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ABSTRACT
In concurrent cooperative multiagent learning, each agent simul-
taneously learns to improve the overall performance of the team,
with no direct control over the actions chosen by its teammates.
An agent’s action selection directly influences the rewards received
by all the agents, resulting in a co-adaptation among the concur-
rent learning processes. Co-adaptation can drive the team towards
suboptimal solutions because agents tend to select those actions
that are rewarded better, without any consideration for how such
actions may affect the search of their teammates. We argue that
to counter this tendency, agents should also prefer actions that in-
form their teammates about the structure of the joint search space
in order to help them choose from among various action options.
We analyze this approach in a cooperative coevolutionary frame-
work, and we propose a new algorithm, iCCEA, that highlights the
advantages of selecting informative actions. We show that iCCEA
generally outperforms other cooperative coevolution algorithms on
our test problems.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation

Keywords
Multiagent Learning, Cooperation, Coordination, Cooperative Co-
evolution

1. INTRODUCTION
Multiagent learning is challenging because the problem dynam-

ics are often complex and fraught with local optima. Of particu-
lar interest to us is cooperative multiagent learning, where multi-
ple agents learn to work together as a team to accomplish common
goals [19]. More specifically, we are interested in concurrent learn-
ing, where each agent performs its own learning and has little or no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

control over the other agents’ selection of actions.
Multiagent learning is problematic for existing machine learn-

ing techniques because the concurrent learning processes are not
independent. Consider an agent that observes an environment con-
taining other agents and that tries to improve its performance. This
leads to a modification in its behavior, which is then sensed by the
other agents, who then change their behaviors in order to improve
their performance as well. This “moves the goalpost” on the origi-
nal agent: its newly-learned behavior may no longer be appropriate.
Thus as the agents co-adapt to one another, the environment is es-
sentially changing beneath the agents’ feet. Moreover, the agent
itself contributes directly to how the landscape changes. Learning
in the face of this dynamic is not easy: such co-adaptation can result
in cyclical or chaotic adaptive behavior, and may gravitate towards
suboptimal solutions.

Most cooperative multiagent learning algorithms assume the
agents are rational: each agent searches for actions that fare well
when used in combination with the actions currently favored by
its teammates. This “best-response” approach usually results in
the learners converging to Nash equilibria. Such “rational” con-
vergence to equilibria may well be movement away from globally
team-optimal solutions [16, 26]. To counter this, we argue that
agents must also explore actions that inform their teammates about
the structure of the space of rewards for joint actions. For example,
if an agent identifies an action that helps other agents rank their
available actions better, the agent should explore that action to help
guide the teammates’ learning processes.

Though we believe it to be general, we will demonstrate the
application of this approach to a particular multiagent learning
method of interest to us, namely cooperative coevolution [12, 25].
Coevolution is the use of evolutionary computation learning tech-
niques in a multiagent setting. Ordinarily, evolutionary computa-
tion employs only a single learner to discover a global solution to
an optimization problem: the learner first creates an initial pool of
randomly-generated candidate solutions (a “population” of “indi-
viduals”), then assesses their quality (“fitness”) independently of
one another, then forms a new population of individuals through
iteratively selecting, copying, and modifying (“breeding”) individ-
uals from the previous population with an emphasis on the fitter
members of that previous population. The new population replaces
the old one, and this cycle of fitness assessment, breeding, and pop-
ulation replacement continues until a sufficiently fit individual is
discovered or until resources have expired. Each iteration of this
cycle is known as a “generation”.

Cooperative coevolutionary algorithms (CCEAs), in the form
we will discuss here, use not one but multiple populations, each
involved in its own separate learning cycle of fitness assessment,
population formation, and population replacement. However, indi-



viduals in a given population are no longer assessed independently,
but rather in the context of individuals chosen from the other pop-
ulations. Each population represents a sub-component of a full so-
lution to the problem, and as part of its fitness assessment, an indi-
vidual in a given population may be evaluated only by combining
it with one individual from each of the other populations to form
a complete solution. It is in this fashion that coevolution involves
multiple learners (each of the populations’ evolutionary search pro-
cedures) whose learning trajectories are intertwined (via joint fit-
ness evaluation), and so coevolution must deal with the same co-
adaptation challenges as other multiagent learning methods.

A natural approach to applying CCEAs to cooperative multia-
gent learning is to assign one population to each of the learning
agents in the team. Each individual in the population represents a
potential behavior for the agent, and so from now on, for consis-
tency, we will refer to actions rather than individuals. An action
may be as simple as a single action in trivial environments, or as
complex as policies involving internal states and memory for real-
world problems. Thus each population represents a finite sample
from an infinite space of possible actions. As the team reward per-
mits only the evaluation of joint actions, an action in one agent’s
population may be evaluated when combined with actions from the
other agents’ current populations. Multiple such combinations are
generally used.

Section 2 highlights related cooperative multiagent learning al-
gorithms. Following, Section 3 introduces a novel learning algo-
rithm where agents pay special attention to informative actions.
We compare it against other cooperative multiagent learning tech-
niques in Section 4. The paper concludes with a brief discussion of
our findings, accompanied by directions for future work.

2. RELATED WORK
Two learning algorithms that are guaranteed to find the glob-

ally optimal joint action in a stateless environment are proposed
in [4]. Both algorithms have two phases: agents first explore the
entire space of joint actions (either deterministically or randomly);
this is followed by a greedy selection of only the action (one per
agent) that returned the highest reward. Both algorithms find the
global optimum in polynomial time in the number of actions for
each agent. However, scaling these algorithms to environments
with states or with possibly infinite numbers of actions per agent
may be problematic.

Instead of choosing actions deterministically or randomly, Claus
and Boutilier [8] argue that agents should be more optimistic about
their teammates: an agent should not prefer actions that do well in
the context of the actions currently preferred by its teammates, but
rather the agent should prefer actions that do well in the context of
better actions that its teammates might learn. The application of
this heuristic assumption results in additional multiagent reinforce-
ment learning algorithms for stateless environments, such as the
ones in [15, 14]. Research on scaling these algorithms from simple
coordination games to more complex domains is reported in [3, 11,
18, 27].

The cooperative coevolution literature has followed a similar
path. The properties of cooperative coevolutionary algorithms are
analyzed in [6, 7, 29]; results of such experiments indicate that as-
sessing the fitness of an action based on the maximum of multiple
joint rewards works better than if it were based on the minimum
or on the average. Recent work has analyzed the conditions under
which coevolutionary systems gravitate towards suboptimal solu-
tions [28], has provided a visual illustration of the basins of attrac-
tion for simple multiagent domains [23], and has proposed a biased
CCEA that is more likely to find the global optimum [21].

Bucci and Pollack [5] apply recent advances from competitive
coevolution research to improve CCEAs, resulting in the pCCEA
algorithm. The authors argue that the aggregation of multiple joint
rewards to compute the fitness of an action may result in loss of use-
ful information. Instead, pCCEA uses all joint rewards to compute
the set of actions in each population that are Pareto non-dominated:
given two actions a1 and a2 for one agent, a1 dominates a2 if and
only if (1) for any action b for the other agent, a1 receives higher
or equal reward when joined with b than a2 does, and (2) there ex-
ists an action c for the other agent such that a1 receives a strictly
higher reward when joined with c than a2 does. This set of non-
dominated actions, termed an archive, is automatically copied to
the next generation to help evaluate the new population of actions.
After the evaluation is completed for that generation, a new archive
is computed for each population. Our experiments in Section 4
indicate that pCCEA’s archive tends to converge to the Pareto fron-
tier, which unfortunately may be infinite in even simple cooperative
multiagent domains.

3. THE iCCEA ALGORITHM
When multiple agents learn concurrently, each of them is af-

forded only a partial glimpse at the overall search space. Specif-
ically, each agent may weight its actions using only a projection
of the entire space, a projection that is influenced by the actions
currently chosen by the other agents according to their own learn-
ing processes. Differences among such projections are illustrated
in [20]: projections at early stages of learning may provide more
information about the search space, because the agents’ actions are
more randomly distributed and so sample the joint space better. As
the agents start to converge, the projections may become skewed,
sometimes losing all information about the globally optimal solu-
tions. As each agent’s choice of actions influences the projections
searched by the other agents, we may view each of the multiagent
learning algorithms in Section 2 as recipes for agents to influence
each other’s learning processes.

We argue that the team of learning agents may benefit if each
agent is concerned about the projection of the search space that it
provides to its teammates via the actions it explores. In other words,
agents should not necessarily explore only their most promising
actions, but also those actions that provide the other agents with
accurate projections of the joint search space. We propose a co-
evolutionary algorithm, iCCEA (“i” standard for “informative”), to
illustrate the advantages of such an approach.

For simplicity, we present the pseudocode for the algorithm us-
ing only two agents (and hence two populations), although it may
be extended to arbitrary numbers of agents. Given an agent, the
other agent is referred to as its teammate. We will assume that all
populations have equal size PopSize, though the algorithm can eas-
ily be extended to allow for different sizes. We define Rewardp(i,a)
as the reward received when an agent (whose actions are repre-
sented in population p) selects action i and its teammate selects
action a.

iCCEA follows the standard architecture of a generational co-
operative coevolutionary algorithm [25]. As is the case for other
CCEAs, iCCEA assumes that an agent can perceive the actions cho-
sen by its teammates. In iCCEA, as in pCCEA, each agent maintains
a population of actions, a subset of which is defined as an archive
responsible for ensuring that some actions exist primarily to keep
the teammate’s projection well informed. iCCEA agents learn con-
currently, meaning, the populations advance through their genera-
tion cycles together, rather than one population advancing, then the
other.



The evaluation process tests actions by combining them with ac-
tions from the teammate’s archive, plus possibly some additional
actions in the teammate’s population. In addition to computing an
action’s fitness, the evaluation process stores the joint reward of any
pair of actions that are evaluated together; this information is later
used to update the archives of each agent.

Each generation, every action in a population is first evaluated
by testing it in combination with every action from the teammate’s
archive. As the very first generation’s populations have not built an
archive yet, their entire population is used as an archive (an expen-
sive process but one which ensures a thorough exploration of the
joint space and good bootstrapping for the archive in future gener-
ations). If the maximum size of the archives is less than MaxEvals,
the actions are also tested with enough randomly-chosen actions
from the teammate’s population (in the archive or not) to provide
at least MaxEvals tests per action. MaxEvals establishes a thresh-
old for the number of evaluations desired per each action: if the
archive is too small, additional actions are sampled at random from
the other population to provide additional assessments.

The fitness of action i is then set to maximum of F j
i over all ac-

tions j in the teammate’s population (F j
i represents the fitness of

action i when partnered with action j from the other population,
and it equals −∞ if i was not tested in combination with j). If the
archive size is 1, this reduces to a common evaluation approach
for CCEAs [25, 29]: the evaluation is equivalent to using the best
action (from the previous generation) plus some actions chosen at
random from the other population. The pseudocode for the evalua-
tion process is:

iCCEA-Evaluation
Parameters

MaxEvals: maximum evaluations per action
Initial Settings

For each population p
ArchiveSizep = PopSize

Evaluation phase (at each generation)
For each population p

p′ = other population than p
For each action i in p

For each action j in p′

F j
i =−∞

For each action i in p
For each action a in Archivep′

Fa
i = Rewardp(i,a)

F i
a = Rewardp′(a, i)

MaxArchive = maxp ArchiveSizep
Repeat for max(0,MaxEvals−MaxArchive) times

For each population p
Shuffle p

For each index i in 1..PopSize
a1 = action with index i in one population
b1 = action with index i in the other population
Fb1

a1 = Reward1(a1,b1)
Fa1

b1
= Reward2(b1,a1)

For each population p
p′ = other population than p
For each action i in p

Fitness(i) = max j∈p′ F
j

i

We next assemble the archive through a process called archive
selection, which is intended to select those actions which revealed
features of the projected joint space useful to the other teammate.
Specifically, we would like to select as an archive a minimal set of

actions from each agent’s population such that when assessing the
fitness of actions in a given population, testing them against the full
teammate’s population would not change the rank ordering of their
fitnesses beyond just testing against the teammate’s archive. The
hope is that this archive would provide an accurate evaluation and
ranking of the teammate’s actions in the next generation as well.
Rank order is all that matters because the evolutionary selection
procedure we use later compares individuals not on raw fitness, but
solely on their relative rank order in the population.

We’d like the archive set to be as small as possible, because as
each action in an agent’s population is tested in combination with
every action from the other agent’s archive, large archives imply a
prohibitive O(n2) evaluation cost. Therefore we add actions to the
archive only if they cause actions in the other population to improve
significantly enough so as to effect the ranking — causing actions
to worsen is not considered helpful information. Of the various
actions which change this ranking, we will select the ones which
do so by raising fitnesses to the highest levels.

The archive selection process starts from the empty set and
proceeds iteratively. For each action i not in an agent’s archive,
and for each action x in its teammate’s population, we compute
the fitness of x if evaluated in combination with all actions in
the current archive, that is, M1Fitx = max j∈Archivep F j

x . We also
compute the fitness of x if i were added to the current archive,
M2Fit i

x = max j∈Archivep∪{i}F j
x . Note that M2Fit i

x ≥ M1Fitx. Our
first criterion for adding i to the archive (it improves upon the cur-
rent ordering of the teammate’s population) translates into find-
ing two actions x and y such that adding i to the archive would
change their ranking relative to one another (M1Fitx ≤M1Fity and
M2Fit i

x > M2Fit i
y, or equivalently M3Fit i

x,y 6= −∞ for a simpler
shorter notation ). Of all actions i that meet this first criterion, we
greedily prefer the one that changed the ranking by raising the fit-
ness of a teammate’s action to the highest level. Note that the first
action to be selected for the archive is always the action with the
highest fitness. The pseudocode is:

iCCEA-Archive-Selection
Parameters

MaxArchiveSize: maximum archive size
Archive Selection (at each generation)

For each population p
p′ = other population than p
Archivep = /0

While Size(Archivep)≤MaxArchiveSize
For each action x in p′

M1Fitx = max j∈Archivep F j
x

For each action i in p−Archivep

M2Fit i
x = max j∈Archivep∪{i}F j

x

For each action y in p′

M3Fit i
x,y =


M2Fit i

x if
M1Fitx ≤M1Fity

and
M2Fit i

x > M2Fit i
y

−∞ otherwise
For each action i in p−Archivep

MaxFiti = maxx∈p′ maxy∈p′ M3Fit i
x,y

Select a =argmaxiMaxFiti
If MaxFita =−∞

Break from while loop
Add a to Archivep

End while



The breeding and population reassembly phase of iCCEA pro-
ceeds similarly to the one in pCCEA: the archive members are se-
lected from the old population and are copied directly into the new
population, and remainder of the new population is filled with chil-
dren bred using standard evolutionary computation methods1 ap-
plied to the old population (including the old archive). The whole
previous population (including the archive) competes for breeding.
The pseudocode is straightforward:

iCCEA-Breeding
Breeding phase (at each generation)

For each population
Select its new archive with iCCEA-Archive-Selection
Copy the archive into the new population
Fill the remainder of the new population using standard

EC breeding with a rank-based selection procedure
(such as tournament selection)

4. EXPERIMENTS
In this section, we investigate the behavior of four different co-

evolutionary algorithms, and we compare them in terms of perfor-
mance and in terms of the number of evaluations they require to
achieve that performance. The first algorithm is the pCCEA algo-
rithm introduced in [5]. Second is the cCCEA algorithm, which is a
traditional CCEA algorithm that evaluates the fitness of an action as
the maximum reward it receives when in combination with any of
the actions in the teammate’s population. cCCEA is guaranteed to
converge to the global optimum if the population size is sufficiently
large [21]. Third is the iCCEA algorithm proposed in Section 3.
Fourth, rCCEA evaluates the fitness of an action as the maximum
when partnered with six actions from the teammate’s population:
five chosen at random, plus the fittest action from the teammate’s
previous-generation population. We included this algorithm in the
comparison because it uses a small fixed number of evaluations in
each generation, such as is preferable for applications of multiagent
learning to real problems.

We will test these algorithms using a class of problem domains
called the maximum of two quadratics (or MTQ). These problems
include a global optimum and a local suboptimum, where the sub-
optimum covers a much wider range of the search space and is thus
difficult to escape. The problems have been used before by [5, 22].

We will assume that each action is a real-valued number from
0 to 1 inclusive. This defines a metric space for actions: in some
sense action 0.5 is more similar to action 0.6 than action 0.9 is.
While other techniques search for optima among sets of actions
that have no “distance” relation among them, EC methods assume
a distance relation: when breeding an action to form a new one,
they will generally make more small (distance) changes than large
changes.

The joint reward function for the MTQ class is defined as:

MTQ(x,y)←max

{
H1 ∗ (1− 16∗(x−X1)2

S1
− 16∗(y−Y1)2

S1
)

H2 ∗ (1− 16∗(x−X2)2

S2
− 16∗(y−Y2)2

S2
)

where x and y may take values (actions) ranging between 0 and 1.
Different settings for H1, H2, X1, Y1, X2, Y2, S1, and S2 affect the
difficulty of the problem domain in one of the following aspects.
H1 and H2 affect the heights of the two peaks: higher peaks may
increase the chance that the algorithm converges there. S1 and S2
affect the area that the two peaks cover: a higher value for one of

1[2, 9] are good references for standard evolutionary algorithms.

them results in a wider coverage of the specific peak. This makes
it more probable that the coevolutionary search algorithm will con-
verge to this peak, even though it may be suboptimal. Different
values for X1, Y1, X2, and Y2 result in changes in the locations of
the centers of the two quadratics, which also affect the relatedness
of the two peaks: similar values of the x or y coordinates for the
two centers imply higher overlaps of the projections along one or
both axes (the projections of the joint action space for one or both
agents may retain more information about the globally optimal so-
lution even if the other agent’s population starts to converge to the
suboptimal solution). In these experiments, we set S1 = 16

10 , X1 = 3
4 ,

Y1 = 3
4 , H2 = 150, S2 = 1

32 , X2 = 1
4 , Y2 = 1

4 ; H1 was varied across
experiments, but it was always less than 125.

MTQ using such settings is fairly difficult to optimize: the
probability that a random sample has a function value within
0.01 of the optimal solution (which has a value of 150) can be
computed as π ∗

(
1− 149.99

150
)
∗ S2

16 = 0.0000004090615. Given
51200 random samples (approximately the number of action eval-
uations performed during a typical evolutionary run), the prob-
ability that one of them exceeds a function value of 149.99 is
1− (1−0.0000004090615)51200 = 0.02072615.

As we will see in the next sections, the median of the results
for the proposed iCCEA method is significantly higher than 149.99,
which implies that iCCEA finds better approximations of the global
optimum in more than 50% of the runs. This shows that iCCEA sig-
nificantly outperforms random search in this domain, and implicitly
the algorithms proposed in [4].

To further increase the difficulty of the problem domains with
respect to the algorithms we analyze, we created a second class of
problem domains, SMTQ, which is defined as:

SMTQ(x,y)←max

{
H1 ∗ (1−

16∗(xr
1−X1)2

S1
− 12∗(yr

1−Y1)2

S1
)

H2 ∗ (1−
16∗(xr

2−X2)2

S2
− 12∗(yr

2−Y2)2

S2
)

where xr
1, yr

1, xr
2, and yr

2 are the original x and y values (which
ranged between 0 and 1) rotated around the centers of the two peaks
by π

4 :

xr
1 = (x−X1)∗ cos

π

4
+(y−Y1)∗ sin

π

4
+X1

yr
1 = (x−X1)∗ cos

π

4
− (y−Y1)∗ sin

π

4
+Y1

xr
2 = (x−X2)∗ cos

π

4
+(y−Y2)∗ sin

π

4
+X2

yr
2 = (x−X2)∗ cos

π

4
− (y−Y2)∗ sin

π

4
+Y2

Observe that the two peaks have ellipsoid shapes aligned diagonally
with the axes, as opposed to circular shapes in the MTQ problem
domains. The two Nash equilibria from the MTQ class have now
become an infinity of Nash equilibria in the SMTQ class. This
creates an additional difficulty for the coevolutionary search. We
used the same values for H2, X1, Y1, X2, Y2, S1, and S2 as for the
MTQ class.

The experiments used the ECJ package [17]. Each population
contained 32 actions. cCCEA and rCCEA used elitism of size 1,
meaning that the fittest individual in each population in the previ-
ous generation is automatically copied into the next generation’s
population. The entire archive survived automatically from one
generation to the next for iCCEA and pCCEA. Unless stated oth-
erwise, iCCEA used MaxEvals = 5 and MaxArchiveSize = ∞. The
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Figure 1: Average number of evaluations for the iCCEA algo-
rithm in the MTQ domain instance with H1 = 50

Table 1: Results of the four methods in the MTQ domain in-
stance with H1 = 50

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 148.62776 149.74876 149.94931 51200
cCCEA 149.99971 149.99995 149.99998 51200
iCCEA 149.99990 149.99997 149.99998 10676.5
rCCEA 50 50 149.99998 19200

EC breeding method created children by selecting a parent, copy-
ing it, then “mutating” the copy by adding a gaussian random vari-
able from a distribution with mean 0 and standard deviation 0.01,
bounding the value to between 0 and 1. Parents were selected using
“tournament selection”, whereby two random parents are picked
with replacement from the population, and the fitter of the two is
selected. Runs lasted 50 generations.

The quality of a technique was defined as the average, over 250
independent runs, of the fitness of the best action (one per pop-
ulation) in the last generation of that run. The results usually
have a peculiar bimodal distribution, with many values close to
one of the two peaks. For this reason, we report information on
the quartiles, as opposed to mean and standard deviation. For the
same reason, we verify statistical significance via non-parametric
t-tests combined using the Bonferroni correction. Sometimes these
non-parametric tests will return the opposite result than a regular
parametric test would, and although some conclusions are different
from the ones reported in [5], we believe our comparison method-
ology is well-founded.

4.1 Experiment 1: MTQ and SMTQ, H1 = 50
In the first experiment, we set H1 to 50 to have a wide difference

between the height of the two peaks. In this case, coevolution may
have difficulties finding the global optimum primarily because its
coverage is significantly smaller than that of the suboptimal peak.

Table 1 presents the performance of the four methods in the
MTQ instance (H1 = 50), as well as the number of evaluations re-
quired to achieve that performance. Although the differences ap-
pear small, the large number of observations (250) leads to statis-
tically significant differences among the methods with confidence
95%. The results indicate that rCCEA performs worst, followed by
pCCEA, cCCEA and iCCEA. There are statistically significant dif-
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Figure 2: Average archive size for the iCCEA and the pCCEA
algorithms in the MTQ domain instance with H1 = 50

Table 2: Results of the four methods in the SMTQ domain in-
stance with H1 = 50

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 133.21958 146.85126 149.49486 51200
cCCEA 149.99975 149.99995 149.99998 51200
iCCEA 149.99991 149.99997 149.99998 10982.34
rCCEA 50 149.99986 149.99998 19200

ferences between all pairs of methods. And importantly, iCCEA
achieves a significant reduction in the number of evaluations as
compared to the other methods.

Figure 1 plots the number of evaluations required by the iCCEA
algorithm at each generation. The algorithm starts with a complete
round-robin evaluation (requiring 32× 32 evaluations), followed
by a drastic decrease in the number of evaluations. This is due to
the fact that the number of actions needed to accurately rank the
other population (hence the archive size) decreases significantly.
In contrast, in the pCCEA algorithm the Pareto front in the MTQ
domain is not discrete, and thus the archive grows rapidly in size
until it occupies the whole population (Figure 2). At this point,
learning stagnates.

Table 2 presents the results of the four methods in the SMTQ do-
main, as well as the number of evaluations required to achieve that
performance. The rCCEA and pCCEA methods perform worst (with
no statistically significant difference among them). cCCEA is bet-
ter than both rCCEA and pCCEA. iCCEA significantly outperforms
all other methods. The dynamics of the archive size for pCCEA
and iCCEA are very similar to those in the MTQ domain: pCCEA’s
archive again rises to consume most of the population, while iC-
CEA’s archive size rises to 8 early but converges to approximately
5. This is summed over both populations. The average archive size
for each population is half the value: an average size of 4 early on,
and 2.5 later.

4.2 Experiment 2: MTQ and SMTQ,
H1 = 125

Similar to the experiments in [5], we set H1 to 125 to create
a more deceiving domain instance: the actions on the suboptimal
peak have higher fitness and they are thus more likely to be se-
lected.
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Figure 3: Average archive size for the iCCEA and the pCCEA
algorithms in the OneRidge domain

Tables 3–4 present the results of the four methods in the MTQ
and SMTQ domain instances with H1 = 125. The results are con-
sistent with the ones in Section 4.1: iCCEA is always better than cC-
CEA, which is in turn always better than pCCEA (with confidence
95%). The rCCEA method is worst: it finds the global optimum
in only 16% of the runs in both the MTQ and the SMTQ domain
(H1 = 125). As before, iCCEA requires significantly fewer evalu-
ations than the other methods. The average archive size is slightly
higher (statistically significantly higher for iCCEA) than in the case
of H1 = 50, but it follows the same trend as that shown in Figure 2.

4.3 Experiment 3: The OneRidge Domain
Our last experiment examined the performance of the search

methods in the OneRidge domain proposed in [24]. The OneRidge
domain is defined as:

OneRidge(x,y)← 1+2∗min(x,y)−max(x,y)

where x and y range between 0 and 1. OneRidge is particularly dif-
ficult for concurrent learners because it contains a very large num-
ber of Nash equilibria: for any value v between 0 and 1, (v,v) is
a Nash equilibrium. This implies that for almost any Nash equi-
librium (except for the global optimum (1,1)) there are an infinite
number of better Nash equilibria that are infinitesimally close; un-
fortunately, both agents need to concurrently change their actions
for the team to advance to these better solutions. To better study
the algorithms’ capacity to follow this ridge to the global optimum,
we randomly initialized the populations of actions for each agent
to only values smaller than 0.5.

If SMTQ adds more non-linear interactions among the agents,
OneRidge goes even further. As a consequence, the methods have
a very different ranking based on their performance in this domain
(as shown in Table 5). cCCEA performs best, followed in order by
rCCEA, iCCEA, and finally pCCEA; there are statistically significant
differences among all the methods.

This poor performance of pCCEA and iCCEA seems unexpected
at first. To shed more light onto the behavior of the two algorithms,
we plotted the average archive size for pCCEA and iCCEA in Figure
3. As expected, the Pareto frontier in the OneRidge domain makes
pCCEA think that every possible action is interesting and needs to
be added to the archive; consequently, the size of pCCEA’s archive
is close to 64 even in the very first generations, and so learning stag-
nates. Unlike MTQ and SMTQ, it is relatively easy in the OneR-
idge domain to improve upon a joint action by small variations in

Table 3: Results of the four methods in the MTQ domain in-
stance with H1 = 125

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 142.31862 149.03314 149.83407 51200
cCCEA 125 149.99974 149.99998 51200
iCCEA 125 149.99994 149.99998 11277.47
rCCEA 125 125 125 19200

Table 4: Results of the four methods in the SMTQ domain in-
stance with H1 = 125

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 125 145.66753 149.38516 51200
cCCEA 125 149.99977 149.99998 51200
iCCEA 125 149.99995 149.99998 11406.65
rCCEA 125 125 125 19200

Table 5: Results of the four methods in the OneRidge problem
domain

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 1.45762 1.47224 1.48298 51200
cCCEA 1.89700 1.91584 1.93125 51200
iCCEA 1.50217 1.51778 1.53398 21545.3
rCCEA 1.82785 1.84294 1.86300 19200

the actions chosen by each agents. As a consequence, both cCCEA
and rCCEA are able to improve until outperforming pCCEA.

The poor performance of iCCEA in this domain has a slightly
different cause: the archive mechanism was designed to inform the
concurrent learning processes of multiple Nash equilibria that are
surrounded by large basins of attraction which cannot be avoided
by small variations in actions. Given that OneRidge has no such
equilibria, the archives serve little purpose, and they instead act to
slow the optimization process by reducing the random exploration
of the space. As shown in Figure 3, the average archive size of iC-
CEA is higher than MaxEvals (which was set to 5), and thus actions
are not evaluated when in combination with random actions from
the other population.

Revised Experiment. To test this hypothesis, we restricted
the maximum archive size of iCCEA to only one action
(MaxArchiveSize = 1 in iCCEA-Archive-Selection), and we per-
formed another 250 runs in the OneRidge domain. The median
performance of the algorithm was 1.84439, with a first quartile of
1.82448 and a third quartile of 1.86095. This is indistinguishable
from the performance of the rCCEA method in Table 5. We further
doubled the maximum number of generations for the iCCEA algo-
rithm with a maximum archive size of 1 (this setting still involved
only around 40% of the budget used by cCCEA and pCCEA), and
we ran it another 250 times. The global optimum was consistently
and precisely found in all of them. This is significantly better than
all other algorithms we tested in this domain.



5. DISCUSSION AND CONCLUSIONS
It is rational for learning agents to explore those actions that are

rewarded better. However, each agent’s experimentation with a par-
ticular action directly affects the way the other agents perceive the
search space. Therefore, we argue that agents may benefit from
also exploring those actions that inform their teammates about the
structure of the search space. We suggest that cooperating agents
should be altruistic: the entire team may benefit if each agent helps
its teammates to rank their actions better. We demonstrated this
idea in a new cooperative coevolutionary algorithm, iCCEA, which
requires significantly fewer evaluations to outperform other coop-
erative multiagent learning methods on our test problems. We also
noted that too much altruism may hurt performance: an agent may
waste resources when attempting to inform its teammates about the
many Nash equilibria in the space. Restricting the number of in-
formative actions an agent may choose solved the problem in our
simple experiments, but we are exploring alternatives that can auto-
matically balance the information provided to other learning agents
with the desirability of searching for optimal joint actions. Future
work will also examine formal models and guarantees for concur-
rent learners employing informative actions, as well as demonstrate
such methods in complex multiagent domains.

6. REFERENCES
[1] Proceedings of the Eighteenth International Joint

Conference on Artificial Intelligence (IJCAI), Acapulco,
Mexico, 2003. Morgan Kaufmann.
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