Can Good Learners Always
Compensate for Poor Learners?

Keith Sullivan

Liviu Panait

Gabriel Balan Sean Luke

{ksulliv, Ipanait, gbalan, sean}@cs.gmu.edu

Department of Computer Science, George Mason University
4400 University Dr, MSN 4A5, Fairfax, VA 22030 USA

ABSTRACT

Can a good learner compensate for a poor learner when paired in a
coordination game? Previous work has given an example where a
special learning algorithm (FMQ) is capable of doing just that when
paired with a specific less capable algorithm even in games which
stump the poorer algorithm when paired with itself. In this paper,
we argue that this result is not general. We give a straightforward
extension to the coordination game in which FMQ cannot compen-
sate for the lesser algorithm. We also provide other problematic
pairings, and argue that another high-quality algorithm cannot do
so either.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms

Keywords

Reinforcement Learning, Multiagent Systems, Cooperative Games

1. INTRODUCTION

Concurrent learning is a subset of cooperative multiagent learn-
ing where the overall problem is divided into simpler subcompo-
nents such that each agent explores its space of actions with lit-
tle or no control over its teammate’s actions. Concurrent learning
introduces a new wrinkle to multiagent machine learning: what if
learners used entirely different algorithms? This is not implausible:
for example, an agent (on the web, say) may not have control over
the other learning agents. But while recent research on learning in
competitive games has addressed heterogeneous learners [1], the
state of the art in cooperative scenarios still involves homogeneous
learners.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’06 May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

We are aware of only one paper that focuses on concurrent het-
erogeneous cooperative learners: Kapetanakis and Kudenko ana-
lyze different combinations of a traditional reinforcement learning
algorithm and an extension called FMQ [6]. The authors report
that a two-agent team using the traditional algorithm cannot consis-
tently learn the globally optimal solution; however, the optimal so-
lution is achieved when both agents use FMQ. Moreover, an agent
using FMQ can help another agent using the traditional algorithm
to learn the global optimum in several coordination games. The
authors thus conclude that a “smart” learner (FMQ) can still be
successful even when it must work with less smart learners (the
traditional algorithm).

We will argue that this is not so. We extend the research in [6]
by including a difficult coordination game, as well as two new al-
gorithms. One of these algorithms is a modified evolutionary al-
gorithm: this extends the analysis to combinations with agents that
use entirely different learning techniques, not just variations of the
same learning method. The results of the experiments indicate the
opposite conclusion from that in [6]: in difficult domains, good re-
sults are usually obtained only if both agents are “smart” enough.
That is because it takes both agents to converge to an optimal so-
lution, and poor learners may force “smart” ones to converge to
suboptima.

2. SINGLE-STAGE COOPERATIVE
GAMES

Markov decision processes (MDPs) are widely used in multia-
gent reinforcement learning to account for the presence of other
agents in the environment [4, 8]. Single-stage cooperative games'
are a variation of MDPs where all agents receive the same reward
[2]. More specifically, each agent independently chooses an action
from its action set, and the actions from all the agents are combined
into a joint action. All agents receive the same reward or penalty
depending on the joint action. For example, using the Climbing
game as shown in Table 1(a), if agent 1 chooses action b and agent
2 choose action a, then both agents receive a reward of —30. This
process of choosing a joint action is repeated until (hopefully) the
agents learn to select better actions due to past interactions. We
assume that agents do not explicitly communicate or observe team-
mates’ actions; the only feedback mechanism is the reward received
for the agent’s action.

Table 1 shows four single-stage cooperative games: the Climb-
ing game and the Penalty game introduced in [2], and the partially-
and fully-stochastic variations of the Climbing game as proposed
in [5]. Note that in the partially- and fully-stochastic games, when

'Sometimes referred to as common interest games, cooperative
games, or coordination games.

Agent 2

a b c

- a[1l 30 0 -
?0 b | -30 7 6 §0

< ¢| O 0 5 <

(a)

Agent 2 Agent 2
| a b c a b c

— a[1l 30 0 — al[l0,12 565 88
S bl|-30 14,0 6 S bl 5-65 140 12,0
£ clo o0 5 £ c¢| 55 5-5 10,0

© (d)

Table 1: Joint reward matrices for the Climbing Game (a),
Penalty Game (b), Partially Stochastic Game (c), and the Fully
Stochastic Game (d). In the stochastic games, the first reward is
returned with probability p, and the second reward is returned
with probability 1 — p.

p = 0.5, the average reward for a joint action is the same as the
reward for the same joint action in the regular Climbing game. In
the regular, partially- and fully-stochastic Climbing games, the op-
timal joint action is (a,a). In the Penalty game, the known penalty,
k <0, results in three optimal joint actions — (a,a), (b,b), (c,c)
— of which (a,a) and (c,c) are preferred since they have a higher
reward. Researchers have used these games extensively to high-
light the advantages of certain multiagent learning algorithms (for
example, [2, 5, 7]).

Each of these games is challenging due to miscoordination
penalties. The Climbing game has a severe penalty for choosing
action a when the other agent chooses action b. However, there
are no major miscoordination penalties associated with action c,
potentially tempting the agents. The Penalty game introduces an
additional miscoordination issue due to the presence of multiple
optimal joint actions. While smaller values of k will make the indi-
vidual actions a and ¢ more attractive, there is still the problem of
ensuring that the other agent will choose the same optimal action.

The stochastic variations of the Climbing game add more com-
plications due to the noisy reward function. As agents cannot per-
ceive their teammates’ actions, the different rewards they observe
for the same action may be due to either (1) the other agent exper-
imenting with multiple actions, or (2) the noisy reward function.
While the highest reward of 14 is sometimes achieved when both
agents choose action b, they need to learn to separate the effects
of (1) and (2), and to realize that the average reward for the joint
action (b, b) is lower than that of (a,a).

3. LEARNING ALGORITHMS

We experiment with four learning algorithms: three variations
of reinforcement learning, and a genetic algorithm with a novel
evaluation procedure. Two of these algorithms are not new: re-
inforcement learning and FMQ have been previously analyzed, in
particular in [5]. We chose reinforcement learning as a standard
benchmark, while FMQ appears to be one of the stronger algo-
rithms to date. We devised the other two algorithms based on the
notion of lenience of an agent towards its teammates.

3.1 Lenient Multiagent Reinforcement
Learning

In an accompanying paper, we propose another RL algorithm,
Lenient Multiagent Reinforcement Learning (LMRL), which selec-

tively updates the utilities of actions based on some of the rewards.
It is implemented as follows. We always update the utility of the
action if the current reward exceeds the utility of the action. Oth-
erwise, the utility is update with a probability based on a current
per-action femperature. If the temperature associated with an ac-
tion is high, then agent is “lenient” towards low-reward pairings
and so it does not update its utility to reflect them. At a lower tem-
perature, low-reward pairings are included in the utility with greater
frequency.

The temperature of an action is decreased slightly every time that
action is selected. As a consequence, actions that have been chosen
more often have their utilities updated more often as well, while the
utilities for actions that have been chosen rarely are mainly updated
in response to higher rewards. This initially leads to an overopti-
mistic evaluation of the utility of an action. An agent may thus be
temporarily fooled into choosing suboptimal actions. However, the
utilities of such actions will decrease with time, and the agent is
more likely to end up choosing the optimal action. There is also a
small (0.01) probability of ignoring small rewards at all times: we
found this to be important in our experimental setup because the
agents have non-zero probabilities of selecting an action at each
time step. Aside from these enhancements, the algorithm follows
a traditional RL approach, including the Boltzman action selection
based on the utility of each actions.

3.2 Lenient Evolutionary Algorithm

Evolutionary algorithms (EAs) are stochastic search techniques
inspired by natural evolution [3]. EAs maintain a set of samples in
the search space (typically referred to as a “population” of “indi-
viduals™). Each such individual is assigned a “fitness” (the quality
of the individual). EAs then form a new population by repeatedly
selecting, copying and modifying the highly fit individuals in the
current population. The new population replaces the old one, and
the cycle of fitness assessment and breeding continues until a ter-
mination criterion is met. Each iteration of this cycle is known as a
“generation.” See [3] for a more detailed discussion of evolutionary
algorithms.

Cooperative Coevolutionary Algorithms (CCEAs) apply EAs to
concurrent learning processes. A CCEA employs not one but mul-
tiple (for our purposes, two) populations, each evolving indepen-
dently. CCEAs team up populations to evaluate them together. We
propose a new EA that, like CCEAs, evaluates individuals (repre-
senting actions) in combination with actions not just the other pop-
ulations, but from other learning algorithms (such as RL or another
EA).

This EA also allows an agent (individual) to show varying de-
grees of lenience to its teammate. For this purpose, the entire popu-
lation is cloned multiple times and shuffled, and each clone is eval-
vated with an action chosen by the teammates. As the teammate
is also co-adapting, the particular action it chooses may change at
any time. The extra clones of the population are required only for
evaluations and may be discarded afterwards. After each clone of
an action receives multiple rewards, these rewards are aggregated
into a single fitness for the original action. This fitness is computed
as the average of the better K rewards that were obtained. Varying
degrees of lenience are implemented by using the average of fewer
of the better rewards at early generations (thus ignoring more of the
rewards observed for an action). Initially, the best reward is used.
As learning progresses, we compute the fitness as the average of
more and more “top” rewards, thus reducing the lenience towards
the teammate.

| l

RL [FMQ [LMRL | EA]

RL 468.5 | 998.4 0.8 | 218.5
FMQ - 1999.8 | 998.1 | 419.9
LMRL - — | 998.0 | 214.7
EA - - - | 303.8

Table 2: Average number of iterations (out of 1000) that con-
verged to the joint action for the partially stochastic game.

4. EXPERIMENTAL RESULTS

We ran each combination of learning algorithms in the four co-
operative games. Experiments consisted of 30 trials of 1000 runs
each. Each run lasted for 7500 joint action selections and their re-
wards. We set k = —10 in the Penalty game. For all the reinforce-
ment learning algorithms, 7 = T % 0.9995 and the learning rate is
0.95. For FMQ, we set ¢ = 10; LMRL used & =2 and f8 = 2.5.
For the lenient evolutionary algorithm, we used a population of size
10, and the evolution lasted for 150 generations; we also set C =5
clones per population, and K started at 1 and increased every 15
generations until reaching the maximum value of 5. The lenient
EA employed selection via binary tournament, and breeding ran-
domized the action with probability 0.001. At the end of each run
we determined if the converged joint action was optimal. We then
computed the number of runs (out of 1000) that converged to the
joint action, and averaged over 30 trials.

In the Climbing game, all but three learning teams discovered the
optimal action more than 91% of the time. The reasons: RL-RL’s
use of all rewards caused it to be attracted occasionally to (b,c).
RL-LMRL in turn was attracted to (c,c) and EA-EA to (b,b).
Overall, FMQ and LMRL were the best learners in the Climbing
domain, and they also did well when combined with one another.
FMQ had a slight edge over LMRL as it also performed very well
when teamed with RL. All teams discovered the optimal strategy
more than 98% of time in the Penalty game. This improvement in
performance was partly due to the fact that the Penalty game has
twice the number of optimal solutions to which learning may con-
verge.

The results for the partially stochastic Climbing game (Table 2)
were similar (although more extreme) to the ones in the determin-
istic Climbing game. FMQ and LMRL were again the “smarter”
algorithms: they found the optimal joint action in almost all runs
when paired with themselves or each other. FMQ was also able to
help RL converge to the optimum, but LMRL could achieve that in
almost any run. The EA algorithm deteriorated significantly across
the board.

So far, FMQ has done well when partnered with most other al-
gorithms. But Table 3 shows a different result. Only one pair
(LMRL-LMRL) efficiently solved this problem. But more impor-
tantly, every method but EA did best by far when paired with itself.
In general, heterogeneous parings performed very poorly! Notably,
while FMQ helped RL in the partially stochastic game, in the fully
stochastic game FMQ hinders RL compared to RL-RL (and for
that matter, FMQ-FMQ). That is to say, the claim in [6] that the
“smarter” FMQ algorithm can help poorer RL find the optima must
change to “FMQ helps RL to converge to the optimum for this prob-
lem domain, but hinders it in others.”

S. CONCLUSIONS

We extended the work in [6] to include two new learning algo-
rithms that exhibit lenience toward teammates, as well as a difficult
coordination game characterized by stochastic rewards for every

| l

RL [FMQ [LMRL | EA]

RL 464.4 33 2.6 | 230.9
FMQ — | 1415 4.3 | 108.0
LMRL - - | 9285 | 235.1
EA — - -1 197.0

Table 3: Average number of iterations (out of 1000) that con-
verged to the joint action for the stochastic game.

joint action. The experiments indicate that only the lenient mul-
tiagent reinforcement learning algorithm can achieve near-optimal
performance, and only when paired with itself. A good learner can-
not compensate if its teammate converges to a suboptimal action.
Contrary to the findings in [6], we find that a pair of traditional RL
algorithms performs better than both an FMQ-FMQ pair, as well
as a combination of an FMQ and an RL learner. It is not the case
that FMQ, or even the often-better LMRL, can compensate for a
mismatched teammate algorithm.

The issue that remains is: are there well-defined classes of prob-
lems and subsets of learning algorithms for the teammate with
which a given learning algorithms works well? For example, ex-
actly where and why does FMQ pair well with various learners?
This is not an easy question to answer, but investigation along these
lines may reveal more clues about the relationship classes of algo-
rithms have with one another, and why some features of algorithms
may be at odds with features of other algorithms. Until then we
must recommend a homogeneous approach to multiagent learning,
if given the choice.

6. REFERENCES

[1] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence, 136(2):215-250,
2002.

[2] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings of
National Conference on Artificial IntelligenceAAAI/IAAL,
pages 746752, 1998.

[3] K. De Jong. Evolutionary Computation: A unified approach.
MIT Press, 2006.

[4] J. Hu and M. Wellman. Multiagent reinforcement learning:
theoretical framework and an algorithm. In Proceedings of the
Fifteenth International Conference on Machine Learning,
pages 242-250. Morgan Kaufmann, San Francisco, CA, 1998.

[5] S. Kapetanakis and D. Kudenko. Reinforcement learning of
coordination in cooperative multi-agent systems. In
Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAA102), 2002.

[6] S. Kapetanakis and D. Kudenko. Reinforcement learning of
coordination in heterogeneous cooperative multi-agent
systems. In Proceedings of the Third Autonomous Agents and
Multi-Agent Systems Conference (AAMAS 2004), 2004.

[7] M. Lauer and M. Riedmiller. An algorithm for distributed
reinforcement learning in cooperative multi-agent systems. In
Proceedings of the Seventeenth International Conference on
Machine Learning, pages 535-542. Morgan Kaufmann, San
Francisco, CA, 2000.

[8] M. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the 11th
International Conference on Machine Learning (ML-94),
pages 157-163, New Brunswick, NJ, 1994. Morgan
Kaufmann.

