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ABSTRACT

What if traffic lights gave you a break after you’ve spent a long
time waiting in traffic elsewhere? In this paper we examine a vari-
ety of multi-agent traffic light controllers which consider vehicles’
past stopped-at-red histories. For example, a controller might dis-
tribute credits to cars as they wait and award the green light to lanes
with the most credits, allowing cars to keep the credits they accu-
mulate during travel. Such history-based controllers are intended
to provide a kind of global fairness, reducing the variance in mean
time spent waiting at lights during trips. We compare these con-
trollers against other multi-agent controllers which only consider
present information, and discover, among other things, that while
the history-based controllers are among the most robust, they often
unexpectedly provide more efficiency than fairness.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Miscellaneous

General Terms
Algorithms

Keywords

fairness, efficiency-fairness tradeoff, urban traffic control, traffic
light controller.

1. INTRODUCTION

You have just spent a long time downtown stopped in gridlocked
traffic. As you travel home, shouldn’t traffic light controllers rec-
ognize this fact and award you the green light, to spread the pain
more evenly? This is the idea behind history-based traffic control.
Such a traffic controller would take into consideration a vehicle’s
past stopped-at-red history elsewhere, increasing the fairness with
which vehicles are dealt globally on a per-trip basis.

Fairness can be a highly desirable trait: citizens of a town may
desire a system which attempts to give every driver approximately
the same percentage of waiting-time. But with a few exceptions
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[13, 15, 18], the literature has instead largely focused on some no-
tion of system-wide efficiency, which might translate into lower
emission levels, higher average speed, lower probability of stop-
ping, etc. We imagine this lack of study is because fairness is not an
easy thing to implement with existing hard-wired traffic controllers.
But if one instead views these controllers in a multi-agent context,
with vehicles (and their histories) traveling from controller-agent to
controller-agent, then a variety of history-based methods become
evident which we will argue notionally provide a kind of fairness.
In this paper we compare various multi-agent traffic controllers, in-
cluding history-based ones, and examine the degree to which they
are fair and/or efficient.

The idea behind multi-agent traffic control is to develop a good
emergent macro-level traffic-control behavior out of the micro-
behaviors of the individual traffic lights. But traffic lights typically
“live in the now”: they know little of where specific vehicles have
been and where they plan to go. At best, such controllers may
use past historical information about vehicles in the aggregate, and
perhaps heuristic information about likely future traffic patterns.
Some past work [21, 22] has explored what happens when traffic
light controllers are instead told of trip plans by the drivers: but we
think it may not be reasonable to demand such information of the
drivers. However, it is plausible to collect information about vehi-
cles’ immediate past histories to help inform the controllers, given
reasonable privacy restrictions. This allows traffic controllers to
communicate with one another, in some sense, through the imme-
diate histories of cars as they travel from intersection to intersec-
tion.

We introduce this notion of historical fairness by allowing cars
to store “credits” they receive when waiting at red lights, and cash
the credits in when passing through intersections. Traffic lights
base their decisions on the credits of various cars at the intersec-
tion. We also examine history methods which consider the mean
waiting time the vehicles have spent at intersections so far along
their respective trips. We compare these various methods against
two non-history-based methods from the literature: one awards the
green light to the lanes with more cars, and the other one prefers
the lanes where cars have spent the longest time waiting.

In focusing on the effect of using “history” from a multi-agent
perspective, our simplified experimental setup ignores a variety of
important game theoretical and modeling issues which may be use-
ful to study in the future. For example, we treat drivers as non-
adaptive entities, while real drivers have varying risk attitudes and
exhibit adaptive behavior, all of which present complex, difficult-
to-model issues [14, 16, 19]. Even so, we believe that the concept
of credits as history may be useful in the abstract in various other
multi-agent scenarios involving, among other things, network re-
source allocation [23], package delivery, etc.



As we discuss later in the paper, our history-based traffic con-
trol methods perform well, but often in surprising ways. Notably,
though they were designed to provide fairness, several unexpect-
edly reside in the efficiency side of the efficiency-fairness spectrum!

The paper is organized as follows: Section 2 discusses related
work. Section 3 introduces our simulation model. Section 4 de-
scribes the various traffic-control micro-behaviors in the study.
The experiments, comparison metrics, and experimental results are
given in Section 5, followed by conclusions in Section 6.

2. RELATED WORK

In this paper we will refer to the traffic controller of an entire
intersection as a traffic light. A traffic light pattern is a combination
of red and green lights for each incoming lane that prevents cars
from crashing into one another. The interval of time allotted to a
pattern is called a phase.

The most common metrics used in the traffic light literature are
waiting time [1, 8,9, 12, 18, 22], delay (the difference between the
minimum possible travel time and the actual travel time, including
acceleration and deceleration delays) [5, 15, 20], and travel time [1,
8, 9, 15]. Other popular metrics are percentage of stopped cars [11,
201, density of cars [3, 7, 6, 10] and global flow [2] (global density
times average speed).

One may view efficiency and fairness as the mean and variance,
respectively, of these various metrics. Nearly all the literature has
concentrated on efficiency (the mean); and fairness has been only
lightly studied. Exceptions include: Liu et al [15] analyzed their
controllers’ efficiency and fairness separately; and Krogh et al [13]
and Montana and Czerwinski [18] combined the two into a single
measure.

The notion of “fairness” used in Liu et al deals with cars wait-
ing at a single isolated intersection. The cars’ delays are averaged
per lane! and the fairness is the standard deviation of the lanes’ ex-
pected delays. We instead are interested in fairness (and efficiency)
spread throughout a multi-traffic-light system. Thus our efficiency
and fairness measures will be largely based on the mean of waiting
times at the intersections along a vehicle’s trip. This is the “trip
waiting time” metric used in [21, 22], but normalized by the num-
ber of intersections in the trip.

It is worthwhile mentioning a very popular paradigm in urban
traffic control, the “green wave,” which coordinates traffic lights so
that cars traveling at a certain speed go across those intersections
without stopping. The green-wave phenomena cannot be achieved
along all streets simultaneously, so traditionally it is used for heavy-
flow arteries with light flow intersecting streets. A more general ap-
proach is to dynamically decide the sets of intersections that should
coordinate. For example in [6] the traffic lights run a distributed
constraint satisfaction algorithm to get ad-hoc green-waves.

There have been some efforts to achieve green-waves with im-
plicit communication through density or flow. The idea is to pro-
vide an emergent green wave through coordinated behaviors. Baz-
zan’s [3] traffic lights are self-interested agents that learn to coor-
dinate with their neighboring traffic lights by playing coordination
games. Gershenson’s [11] basic control method changes to green
when the total time spent by cars approaching or waiting at the red
light exceeds a given threshold. Large enough “platoons” of cars
move from light to light, causing it to turn green by their sheer
mass, resulting in emergent green waves. This notion is closely
related to our new history-based methods presented later.

IThe authors actually used the concept of a movement, which is
an incoming lane or a group of incoming lanes sending cars in the
same direction.

3. THE URBAN TRAFFIC MODEL

We use a network model to simulate traffic flow. Nodes in the
network are intersections, each one manned by a traffic light. Edges
in the network are one-way road segments, each with a specified
length, connecting intersections. Two-way road segments are mod-
eled by using two edges, one in each direction.

On this network travel cars. When a car starts along an edge, it
waits for a period of time equal to how long it would take to drive
along the road to the next intersection. At that point it emerges and
is placed into one of several queues depending on its desired action
at that intersection. More formally, for each pair of edges (a,b)
at an intersection, there is a queue a—»b into which cars emerging
from the edge a are placed while they wait for permission to start
traveling on b. Queues may be thought of as the intersections’ var-
ious turn and go-straight lanes of movement.

Our motivation for using a course-grained network of queues,
rather than a fine-grained cellular-automaton-style grid of cells, is
twofold. First and foremost, it permits the simulation to run much
faster. Second, it allows us to choose whether or not to model indi-
vidual road segments’ capacities (we have declined to do $02). We
also believe that a similar network structure may be applicable to
other relatively unrelated domains, such as entry/exit policies for
internet routers [23].

This means that the simulation is neither micro-level nor macro-
level. Unlike in [2, 11, 21, 22], we do not explicitly model the
movement of cars along road segments. We also make many sim-
plifying assumptions a micro-level model would not make: for ex-
ample, our cars all run at the same speed regardless of traffic density
or road capacity. Further, as we do not consider road capacity, we
only examine traffic flow difficulties due to long waits at stoplights.
However, we do model cars and traffic lights explicitly, rather than
treating them as flow in a macro-level dynamical systems model.

There is a constant number of cars traveling at any time along
the streets, each following a predetermined #rip from an origin in-
tersection to a destination intersection. At the start of the simu-
lation, cars’ starting points are randomly chosen from the set of
intersections. As a car’s trip begins, the car is simply placed on
its first edge, and when it completes its last edge, its trip is over
(thus the car is not involved in queues at its start or destination).
After a car has completed its trip, its former destination becomes
the origin of the next trip, and a new destination is chosen at ran-
dom from among all intersections (excluding the origin). After a
trip destination is selected, drivers choose from among two ways to
plan the trip route. With 40% probability, drivers will build a trip
by incrementally adding to the path a randomly-selected intersec-
tion from the set of neighbors that minimize the remaining distance
to the destination. With 60% probability, the driver will choose
a shortest path with the fewest turns (at most one turn for a two
way orthogonal street grid); when there are two such solutions, the
driver selects the one whose turn takes place furthest from the city
center. The intuition here is that the center of the city is so crowded
(mostly with drivers using the first behavior), that there are some
drivers who (modeled with the second behavior) prefer to avoid it.3

Intersections. Every twenty seconds (in simulation time), each
traffic light individually considers whether to change its pattern. A
traffic light may choose between every possible pattern (meaning

2Specifying capacities is more realistic, but unless the drivers are
capable of re-routing, capacities can produce artificial deadlocks.
3We recognize that in a more sophisticated scenario, drivers would
base routes on previous experience and common places to travel
[21,22].



Figure 1: Example (4x4) Street Layout.

maximal set of non-conflicting queues). Two queues are said to
conflict if cars leaving those queues might collide, either because
cars in each queue are entering the same edge, or because the car
trajectories intersect with one another. In the intersection Ea :
between road segments a, b, ¢, and d, the queue a—b conflicts with,
among others, the queues c—d (obviously), c—b (because they
both enter b), and b—c (because, assuming drivers drive on the
right-hand side, b—c cars turn into the a—b traffic). On the other
hand, a—b does not conflict with a—c, a—d, b—a, d—a, or b—d.
It also does not conflict with c—c¢, d—d, or a—a either, but in this
paper paths do not make U-turns, so these queues are always empty.

If a queue awarded the green light was not awarded one in the
previous phase (its light was red then), it must wait for 5 seconds
while conflicting queues clear the intersection (obstensibly during
their yellow light period) before the green light may commence.
Thus a light changing from red to green has only a 15-second green
period, while a light staying green has a 20-second green period.
While a light is green, cars waiting in the corresponding queue are
removed one by one and permitted to enter the intersection with a
three-second “acceleration penalty” corresponding to getting back
up to speed after being stopped at the light. Thus in a 15-second
green period five cars can traverse the intersection, but during a 20-
second green period six cars can do so. If a car is approaching an
intersection and the appropriate queue is empty, the car is allowed
to go through at full-speed (with no 3-second penalty). The limit of
five (six) cars going through per phase and per lane applies to any
combination of cars removed from the queue and cars finding the
queue empty and going through full speed.

In our model, all roads are two-way streets, laid out along an
orthogonal mesh akin to a downtown city grid (see Figure 1). The
blocks are squares, each 0.25 miles on a side. The traffic lights have
0.125 mile sensor ranges, inside which they may discern approach-
ing cars and their desired intersection queues (imagine that turn
lanes start 0.125 miles out and sensors are positioned where they
start). All cars travel at 25 mph, so they need 36 seconds to cover
the segment between two intersections. Regardless of whether they
go straight or turn, all cars need exactly 5 seconds to traverse the
intersection (not including the acceleration penalty).

4. THE TRAFFIC LIGHT CONTROLLERS

We divide the traffic light controller function into two subfunc-
tions. The first subfunction assigns a score to each pattern. The
second subfunction selects the winning pattern based on the pat-
terns’ scores.

The second subfunction uses one of two winner-selection meth-
ods: a deterministic method and a stochastic method. In the de-
terministic method, the pattern with the highest total score is the
winner; in case of a tie, the winning pattern is the one with most

cars in its queues; further ties are broken at random. The stochastic
method uses roulette selection: the probability that a pattern will
win is proportional to its total score. If all patterns have a score of
0, the pattern with more cars in its queues wins, and further ties are
again broken at random. A light only bothers to select a new winner
if cars are actually waiting at or approaching the intersection.

The first subfunction is called the scoring function, and assigns
each pattern a score equal to the total points assigned to cars within
the sensor range of the queues receiving the green light in that pat-
tern. We examine the following score functions in combination
with the aforementioned winner selection methods:

Counting Cars (CC). Each car yields one point. As a result,
this controller defines scores simply as the total number of cars
within the queues’ collective sensor range. We include it as a base-
line for our comparisons because it is the simplest and most intu-
itive adaptive traffic controller. Counting Cars was used in [4, 22].

In-Range Time (IRT). A car’s points are equal to the length of
time that has transpired since it was picked up by the queue sen-
sors at the current intersection. This is a generalization of Ger-
shenson’s method [11], which only worked with two one-way road
intersections. In-Range Time is also closely related to a notion of
pheromones applied in [7]. There, cars deposit pheromones as they
wait, and the traffic light controller makes a decision based on the
total level of pheromones in each lane.

Mean Waiting Time (MWT). This is our first history-based
method. The car’s points are equal to its mean time spent waiting
at intersections in its trip so far, including the current intersection.

Previous Mean Waiting Time (PMWT). This is our second
history-based method. The car’s points are equal to its average
waiting time over the previous intersections of the trip but not in-
cluding the current intersection. When at its first intersection of the
trip, the car’s score is the global mean waiting time over all intersec-
tions in that simulation run. In some sense, MWT=~ PMWT + IRT.

Credit Methods (CREDIT). These are our final history-based
methods. The car’s points are defined as accumulated “credits”
which it receives from, and pays back to, various traffic light con-
trollers. There are four credit-disbursement methods, each a com-
bination of the following two parameters:

e How are cars compensated for receiving the red light? 1If
using the general-sum policy, after every phase (20 seconds),
the cars in the lane of a red traffic light each receive one
credit, and cars passing through a green light must pay the
traffic light 5 credits or the car’s accumulated credit wealth,
whichever is smaller. If using the zero-sum policy, after every
phase, cars passing through must again pay up to 5 credits as
before, and the total credits paid to the intersection at that
phase are in turn distributed evenly among cars in red-light
lanes at that intersection. If no car is waiting at red, the zero-
sum policy will not require a green-light car to pay anything.

e How many credits does a car have initially? At the start of a
trip, a car’s credit wealth is reset to either /0 or 100 credits.

The values for the parameters of the CREDIT controllers were
chosen ad-hoc, and we made no effort to tune them. We note that
CREDIT can easily accommodate emergency vehicles and public
transportation by endowing special vehicles with unusual numbers
of credits, or weighting their credits appropriately.



Grid size | Load «—More Efficient Pareto Front More Fair—
31 CR(100, G)
62 CR(100, G)
125 CR(100, G)
250 CR(100, G) IRT

10%10 500 CR(100, G) IRT MWT
1K CR(100, G) CR(10, G) IRT MWT
2K CR(100,G) CR(100,Z) CR(10,G) MWT
4K CR(10, G) IRT
8K | PMWT CR(10,2) IRT MWT CR(10, Z)
16K | PMWT CR(10,Z) IRT IRT CR(10,Z) CR(10, G)
31 CR(100, G) CR(10, G) IRT
62 CR(100, G) CR(10, G) IRT
125 CR(10, G) IRT

4x4 250 CR(10,G) CR(10,Z) IRT MWT
500 CR(100,Z) CR(10,G) CR(10,Z) IRT MWT
1K | PMWT MWT IRT MWT
2K | PMWT CR(10,7) IRT MWT CR(10, G)

Table 1: Pareto fronts for all combinations of city size and workload level. The controllers using the stochastic selection are shown
with a gray background, while no background is used for the deterministic selection controllers. The CREDIT variants are depicted as
CR(E,P), where E is the initial endowment of credits and P is the policy (either Z for zero-sum or G for general-sum compensation).

5. EXPERIMENTS

We tested the traffic light controllers under different city grid
sizes and demand levels (what we refer to as the workload: the
number of cars on the streets). We experimented with two scenarios
based on the size of the city grid: 4 x4 and 10x10. As mentioned
in Section 3, we used a closed model to generate the workload, so
the number of cars was constant throughout a simulation run. In
our experiments we chose the following workload levels: 31, 62,
125, 250, 500, 1000, and 2000. For the 10x 10 scenario we also
used 4000, 8000, and 16000.

All presented results are based on 100 independent runs for each
combination of city grid scenario, workload level, and traffic light
controller. We ran each simulation for 1000000 seconds (approx-
imately 11.5 days of simulated time). The reason for such a large
simulation length is the stochastic nature of the traffic light con-
trollers and route selection, requiring a large sample to accurately
compare the traffic light controllers. In order to eliminate the
boundary conditions at the beginning of a run, we discarded the
data for those trips finished within the first 500 seconds of each
run. Simulations were performed using the MASON multi-agent
simulation toolkit [17].

5.1 Comparison methodology

When a car reaches its destination, it reports its average waiting
time over all intersections along the trip. This statistic is the nor-
malized version of the average trip waiting time (“ATWT”) used in
[21,22].# Of interest to us is the distribution of this statistic over all
trips: we use the mean and standard deviation of the distribution as
our measures of efficiency and fairness, respectively, in the system.

We used a pareto-dominance criterion to compare two methods:
method A is superior to method B if it is at least as good in both
metrics and better in at least one metric. By “better” we mean
statistically significantly superior to, and by “at least as good” we
will mean significantly superior to or not significantly distinguish-
able from. Since the efficiency and fairness of a controller are

4Using the roral trip waiting time as our statistic would make
drivers on a short trip expect the same total delays as the ones on
very long trips, which we felt was unreasonable.

distribution samples, we needed a statistical analysis mechanism
to assess the Pareto-dominance relationships. We used unequal-
variance repeated t-tests with a Bonferroni-corrected significance
level ox = 2.31481 x 10‘6, which exceeded a 99% confidence in
the correctness of the entire set of results presented in this paper.

5.2 Results

Table 1 contains the Pareto fronts for all the city size/workload
level combinations. We have taken the liberty of spacing the items
in the fronts so that occurrences of the same controller are on the
same column. There is no special meaning behind this other than
our attempt to make the table easier to read. See Figure 2 for rep-
resentative examples of what the fronts actually look like.

Overall, the results are very promising for the CREDIT controller,
as its variants appear in the Pareto fronts in all our scenarios but one
(4 x4 grid, 1000 load). In general, CREDIT seems to be a versatile
controller, adapting well to both high and low workloads.

An analysis of Table 1 reveals some interesting observations.
The most interesting one is that although we expected the history-
aware controllers to be fair at the cost of efficiency, some variants
proved to be more efficient than the history-oblivious controllers.
Most unexpected is PMWT being the most efficient controller for
the highest workloads. We did not expect this because PMWT ig-
nores the waiting time information about the current intersection,
which would provide efficiency, and uses only past information,
which in some sense is the source of fairness. Also, we were sur-
prised to find that the deterministic CREDIT variants are more effi-
cient than MWT, even though the information used by the latter is
more accurate then that used by the former.> Oddly, the situation is
reversed in the stochastic versions of the controllers.

Another observation is that for (and only for) high enough work-
load levels, the stochastic selection controllers are consistently

5The CREDIT controller cannot tell if a car has waited k x 20 4 2
seconds or k x 20+ 18 seconds. Also, if a queue is long enough,
some of the cars waiting in it do not go through in a single 20-
second green phase, yet are not compensated for waiting. Therefore
a car’s compensation is only a rough measure of the time spent
waiting in the queue, as it ignores these “green phases.”



more fair than the deterministic ones (see Figure 2(c) for a typi-
cal example). We observe this behavior starting at 1000 cars for
the 4 x4 grid and 8000 cars for the 10x 10 grid. For these scenar-
ios the drivers’ expected waiting times per intersection are 2 and 3
minutes respectively, which we feel is not unrealistically high for
a rush-hour traffic-jam situation. Why stochastic controllers would
perform in this way is still unknown to us. Figures 2 reveal why
stochastic controllers disappear from the front however: as work-
load drops, the deterministic controllers maintain their efficiency
advantage but secure more fairness relative to the stochastic con-
trollers.

There are a few other points worth mentioning. One can make a
CREDIT variant more fair or more efficient by simply adjusting the
initial endowment of credits. The larger the initial number of cred-
its, the less likely a queue with fewer cars can outscore a queue with
more cars, resulting in a less fair controller. At the limit, CREDIT
with an endowment of infinity is roughly equivalent to CC, except
for the tie situations. But CC is dominated in all the scenarios pre-
sented here, which leads us to the conjecture that fair tie breaking
should not be ignored when designing a traffic light controller.

6. CONCLUSIONS

We have introduced the concept of trip-based fairness and
showed a simple approach to incorporate it into traffic light control.
We have implemented several controllers to investigate the effect of
awarding the green light based on information regarding the cars’
past experiences. The testbed we used was a meso-simulated two-
way street grid scenario with uniform demand and a wide range
of traffic loads. All controllers investigated here, however, work
out-of-the box with any intersection set-up: arbitrary number and
layout of one- and two-way streets, with and without shared lanes.
Cars are not required to participate in the traffic control system: if
a light senses a non-participating car, it might set up a proxy credit
accumulator initiated with some mean credit amount, but which
does not travel with the car when it leaves the intersection.

We expected the newly proposed controllers to be fair at the ex-
pense of efficiency, but they performed reasonably well in general,
and some even turned out unexpectedly efficient (at the expense of
fairness). More research is needed to gain a fuller understanding of
the phenomena involved.

The data provided interesting (and often unexpected) results
when dealing with overcrowded traffic conditions. Here, stochas-
tic selection is a viable solution for improving fairness; and for the
history-based methods, the cruder the use of information about the
present, the more efficient the controller.

6.1 Future work

Presently our controllers work with a pre-set phase length. While
this is not an unusual bias in the traffic light control literature, we
think we should try to eliminate the phase length parameter or in-
corporate phase adaptation into the controllers.

The original inspiration for this paper was to allow the drivers
to let the traffic lights know whether the drivers are in a hurry or
not. We plan to investigate various auction-style methods for traf-
fic light controllers. In these methods, the drivers are self-interested
agents trying to resolve who goes first using a currency accepted at
all traffic lights. The lights act as benevolent auctioneers, awarding
green lights to those deserving it (able and willing to “pay”) the
most. When drivers are not in a rush they might choose to bid low
and save some credits for the future. The resulting traffic controller
system acts as a market, which hopefully requires less tuning be-
cause it is self adaptive.
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Figure 2: Results for the 10 x 10 grid with different workloads:
2000, 4000 and 8000 cars. The deterministic controllers are
represented as ¢ and the stochastic ones as % ; the lines connect
the non-dominated controllers (see Table 1); the units on the
plots’ axes are seconds.



This is only a sample of future work for this domain. We think
distributed traffic control is an attractive problem for multi-agent
systems, with a broad, relatively unexplored research domain and
a payoff in the form of immediate real-world impact. The area also
presents a number of major research challenges: the number of cars
and traffic-control devices on the road is huge, and the problem is
highly decentralized with regard to vehicles and, more often than
not, with regard to traffic-control devices. The humans in the vehi-
cles co-adapt to one another and to traffic controllers. Dense traffic
can produce emergent, unexpected phenomena. As such, we imag-
ine this area may prove both fruitful and increasingly important in
the future.
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