
MASON: A New Multi-Agent Simulation Toolkit

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, and Keith Sullivan
Department of Computer Science and Center for Social Complexity

George Mason University
4400 University Drive, Fairfax VA 22030
http://cs.gmu.edu/∼eclab/projects/mason/

Abstract

We introduce MASON, a fast, easily extendable, discrete-
event multi-agent simulation toolkit in Java. MASON was
designed to serve as the basis for a wide range of multi-
agent simulation tasks ranging from swarm robotics to ma-
chine learning to social complexity environments. MASON
carefully delineates between model and visualization, al-
lowing models to be dynamically detached from or attached
to visualizers, and to change platforms mid-run. We de-
scribe the MASON system, its motivation, and its basic ar-
chitectural design. We then discuss five applications of MA-
SON we have built over the past year to suggest its breadth
of utility.

1. Introduction

MASON is a single-process discrete-event simulation
core and visualization toolkit written in Java, designed
to be flexible enough to be used for a wide range of
simulations, but with a special emphasis on “swarm”
simulations of a very many (up to millions of) agents.
The system is open-source and free, and is a joint ef-
fort of George Mason University’s Computer Science
Department and the George Mason University Center
for Social Complexity. MASON may be downloaded at
http://cs.gmu.edu/∼eclab/projects/mason/
MASON is not derived from any other toolkit, but rather

was built from scratch from first principles. Our design phi-
losophy was to build a fast, orthogonal, minimal model li-
brary to which an experienced Java programmer can easily
add features, rather than one with many domain-specific, in-
tertwined features which are difficult to remove or modify.
To this we have added visualization and GUI facilities we
have found useful for a variety of simulation tasks. We plan
to position MASON as a core for new simulation libraries,
and also as a toolkit sufficient for simple simulations.

The library was intended for researchers, such as our-
selves, who needed to perform many simulation runs, pos-
sibly with large numbers of agents and interactions, with
occasional visualization and modification of the runs. To
this end MASON is fast, portable, capable of checkpoint-
ing and restarting models with or without visualization, able
to migrate models across platforms, and capable of pro-
ducing guaranteed-duplicatable results independent of plat-
form. MASON models may be attached to a provided GUI
toolkit which enables visualization and manipulation of the
model in both 2D and 3D (using Java3D), and which can
produce screenshots and movies.
MASON does not presently provide high-level model-

building tools for inexperienced programmers; nor does it
provide domain-specific features such as physics models,
robot sensors, built-in charts and graphs, or data-import
from geographic information systems. Instead, we hope ex-
ternal modules for various functions will be created to ex-
tend MASON, and we will be creating some of these our-
selves in the near future.
While there are a many similarities between MASON

and existing popular multi-agent simulation toolkits, we be-
lieve that MASON’s combination of architecture and fea-
tures are unusual for a multi-agent simulation system. In
this paper we will discuss the motivation and architectural
design of the system, and then detail five applications of
MASON presently under way.

2. Motivation and Design Goals

We began work on MASON because we needed a sim-
ulation toolkit which made it relatively easy for us to cre-
ate a very wide range of multi-agent and other simulation
models, and to run many such models efficiently in paral-
lel on back-end cluster machines. Domains to which we in-
tended to apply the simulator ran the gamut from robotics,
machine learning and artificial intelligence to multi-agent
models of social systems (political science, historical de-
velopment, land use, economics, etc.).

Simulation Model

Discrete Event Schedule
(Representation of Time)

Fields
(Representations of Space)

Holds Agents

Any
ObjectHold

Utilities

Visualization and GUI Tools

Controllers
(Manipulate the Schedule)

2D and 3D Displays
2D and 3D Portrayals
(Draw Fields and the

Objects they hold)

Disk Checkpoints

Hold

Figure 1. Basic elements of the MASON model and visualization layers.

Our previous research in these areas had either relied on
a heavily modified robotics simulator (notably TeamBots1),
a compiled social complexity toolkit such as SWARM2, As-
cape3, or RePast4, or an interpreted rapid-development li-
brary such as StarLogo5, NetLogo6, or Breve7.
We typically needed to run many (>100,000) simula-

tion runs to optimize model parameters or perform ma-
chine learning in a multi-agent problem domain. In such
cases we had to “cook” the simulations on multiple back-
end servers (in Linux, Solaris, and MacOS X), while oc-
casionally viewing the results on a front-end MacOS X or
Windows workstation. This required speed, the ability to
migrate a simulation run from platform to platform, and
(for our purposes) guaranteed platform-independence. Fur-
ther, we needed to be able to customize the simulation to a
wide range of multi-agent simulation environments. Exist-
ing systems did not meet these needs well, either because
they tied the model to the GUI too closely, could not guar-
antee platform-independent results, or being written in an
interpreted language, were slow. Additionally, many such
systems, particularly the robotics simulators, were by-and-
large geared to a particular problem domain. Rather than re-
move special-purpose code from an existing system (poten-
tially introducing bugs), we instead hoped to build on top of
a simple, general-purpose simulator.
Given MASON’s motivations in large-scale parallel

simulation, easy “hackability”, and domain-independence
(within the aegis of multi-agent simulation), its design goals
were as follows:

1 www.teambots.org
2 www.swarm.org
3 www.brook.edu/dybdocroot/es/dynamics/models/ascape
4 www.repast.org
5 education.mit.edu/starlogo
6 ccl.sesp.northwestern.edu/netlogo/
7 www.spiderland.org

• A small, fast, easily understood, and easily modified
core.

• Separate, extensible visualization in 2D and 3D.
• Production of identical results independent of plat-
form.

• Checkpointing any model to disk such that it can be re-
sumed on any platform with or without visualization.

• Efficient support for up to a million agents without vi-
sualization.

• Efficient support for as many agents as possible under
visualization.

• Easy embedding into larger existing libraries, includ-
ing having multiple instantiations of the system co-
existing in memory.

There were three design goals we explicitly did notmake
for MASON. First, we did not intend to include paralleliza-
tion of a single simulation across multiple networked pro-
cessors. Such an architecture is radically different than a
single-process architecture. Second, we intended the MA-
SON core to be simple and small, and so did not provide
built-in features special to social agents or robotics simu-
lators. We felt such things were more appropriately offered
as optional domain-specific modules in the future. Third, al-
though we tried to be reasonably memory-efficient, this was
not a priority.

3. Architecture

MASON is written in Java in order to take advantage of
its portability, strict math and type definitions (to guaran-
tee duplicatable results), and object serialization (to check-
point out simulations). Java has an undeserved reputation
for slowness; and our past experience in developing the ECJ

Visualization Tools

Model Running
on Back-End

Platform

Model Running
under Visualization
on User's Platform

Disk

Checkpointed

Recovered

Checkpointed

Recovered

Figure 2. Checkpointing and recovering a
MASON model to be run standalone or un-
der different kinds of visualization.

evolutionary computation toolkit [5] suggested (correctly)
that carefully-written Java code can be surprisingly fast.
The toolkit is written in a modular, layered architecture,

as shown in Figure 1. At the bottom are a set of utility data
structures which may be used for any purpose. Next comes
the model layer, a small collection of classes consisting of a
discrete-event schedule, a high-quality random number gen-
erator, and a variety of fields which hold objects and asso-
ciate them with locations. This code alone is sufficient to
write basic simulations running on the command line.
The visualization layer allows for display of fields and

user control of the simulation. Some examples of visual-
ized fields are shown in Figure 3. A bright line separates
the model layer from the visualization layer: a suite of
tools which allow runtime drawing and manipulation of the
model. This allows us to treat the model as a self-contained
entity. We may, at any time, separate the model from the vi-
sualization, checkpoint the model to disk, move it to a dif-
ferent platform and let it continue to run, or attach an en-
tirely different visualization collection. Figure 2 shows this
procedure.
All elements of MASON’s model and visualization lay-

ers are self-contained and may be easily replaced or ex-
tended.

3.1. The Model Layer

MASON’s model layer has no dependencies on the vi-
sualization layer and can be entirely separated from it.
A MASON model is entirely contained within a single
instance of a user-defined subclass of MASON’s model
class (SimState). This instance contains a discrete-event
schedule and zero or more fields.
Agents and the Schedule MASON employs a specific us-
age of the term agent: a computational entity which may
be scheduled to perform some action, and which can ma-
nipulate the environment. Note that we do not explicitly
state that the agent is physically in the environment, though
it may be; in this case we would refer to the agent as an
embodied agent. Agents are brains, and do not need to be
bodies. MASON does not schedule events on the sched-
ule to send to an agent; rather it schedules the agent itself.

Figure 3. Visualized fields in MASON, show-
ing various forms of 2D and 3D continuous
and discrete space.

Scheduling an agent multiple times for different functions
is easily done with an anonymous wrapper class.
MASON does not provide subschedules; instead, other

facilities perform similar functions. Specifically, MASON
provides various wrappers which can group agents together,
iterate them, perform them in parallel on separate threads,
etc. The schedule also allows for subdivisions of a single
time tick.
Fields MASON’s fields relate arbitrary objects or values
with locations in some notional space. Many of these fields
are little more than wrappers for simple 2D or 3D arrays.
Others provide sparse relationships. An object may exist in
multiple fields at one time (and, for some fields, in the same
field more than once). The use of fields is entirely optional,
and the user can add additional fields. MASON provides
fields for:

• 2D and 3D arrays of objects, integers or doubles which
are bounded or toroidal; and with hexagonal, triangu-
lar, or square layouts.

• 2D and 3D sparsely populated object grids which are
bounded, unbounded, or toroidal; and with hexagonal,
triangular, or square layouts.

• 2D and 3D sparse continuous (real-valued) space.
• Directed networks (graphs).

Figure 4. Network Intrusionmodel: the physical (left) and logical (center) spaces, together with statis-
tics on intrusions and compromised systems (right).

3.2. The Visualization Layer

Objects in the visualization layer may examine model-
layer objects only with the permission of a gatekeeper wrap-
per around the SimState called a GUIState. It is this
class which can detach the model entirely and serialize the
SimState to or from disk. As certain objects in the visual-
ization world need to be scheduled (windows notably need
to refresh themselves to reflect changes in the model), the
GUIState also provides its own mini-schedule which is
kept in sync with the model’s underlying schedule. This al-
lows the visualization layer to be entirely separate from the
model.
MASON performs visualization through one or more

displays, GUI windows which provide 2D and 3D views on
underlying fields. Displays have a many-to-many relation-
ship with fields, and 3D displays may visualize 2D fields as
well. Each display holds one or more field portrayals, pro-
vided proxy objects responsible for drawing fields and al-
lowing the user to inspect or change their contents. There is
a many-to-one relationship between field portrayals and un-
derlying fields.
In turn, the field portrayals portray their fields by call-

ing up simple portrayals responsible for drawing or inspect-
ing various kinds of objects stored in the fields. Objects may
serve as their own portrayals but do not have to. There is a
many-to-many relationship between simple portrayals and
their underlying objects stored in fields. Portrayals also al-
low for inspectors (what SWARM would call “probes”) of
underlying model objects. The model itself also may have
a global inspector. Inspection is done through Java’s Bean
Properties facility.
MASON provides an elaborate Console, a graphi-

cal interface widget which makes it easy for the user to

start/stop/pause/step the schedule, to load and save serial-
ized models, to show and hide displays, to load different
simulations, and to view inspectors. The Console is not
required and can be replaced with simpler implementations.

4. Using and Extending MASON

Because of the separation, MASON models are usually
created in two stages. First, the author develops the model
proper simply as a self-contained subclass of SimState,
complete with a boilerplate command-line loop which starts
the simulation, steps the schedule, and then closes down.
After this code is completed, the MASON model should be
able to run on the command line as a self-contained GUI-
less application. Second, the author creates a GUIState to
encapsulate the SimState, attaching portrayals and dis-
plays. At this point, the simulation can be also visualized.
MASON was specifically designed to be easily devel-

oped into a custom-purpose simulator, and only provides
core tools common to most simulation needs. We have two
branches of active development on the system. First, MA-
SON does not provide tools such as graphing and chart-
ing or statistical facilities. Instead was have relied on well-
established libraries such as ptplot or JClass Chart which
are very easily integratable into MASON.We intend to keep
the MASON core clean, and so our plan is to provide wrap-
per code for such tasks as a separate downloadable module.
Second, we are very interested in extending MASON to

be used as a core in robotics or physical simulations similar
to those in Breve or Player/Stage. We are planning to define
as a field an existing Java physics engine, and to provide 3D
visualization of the field.

5. Applications

MASON has existed for a little over a year at GMU; but
we have already used it for a number of simulation tasks
ranging from micro-air vehicle coordination to models of
virus propagation. Here we will mention a few of interest.
Most such are discrete-grid simulation worlds common to
SWARM and related simulators; but one (cooperative tar-
get observation) has more in common with robotics simula-
tors such as TeamBots.

5.1. Network Intrusion and Countermeasures

NetInt is an agent-based model designed to study com-
puter network security issues, originally developed in As-
cape and then ported to MASON by an inexperienced MA-
SON developer to test the difficulty and speed of porting
to the new system (with, we felt, very positive results).
The current version models a network of 2500 computer
systems connected via two overlaid topologies: IP address
space (or physical space), and remote login space. In this
space live two kinds of agents: computer systems and one
or more hackers. Each computer system contains a set of
security policies implemented when the system is believed
to be compromised. Different computers may have differ-
ent levels of security. The hacker agents have various levels
of ability to break into systems at different rates. Initially, a
hacker starts in control of a single computer.
A computer may be classified as secure (recall that there

are several levels of security possible). Alternatively, com-
puters may be classified as insecure, and there are several
types that fall into this category. First, a computer system
may be threatened, in the sense that a nearby computer (in
either physical or logical space) has been compromised.
Second, the system may be compromised at a lower-user
level, in which case the attacker does not have (yet) too
many privileges. Third and last, a computer may be com-
promised at the super-user level.
The parameters of the model allow one to understand the

effects of changes in security policies as well as the effects
of changes in hacker behavior. Figure 4 shows a snapshot
of a simulation. The left and center panels show the physi-
cal and the logical spaces of computer systems. The right-
most panel shows the number of intrusions detected as the
simulation progresses. For the sets of policies used in this
experiment, we can observe a rapid increase in the number
of threatened and compromised systems, peaking at 200 af-
fected systems. At this point, the security policies start iden-
tifying, isolating and fixing the affected computers, leading
to a decrease both in the number of threatened and compro-
mised systems.

Figure 5. Cooperative Target Observation
model. Small doubly-circled dots are ob-
servers. Outer circles are their observation
ranges. Large dots are targets. Straight lines
connect observers with newly-chosen de-
sired destinations.

5.2. Cooperative Target Observation in
Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) present a variety of in-
teresting problems in cooperative robotics. In recent exper-
iments [6] we examined the effectiveness of various algo-
rithms in performing cooperative target observation (CTO).
In our problem formulation, mobile UAV agents (called ob-
servers) collectively attempt to stay within an “observation
range” of as many targets as possible. The targets wander
randomly and are slower than the observers. The environ-
ment is bounded and clear of obstacles. Observers know the
positions of all other observers and targets in the environ-
ment.
The CTO environment is shown in Figure 5. We used

this environment to examine “tunably decentralized” coop-
erative algorithms, whereby changing a parameter we could
gradually shift the algorithm from one global decision-
making procedure to separate per-agent procedures. We ex-
amined two such algorithms for controlling the observers,
based on K-means clustering and hill-climbing respectively,
under combinations of decentralization, target velocity, rate
of decision-making, and observation sensor range, yielding
4050 simulation runs all told.

Figure 6. Ant foraging with two obstacles:
early (left) and late (right) snapshots of the
simulation

Figure 7. Panels from the Anthrax Propaga-
tion model: (left) original SWARM model and
(right) MASON replication.

As both algorithms are tunably decentralized in a sim-
ilar fashion, we expected that both would degrade in the
same way: but this was not at all the case. Surprisingly, hill-
climbing was sensitive to the degree of decentralization, but
K-means was not. This was the case even though neither al-
gorithm was uniformly superior to the other across all prob-
lem settings. We also considered the two in combination:
K-means clustering followed by hill-climbing, which pro-
duced results as good as either of the two separately.

5.3. Ant Foraging

Swarm behavior algorithms are increasingly popular ap-
proaches to clustering and foraging tasks in multi-agent and
robotics research [1, 4], and have served as inspiration for
new kinds of population-oriented optimization methods [2].
We have recently examined how to augment swarm behav-
iors with pheromones to perform foraging tasks. Specifi-
cally our agents perform ant-like “central place food forag-
ing”, whereby agents leave a nest to search for food, then

return to the nest laden with food. To assist them in their
task, the agents deposit pheromones on the ground and re-
spond to pheromone signals in various ways.
We are interested in adapting the concept of pheromones

to various artificial-agent tasks. Our model differed from
previous biologically-realistic approaches in that our “ants”
used two pheromones: one to repeatedly find the food
source, and another to locate the nest. When searching
for food, the ant lays down a pheromone gradient to the
nest while following a to-food gradient set up by the other
pheromone. When returning to the nest, the opposite action
occurs. The resulting algorithm is formal and efficient.
Figure 6 shows a typical 100x100 cell environment with

one thousand ants, a nest (bottom right), a food source (top
left), and two large elliptic obstacles. The ants cooperatively
discover and optimize to a minimum-length trail. Our exper-
iments in this environment [8] suggested that pheromones
bear a strong resemblence to utility value functions found in
dynamic programming and reinforcement learning. Indeed,
the best pheromone-update functions we have discovered
have an unusual kinship to value iteration and TD-learning
equations.
Using these methods, we have developed ant trails which

perform rapid local optimization, global search, and dy-
namic updating as food sources move or deplete or new ob-
stacles appear in the environment. With more pheromones,
the ants can also learn complex tours with multiple way-
points and self-intersecting paths.
We have also experimented with letting the computer

search for and optimize these behaviors on its own. For this
purpose, we connected MASON to the ECJ evolutionary
computation system [5]. ECJ handled the main evolutionary
loop: an “individual” (a candidate solution) took the form
of a set of ant behaviors that was applied to each ant in the
colony. To assess the quality of an individual, ECJ spawned
a MASON simulation with the specified ant behaviors. The
simulation was run for several hundred timesteps. At the
end of the simulation, the amount of food foraged indicated
the individual’s fitness. More details on these experiments
are reported in [7].

5.4. Anthrax Propagation in the Human Body

The interaction between pathogens and infected hosts is
usually investigated using laboratory and live studies. But
for some diseases, like inhalation anthrax, live studies are
not possible due to their deadly effects. After examining
laboratory studies we developed an agent-based model that
would help researchers to simulate the spread of one such
pathogen (anthrax) through various human organs, to test
intervention strategies, and to explore what-if scenarios.
The onset, duration and outcome of inhalation anthrax is

a complex dynamic process. We modeled the disease as a

(a) Composite

(b) Moisture (c) Food

(d) Shelter (e) Agents

Figure 8. Wetlands initial visualization and layers. Composite visualization (a) consisting of moisture
layer (b), food sites layer (c), shelter sites layer (d), and agents layer (e). Agents are mobile but all en-
vironmental components are fixed in Wetlands 1.1 (though environmental components may change
in value).

series of discrete events that map out a time course for in-
fection in the human body. Different systems in the human
body which play a role in inhalation anthrax are modeled
as spatial entities to show how the anthrax disease flows
through the body. Each sytem has its own properties and in-
teracts with anthrax spores that invade their space as well
as with the other systems connected to them. The systems
modeled are the lungs, primary and media stinam lymph
nodes, liver, spleen, and circulatory system.
The dynamics of these interactions are visually displayed

in the form of agents interacting with the systems. Each dif-
ferent colored square represent a type of agent in a system
(anthrax spores, various cells, etc.). The system also dis-
plays statistics on the interactions of the systems and on the
patient’s health and disease state.
The Anthrax model was developed originally using

SWARM in Objective-C, but was rewritten in its entirety
in MASON in order to take advantage of various MASON
control and inspection features. The individual performing
the port had no previous knowledge of MASON at all, but
reported that the port was was fairly easy as MASON has a
similar scheduling mechanism as SWARM. Figure 7 shows

before-and-after screenshots of two of the many Anthrax
panels.

5.5. Wetlands: a Model of Memory and Primitive
Social Behavior

How does group memory affect sociality? Most compu-
tational multi-agent social simulation models are designed
with agents lacking explicit internal information-processing
structure in terms of basic cognitive elements. In particular,
memory is usually not explicitly modeled. In the MASON
Wetlands model, (earlier called Floodland [9]), we pre-
sented initial results from memory experiments designed to
investigate the effect of group memory structures and inter-
action situations on emergent patterns of sociality or collec-
tive intentionality. Specifically, we used theWetlands model
to carry out initial computational experiments conducted
on culturally-differentiated agents endowed with finite and
degradable memory that simulate bounded mnemonic func-
tion and forgetfulness. Our main initial findings thus far
are that memory capacity and engram retention both pro-

mote sociality among groups, probably as nonlinear (in-
verse) functions [3].
Groups of agents look for food, which is generated by a

moisture layer in the simulated landscape, and seek shelter
when they get too wet. However, since agents consume en-
ergy as they live and move around, this creates a dynamic
system of forces towards sources of food and shelter. In ad-
dition, groups of the same culture share information about
food and shelter location, in order to mimic some minimal
social in-group vs. out-group behaviors.
We are planning a number of future experiments: the

memory structure of agents can be designed with richer
structure and functionality, to mimic group memory. Group-
level effects, such as groupthink and risky shift, are possi-
bilities we will explore.

6. Conclusion

In this paper we presented MASON, a multi-agent sim-
ulation library written in Java. MASON is fast, portable,
has a small core, and produces guaranteed replicable results.
MASON is also designed to completely separate the model
from the visualization dynamically, or to reattach it, to mi-
grate the simulation to another platform in the middle of a
run, and to provide visualization in 2D or in 3D. We also
showed five applications of MASON highlighting the wide
applicability of the toolkit. Two of the applications are ports
of previous simulation models from Ascape and SWARM.
We plan to position MASON as principled foundation

for future multi-agent simulation systems to build upon.
MASON is free open source under a BSD-style license, and
is available at http://cs.gmu.edu/∼eclab/projects/mason/

Acknowledgements

Our thanks to Ken De Jong and Jayshree Sarma for their
assistance in the development of the paper. Thanks also to
MASON developers: Gabriel Catalin Balan wrote much of
the 3D code, and Daniel Kuebrich wrote applications and
Quicktime support. Thanks also to application writers for
their assistance: the Network Intrusion model was writ-
ten by Elena Popovici, the Anthrax model was written by
Jayshree Sarma and Elena Popovici, the CTO model was
written in part by Gabriel Catalin Balan, and the Wetlands
model was written by Sean Paus.

References

[1] R. Beckers, O. E. Holland, and Jean-Louis Deneubourg.
From local actions to global tasks: Stigmergy and col-
lective robotics. In Artificial Life IV: Proceedings of the
International Workshop on the Synthesis and Simula-
tion of Living Systems , third edition. MIT Press, 1994.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm In-
telligence: From Natural to Artificial Systems. Santa
Fe Institute Studies in the Sciences of Complexity. Ox-
ford University Press, 1999.

[3] Claudio Cioffi-Revilla, Sean Paus, Sean Luke, James
Olds, and Jason Thomas.

[4] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-
Franks, C. Detrain, and L. Chretien. The dynamics of
collective sorting: Robot-like ants and ant-like robots.
In From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Be-
havior, pages 356–363. MIT Press, 1991.

[5] Sean Luke. ECJ 11: A Java evolutionary computation
library. http://cs.gmu.edu/∼eclab/projects/ecj/, 2004.

[6] Sean Luke, Keith Sullivan, Gabriel Catalin Balan,
and Liviu Panait. Tunably decentralized algorithms
for cooperative target observation. Technical Report
GMU-CS-TR-2004-1,Department of Computer Sci-
ence, George Mason University, 2004.

[7] Liviu Panait and Sean Luke. Evolving ant foraging be-
haviors. In Proceedings of the Ninth International Con-
ference on the Simulation and Synthesis of Living Sys-
tems (ALIFE9), 2004.

[8] Liviu Panait and Sean Luke. A pheromone-based utility
model for collaborative foraging. In Proceedings of the
Third International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS-2004), 2004.

[9] Sean Paus. Floodland: A simple simulation environ-
ment for evolving agent behavior. Technical report, De-
partment of Computer Science, George Mason Univer-
sity, Fairfax, 2003.

