Lenient Learners in Cooperative Multiagent Systems

Liviu Panait
Ipanait@cs.gmu.edu

Keith Sullivan
ksulliv@cs.gmu.edu

Sean Luke
sean@cs.gmu.edu

Department of Computer Science, George Mason University
4400 University Drive, MSN 4A5, Fairfax, VA 22030, USA

ABSTRACT

In concurrent learning algorithms, an agent’s perception of the joint
search space depends on the actions currently chosen by the other
agents. These perceptions change as each agent’s action selection
is influenced by its learning. We observe that agents that show le-
nience to their teammates achieve more accurate perceptions of the
overall learning task. Additionally, lenience appears more bene-
ficial at early stages of learning, when the agent’s teammates are
merely exploring their actions, and less helpful as the agents start
to converge. We propose two multiagent learning algorithms where
agents exhibit a variable degree of lenience, and we demonstrate
their advantages in several coordination problems.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms

Experimentation

Keywords

Multiagent Learning, Cooperation, Coordination

1. INTRODUCTION

This paper focuses on applications where multiple agents con-
currently learn how to better interact with one another. Imagine
a simple scenario where two agents learn to coordinate. The task
is for the agents to each independently choose one action with the
goal of maximizing the joint reward that they receive. Figure 1
illustrates a search space of joint rewards for a simple two-agent
domain. The figure shows two peaks of different sizes. The lower
peak represents a globally-suboptimal solution, and the wide cov-
erage of that peak implies that solution quality changes only a little
when either agent chooses a slightly different action. The higher
peak represents the global optimum; its smaller coverage implies
that the solution quality may change rapidly if either agent chooses
a slightly different action.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’06 May 8-12 2006, Hakodate, Hokkaido, Japan.

Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

o
(oueuopiog weaL) P ¢

Actions for Agent 2

Figure 1: A bimodal search space for the possible rewards re-
ceived by a two-agent team. Wider peaks may attract many
search trajectories, even though such peaks may be globally
suboptimal.

In concurrent multiagent learning, each agent is usually afforded
only a partial glimpse of the search space. Specifically, each agent
can only detect the rewards it receives for its own actions. However,
these rewards also depend on the actions chosen by its teammate,
and as a consequence, an agent’s perception of the search space
depends on what actions its teammate is currently choosing.

An agent’s perception of the joint space is additionally affected
by the approach it uses to aggregate the rewards obtained for each
of its actions (when combined with different actions for the team-
mate). For example, Figure 2 shows different perceptions of the
joint search space in Figure 1 for two aggregation methods. We ob-
serve that if an agent estimates the quality of its action as the aver-
age reward obtained when combined with multiple actions chosen
by its teammate, the agent fails to perceive the potential of actions
corresponding with the globally optimal peak. On the other hand,
an agent that shows lenience towards its teammate by assessing the
quality of its actions as the maximum reward received over multi-
ple actions chosen by its teammate (thus ignoring the lower rewards
usually associated with miscoordinations) perceives the higher po-
tential of actions corresponding to the global optimum. If the goal
is to discover globally optimal solutions, the agents should be able
to tell that actions associated with such solutions are superior to
others. In this paper, we focus on lenient learning as an approach
to doing this.

We are particularly interested in varying the degree of lenience as
time passes. As a consequence, we propose two algorithms that de-
crease the learners’ degree of lenience with time. There are several
reasons to vary the degree of lenience an agent exhibits. While an
extremely high degree of lenience may be useful at early stages of
learning to identify promising actions, ignoring many rewards may
also be wasteful (in terms of evaluations) at later stages of learning
once the agents start to converge. Additionally, ignoring rewards

o
o _|
S
z
g 8-
c ()
©
E -]
S
S o
[o) —
o R
o
g |
v

r—rr T T+ T+ 1T 1T T T T T T T T
0O 10 20 30 40 50 60 O 10 20 30 40 50 60

Actions for First Player

Figure 2: Two possible perceptions of the domain in Figure 1,
for random actions of the teammate. (left) The average of ten
joint rewards. (right) The maximum of ten joint rewards.

as the agents start to converge may be harmful to estimating the ac-
tual expected value in domains where agents receive noisy reward
information. Finally, lenience may interfere with the learners’ at-
tempts to choose one of multiple equally-good solutions, if several
exist.

2. LENIENT COEVOLUTION

Cooperative coevolutionary systems [6] are variants of evolu-
tionary computation (a stochastic optimization technique) which
apply multiple parallel learners (optimization processes) to work
jointly on different aspects of the problem. This makes them a
good fit for multiagent learning by decomposing the joint problem
into several, likely intertwined, individual agent subproblems.

A standard approach to applying cooperative coevolutionary al-
gorithms (CCEAs) to multiagent learning assigns each agent its
own set (population) of higher-rewarded actions. The quality (fit-
ness) of an action is determined by testing it in combination with
actions from the other agent (as sampled from its current population
either randomly or based on their performance during the past eval-
uation phase). When combined with these actions (called collabo-
rators in coevolution parlance), an agent’s action receives a reward
equal to the joint reward for the entire team of agents. The fitness
of the candidate action is then computed by aggregating multiple
such rewards (e.g., by taking the average or the maximum, simi-
lar to the process used for Figure 2). Aside from this collaborative
assessment, each agent follows its own independent evolutionary
process in parallel with other agents.

Most cooperative coevolutionary algorithms assume that each
action is evaluated as the maximum joint reward obtained with a
fixed number of collaborators [8]; of them, one is usually the best
action at the previous learning stage (generation), and the others
are chosen at random. In terms of our earlier discussion, using
the maximum joint reward translates into a constant level of le-
nience: the quality of the action is assessed by ignoring lower re-
wards. Given the observed variance in the impact that lenience can
have on an agent’s perception, we argue that a varying degree of le-
nience might be beneficial for CCEAs, especially when given fixed
computation capabilities.

To do this, we experiment with a trivial ad-hoc setting: the fitness
of each individual is assessed as the maximum reward obtained
with ten collaborators for the first five generations; after that, only
the maximum reward with two collaborators is used. This implies
that the degree of lenience varies with time: the worst nine out of
ten rewards will be ignored for each action in an agent’s population
during the first five generations, while only one out of two rewards
will be ignored thereafter. While we found this trivial setting to be

useful for this proof of concept investigation, readers with further
interest in time-dependent collaboration schemes for CCEAs are
referred to [5].

Experiments. To test our hypothesis that a variable degree of
lenience is helpful, we applied CCEAs to four simple coordi-
nation games based on benchmark optimization problems with
well-known properties: Two-Peaks (as in Figure 1), Rosenbrock,
Griewangk, and Booth [7]. All domains were discretized such that
each of the two agents had a set of 1024 actions. Each agent main-
tained a population of 32 actions. Agents kept unmodified their
best action from one generation to another, and the remaining pop-
ulation of actions was created by mutating actions chosen via tour-
nament selection of size 2 (two random actions were picked with
replacement from the population, and the fitter of the two was se-
lected). Mutation worked as follows: a coin was repeatedly tossed,
and the action (an integer number) was increased or decreased (the
direction chosen at random beforehand) until the coin came up
heads, making sure it did not go outside the allowed bounds. The
coin was biased such that it came up heads with probability 0.05.
One of the collaborators was always set to the best action from the
other agent’s population at the previous generation; the others were
chosen by a tournament selection of size 2.

We fixed the budget to 17600 evaluations of joint rewards. When
choosing this budget, we felt that too small of a value might prevent
differentiations among the algorithms because they would not be
allowed to search enough. Similarly, too large of a budget might
diminish the differences between methods that waste evaluations
and methods that use them effectively. The value we chose seemed
to be a good compromise.

The experiments were performed using the ECJ library [4], and
they involved 250 runs per method. Performance was computed
as the average of the best performing pair of actions (one per each
agent) at the last generation. The results indicated that the CCEA
with a variable degree of lenience was significantly better in all four
problem domains than CCEAs involving a fixed degree of lenience
(statistical significance was verified using t-tests assuming unequal
variances at 95% confidence).

3. LENIENT MULTIAGENT REINFORCE-
MENT LEARNING

Drawing inspiration from dynamic programming concepts, rein-
forcement learning (RL) methods update the estimates of utilities
for performing actions in various states of the environment, or for
being in those states themselves. These utilities are used for both
the exploration of the space, and for the exploitation of the agent’s
knowledge about the environment. As the memory requirements of
traditional RL grow exponentially with the number of agents, mul-
tiagent reinforcement learning reduces the memory consumption
by decomposing the utilities of joint actions into per-agent utilities
of actions. We assume for simplicity that the environment has a
single state, and we only focus on computing the utility of choos-
ing different actions; this is similar to the analysis of multiagent RL
in[1,2,3].

The proposed lenient multiagent reinforcement learning algo-
rithm (LMRL) is based on the following idea: if at early stages
of learning an agent receives rewards ry,7;,...,7, When choosing
action a; at various times, the agent only updates the utility of a;
based on the maximum of ry,ry,...,ry, ignoring the others. The
reason for this is that those rewards were obtained while the other
learning agent selected some actions by, ...,b;, most of which we
poor choices to begin with and will be abandoned by the other

agent in the future due to low utility. But later, after each agent
has largely converged to one or a few actions, it becomes more im-
portant to achieve accurate utility estimates. The agents therefore
will decrease their degree of lenience to one another by ignoring
fewer of the lower utilities.

To implement this idea, an agent always updates the utility of
the action if the current reward exceeds the utility of that action.
Agents associate a temperature with each action, and the level of
lenience is inversely proportional to the temperature: the tempera-
ture is initially high and agents are thus more likely to ignore lower
rewards. The temperatures of actions decrease as those actions are
selected, and as a consequence the agents become more likely to
incorporate the lower rewards into the utility estimates. As agents
have non-zero probabilities of selecting an action at each time step,
there is also a small (0.01) probability of ignoring small rewards at
all times. Agents choose actions via Boltzman selection.

Lenient Multiagent RL
Parameters
MaxTemp: maximum temperature
o temperature multiplication coefficient
B: exponent coefficient
d: temperature decay coefficient
A: learning rate
N: number of actions
Initial Settings
For each action i
U; = random value between 0 and 0.001
Temp; = MaxTemp
Algorithm
Repeat
// Action Selection
MinTemp = 1075 + minﬁ\’:1 Temp;
UI
W' _ e Mirl'l'('mpi
l):7:1 e %j‘"”"
Use probability distribution Wy, ..., Wy to select action i
Temp; = Temp; * &
// Utility Update
Perform action i and observe reward r
RandVal = random value between 0 and 1
If (U; < r) or (RandVal < 1072 + p~%Tempi) Then
Ui=AxU;i+ (1 =N)*r

Experiments. We tested LMRL in the Climb and Penalty do-
mains introduced in [1], and in the two stochastic variations of the
Climb domain discussed in [2]. We performed a preliminary sensi-
tivity study for the parameters: as a result, we set MaxTemp = 500,
a=2,B=2.5,08=0.995 and A = 0.95. The agents spent 7500
moves learning. We compared LMRL’s performance with that of
FMQ [2] and with a straightforward application of RL to concur-
rent learning (also in [2]). We ran each algorithm 10000 times in
each of the four problem domains.

The lenient multiagent RL algorithm consistently converged to
the global optimum in the Climb, Penalty, and Partially-Stochastic
Climb domains. According to [2], this is equivalent to the per-
formance of FMQ in these problem domains, and it is also sig-
nificantly better than the performance of traditional Q-learning ap-
proaches, as well as to an algorithm previously proposed in [3].
However, the lenience also helped the agents learn the global joint
action in the Fully-Stochastic Climb domain in more than 93.5% of
the runs. Contrast this to FMQ’s poor performance in this domain

as mentioned in [2]. We likewise found that FMQ converged to the
global optimum solution in only around 40% of runs in this difficult
domain, despite an extensive sensitivity study for parameter values.

4. CONCLUSIONS

This paper argues that multiple agents that learn concurrently
can benefit from showing lenience to each other, especially during
early interactions. We illustrated this concept with perceptions of
the joint search space that each agent would perceive during differ-
ent stages of learning. We then extended two popular multiagent
learning algorithms, namely cooperative coevolution and multia-
gent reinforcement learning, to include lenience in the agents’ de-
cision processes, and we showed the superiority of these extensions
in several coordination games.

S. REFERENCES

[1] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings of
the National Conference on Artificial Intelligence, pages
746-752, 1998.

[2] S. Kapetanakis and D. Kudenko. Reinforcement learning of

coordination in cooperative multi-agent systems. In

Proceedings of the Nineteenth National Conference on

Artificial Intelligence, 2002.

M. Lauer and M. Riedmiller. An algorithm for distributed

reinforcement learning in cooperative multi-agent systems. In

Proceedings of the Seventeenth International Conference on

Machine Learning, pages 535-542. Morgan Kaufmann, 2000.

[4] S. Luke. ECJ 10: An Evolutionary Computation research

system in Java. Available at

http://www.cs.umd.edu/projects/plus/ec/ecj/, 2003.

L. Panait and S. Luke. Selecting informative actions improves

cooperative multiagent learning. In Proceedings of the Fifth

International Joint Conference on Autonomous Agents and

Multi Agent Systems — AAMAS-2006, 2006.

M. Potter and K. De Jong. A cooperative coevolutionary

approach to function optimization. In Y. Davidor and H.-P.

Schwefel, editors, Proceedings of the Third International

Conference on Parallel Problem Solving from Nature (PPSN

III), pages 249-257. Springer-Verlag, 1994.

H. Schwefel. Evolution and Optimum Seeking. John Wiley

and Sons, New York, 1995.

[8] R. P. Wiegand, W. Liles, and K. De Jong. An empirical
analysis of collaboration methods in cooperative
coevolutionary algorithms. In E. Cantu-Paz et al, editor,
Proceedings of the 2001 Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 1235-1242,
2001.

3

—

[5

—_—

[6

—

[7

—

