mobility increased, performance in terms of convergence time
and PDR scaled in a roughly linear fashion.

The star topological model was generated by starting with the sink as the origin and used the
same method for generating random positions and angles, to place the next device within range of
the sink. Once all non-sink nodes were placed within range of the sink, a secondary sink, if
selected, was placed in the same manner. This resulted in a star topology for one DAG and a tree
topology for the second DAG. Mobility worked in the same manner, selecting a target location
within transmission range of a sender node and traveling to that location and dwelling prior to
returning.
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Figure 6. Average Convergence Time for the Star Topology
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Figure 7: Average PDR for the Star Topology

Figure 6 shows the impact of node velocity in terms of convergence for the star topology. The
topology varied in convergence rates based on how the nodes in the star were distributed and how
the target location for mobility were selected. As the static sink in this experiment could not
belong to the mobile sink Instance, it was entirely possible for the mobile sink Instance to be
partitioned in a sparse environment. For these tests, the ten LLN nodes were sufficient to provide
good coverage for both Instances. Figure 7 shows the impact of node velocity in terms of PDR.
This Figure shows the unique impact of mobility on the star topology. As the mobile sink began
to move, it would not follow its own DAG, as was the case in the linear topology. As the mobile
sink traveled, it moved to within the range of a node which had formerly been on the opposite
side of the DAG, which served to disconnect itself from the entire graph at once, instead of just
the portion of the DAG traversed. Figure 7 indicates that PDR dropped more during mobility than
was observed in linear topologies.

4 Conclusion

This paper presented the MoRoMi wrapper approach for swarm-LLN communication and
coordination. Our results show that swarm to LLN applications can be built using off-the-shelf
hardware technologies for scenarios that exhibit both mobile and dwell behaviors. In particular,
although network partitions could last up to ten minutes, in all cases the network re-converged.
We are currently using MoRoMi to implement a swarm application for mapping and foraging.
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