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ABSTRACT

A classic example of multiagent coordination in a shared envi-
ronment involves the use of pheromone deposits as a communi-
cation mechanism. Due to physical limitations in deploying actual
pheromones, we propose a sparse representation of the pheromones
using movable beacons. There is no communication between the
beacons to propagate pheromones; instead, robots make movement
and update decisions based entirely on local pheromone values.
Robots deploy the beacons throughout the environment, and sub-
sequently move them and update them using a variation of value
iteration. Simulation results show that our approach is effective at
finding good trails, locally improving them, and adapting to dynamic
changes in the environments.
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1. INTRODUCTION

One challenge in swarm robotics is performing effective com-
munication. Broadcast communication may be unattractive due to
environmental factors, limited range and power, lack of global com-
munications infrastructure, or overly congested channels. Instead,
swarm robotics research has often focused on local interaction and
forms of indirect communication such as pheromone deposits. In
this paper we show a formal approach to pheromone deposit com-
munication via beacons deployed in the environment by the robots.
(We will use the terms “robot” and “ant” interchangeably.)

In previous work [16] we presented a technique to enable a
large swarm of ant-like agents to perform foraging and other trail-
following tasks by depositing, updating, and following pheromones
in the environment. Unlike much previous work in the multiagent
pheromone-based foraging literature, our approach cast pheromones
as state utility values, and applied formal utility update equations
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based loosely on value iteration and temporal differencing. The
work also employed multiple simultaneous pheromones to direct
various aspects of the task at hand. Using these equations, we were
able to demonstrate collaborative foraging using two pheromones
(one which ultimately defined a gradient to food, and one back to the
ants’ nest). We went further than this, demonstrating trail optimiza-
tion, discovery of self-intersecting tours involving many waypoints
(and many pheromones), and adaptation to dynamic changes in the
environment.

That work was motivated in part by our research in swarm
robotics: we sought a formal language and substrate with which
swarms of agents might perform a range of cooperative tasks. The
approach was also of value to swarm robotics because it did not
require odometry or localization, and had a light computational load.
However, the agents used 2d discretized grid-world environment,
with pheromones stored in the grid of the environment itself.

The present paper represents a significant advance over this early
work, adapting the pheromone idea to a more realistic robot scenario
through the use of deployable and modifiable beacons as a sparse
representation of the pheromone environment. The ant robots deploy
the beacons, and subsequently follow, update, move, and remove
them. From the perspective of the robots, the beacons are a graph of
states with utility values, just as the earlier grid-world was a denser
graph of the same. Each beacon stores one value per pheromone
employed by the swarm. Beacons only represent local information,
and do not communicate with one another to spread pheromones.
Rather, after deploying the beacons, robots update pheromone val-
ues using similar equations as [16], and likewise the robots make
routing decisions based on the pheromones in nearby beacons. After
discovering a trail, the robots may additionally move the beacons in
order to optimize it. The work presented uses robots in simulation,
but its approach is specifically designed to be deployable to actual
robots in our laboratory. Our purpose here is to extend the approach
taken in [16] to environments with more realistic assumptions, tak-
ing a significant step towards deploying to physical robots in our
laboratory.

We begin the paper with a discussion of previous work in
pheromone-based multagent interaction, marker-based robotic navi-
gation and optimization, and other related topics. We then introduce
and discuss the proposed model, followed by experimental work
with the model.

2. PREVIOUS WORK

Indirect communication through pheromone deposits is an ex-
ample of stigmergy, a term coined by Pierre-Paul Grassé in the
1950s to describe a mechanism in which colonies of a certain genus
of termites collaborate to build a nest [4, 7]. Many examples of
stigmergy appear in nature, including the foraging behavior of ants.



Ants leave pheromone deposits as they move in the environment,
and their navigation is stimulated through local observations of
pheromone strength and gradient. The global ant foraging behavior
emerges through these simple local pheromone interactions. Other
familiar kinds of indirect communication through the environment
include leaving footsteps in the snow; or leaving trails of pebbles or
breadcrumbs along a journey in order to help find a way home.

The collective behavior of ants that emerges from communication
through pheromones has been widely studied in both artificial life
and in robotics. Beyond providing a robust, decentralized, and dis-
tributed means of communication, pheromone-based swarms have
also shown the ability to optimize trails, as observed in [6]. The net-
works of paths constructed by ants have been compared to minimal
spanning trees [18] which may emerge from the rapid accumulation
of pheromone strength across shorter paths [2, 3]. By incorporating
stochastic exploration and evaporation of old pheromones, swarms
can be shown to adapt to dynamic situations such as changing goals
or obstacles [12, 20]. We have demonstrated several of our own
examples in [16].

Some pheromone-based reinforcement learning algorithms have
been proposed for foraging problem domains. Most of these involve
agents that use a fixed pheromone depositing procedure, and incor-
porate the existing pheromone values into their action selection and
update mechanisms [8, 10, 11].

Several works have explored agent behaviors that take advan-
tage of larger vocabularies of pheromones. For example, multiple-
pheromone models have been used to establish separate gradients
for different tasks [5, 16, 25], rather than relying on arbitrary a
priori mechanisms to augment a one-pheromone model. Vaughan
et al. have proposed an alternaive involving pheromones that addi-
tionally indicate direction. Parunak et al. [17, 18] have exploited
a variety of techniques such as using pheromones with different
semantics, pheromones with different dynamics (e.g. different rates
of evaporation and propogation) and using history (e.g. weighing
pheromones more strongly in the direction of motion).

Several of the ant-inspired methods described so far rely on the
ability of agents to modify the environment. While there has been
some work on a robotic mechanism to deposit and sense chemical
trails [21], this could be impractical in many real scenarios. One
common approach is to rely on existing communications mecha-
nisms to share internal pheromone models. For example, in [22,
23, 24], Vaughan et al. simulated stigmergic communication by
making it possible for agents to share trails of waypoints over a
wireless network. Similarly, Payton et al. experimented with “vir-
tual pheromones” based on propagating discrete messages between
mobile robots with short-range omni-directional infrared communi-
cations [19]. O’Hara et al. introduced the GNATS, a pre-deployed
line-of-sight sensor network to support robotic navigation tasks [15].
They demonstrated successful distributed path planning in this in-
frastructure using variants of the wavefront planning algorithm [13]
and the distributed Bellman-Ford algorithm [14]. Barth et al. pro-
posed a dynamic programming approach to swarm nagivation based
on deployable, but immobile relay markers [1]. This approach also
relies on communication between the markers in order to establish
and update the pheromone values. Ziparo et al. used deployable,
non-mobile RFID tags to help path planning and exploration with
large groups of robots [26].

It is important to note that the goal of our work is not the analysis
of the network structure created by the topology of the beacons in
the environment, as this has been well covered by other researchers.
Instead, we focus on swarm robot behaviors which may successfully
employ a collective model in the face of severe communications
constraints (in this case, for the foraging task).

3. MODEL

Our foraging world is a bounded two-dimensional continuous
environment. A nest is located somewhere in the environment,
holding some number of robots (we will refer to them simply as
ants). The environment also holds some N food source locations (in
our experiments, we set N = 1). The environment also may contain
obstacles through which the ants may not travel.

The ants’ task is to bring as much food back to the nest as possible
within a given time frame. This consists of several subtasks. First,
the ants must find a remote food location, and establish a trail there.
Second, the ants must repeatedly follow the trail to the food location,
harvest some food, ferry it back along the trail to the nest, and
deposit it there. Third, the ants should optimize the trail, globally
adopting new routes when they are found to be shorter, or attempting
to straighten (and shorten) the current trail locally.

To assist them in this task, the ants deposit three pheromones and
read them at various beacons the ants have deployed and organized
throughout the environment. Each beacon represents the state of
pheromones in the environment at that location: they are initially
set to 0. The three pheromones are:

e The foraging pheromone, used to build a gradient to food.
e The ferrying pheromone, used to build a gradient to the nest.

o The wandering pheromone, used to indicate the how often a
state has been visited.

Beacons and ants have the same communications range. Beacons
within the range of one another, and not occluded by an obstacle,
are defined as neighbors. Each ant will associate itself with the
nearest non-occluded beacon within its range, if any, and this bea-
con is called the ant’s current beacon. Ants can read and update
pheromone information stored in their current beacon, and (notion-
ally by temporarily moving to the current beacon) its immediate
neighbors. Ants can also detect if food or the nest are within range.

Ants do not directly communicate with each other, and likewise
beacons do not communicate with each other. In fact, beacons need
not be wireless or even active: they could be buckets, RFID tags,
or other markers with limited visibility range. Ants only need to be
able to identify and home in on individual beacons, and to store and
retrieve data in them.

Each ant has a mode, either FORAGING or FERRYING, indicat-
ing the ant’s current task. All ants start FORAGING and located at
the nest. At each iteration an ant updates the pheromones of its
current beacon (if any), then performs one action (such as moving
to the food or nest; exploring randomly; moving, deploying, or
deleting a beacon; etc.), then the ant updates the pheromones again
for good measure. The action decision process is described later.
Afterwards, each beacon depletes (evaporates) its foraging and fer-
rying pheromone values by multiplying them by a fixed constant
0 < B < 1. Except in the case of moving obstacles, depletion is not
required (8 can be 1). We set § = 0.9. The wander pheromone is
not depleted; it is updated as described below.

3.1 States and Pheromones

Ants spread pheromone values from beacon to beacon using
roughly the same method as in the (beacon-less) [16]: a form of
value iteration. From a dynamic programming perspective, beacons
are the states in the environment, and pheromone values are the
utilities U, of those states, one per pheromone p. To illustrate state
(beacon) transitions, consider Figure 1, where the ant has recently
transitioned from state (beacon) s to state s’ and may transition to
any of the s states in the immediate future. After reaching a goal



via a series of transitions, an ant will receive a positive reward R,
and change its mode from FORAGING to FERRYING or vice versa.
Specifically, when the ant has just changed to (or is starting as)
FORAGING, Ry pying 18 set to a positive constant REWARD, and
when the ant has just changed to FERRYING, Rf,uging 1S set to
REWARD. In all other cases, R, = 0 for all p.

Updating. To be maximally general, let us start with the assump-
tion that for each s/, the ants have available a model 7'(s',a, s/ ) indi-
cating the probability of transitioning to s from s’ if the ant chooses
to perform some action a € A. The update rule for each pheromone
p € {foraging, ferrying} is a variation the Bellman Equation in
which U}, does not decrease:

Upls') ¢ max <U,,<s/), Ry-+ ymax S 7(s a.f) Up<s:f>>
1

where 7 is a value between 0 and 1. However, in actuality transitions
are deterministic (or at any rate, 7" is not available to the ants), which
reduces the update equation to:

Uy(s') + max (U,,(s’), R,(s") + ymax U,,(sg’)> (1)

The wandering pheromone is updated so that the ant will move
away from commonly-visited beacons. Specifically:

Uwandering (S/) A Uwandering (S/) -1 2

Following. When it is in the mode of transitioning from beacon
to beacon, an ant’s policy is fixed: if the ant is FORAGING, or
FERRYING, or in certain situations wandering, it will move to the
neighboring state beacon whose pheromone for that mode is highest.
That is, it will select the beacon
argmax U (s
4

where p is foraging, ferrying, or wandering, as appropriate. We
refer to this action as following the pheromone trail.

It’s important to note here that the ants are updating all the
pheromones, but are only transitioning along one pheromone at
a time. This has an important quality which crucially differentiates
this method from plain value iteration. Because the ant is updating
all pheromones as it transitions from the food to the nest (or back),
it can build up a gradient in O(n) time, where # is the number of
transitions. Contrast this to traditional dynamic programming or
reinforcement learning approaches, whose repeated backups require
O(n?) time. This significant improvement in complexity is made
possible by the symmetry of the environment in the ant foraging
problem: the probability of transitioning from state s; to state s; is
the same as the probability of transitioning from s; to s;.

3.2 Algorithm with Pre-Positioned Beacons

To introduce the algorithm more gently, we first present a version
that considers the beacons as fixed in the environment. This algo-
rithm is the sparse analogue of the dense pheromone grid structure
in [16] and is shown here to demonstrate its close similarity. In
the next section we will then extend this to the full algorithm, with
beacon deployment, movement, and deletion.

Robustness can be accomplished with some degree of randomness.
We add this in two ways. First, with small probability the ant will
initiate a temporary exploration mode in which it performs random
transitions some number of times before resuming normal operation.
Second, if the ant does not (with some probability) decide to do its

Figure 1: State transition example for the beacon model. The
ant has just transitioned from state s to state s’, and now is
preparing to transition to one of the s”. State transitions are
reflexive.

standard “pheromone following” procedure, it will instead follow the
wandering pheromone, which pushes it to areas not well explored.

The algorithm relies on certain constants: REWARD (set to 1.0) is
how much reward the ant receives when it reaches the nest or food;
COUNT is how long the ant will stay in exploration mode; pgypiore
is how likely the ant will enter exploration mode; and pgyjj,y, 1S how
likely the ant will do pheromone following. An ant will always have
a current beacon unless no beacons are yet placed near the nest. The
algorithm looks like this:

1: global variables:
2: mode < FORAGING, count < 0, and reward < REWARD
3: loop
4: ¢ < compute current beacon, if any
5: if c exists then
6: UpdatePheromones(c)
7: if food within range of me and mode=FORAGING then
8: Move to food, mode < FERRYING,
9: reward <— REWARD
10: else if nest within range of me and mode=FERRYING then
11: Move to nest, mode <— FORAGING,
12: reward <— REWARD
13: else if count>0 and c exists and has neighbors then
14: Move to random neighbor of ¢, count=count—1
15: else if Rand(pgypiore) then
16: count <— COUNT
17: else if ¢ exists and CanFollow(mode,c) and Rand(pg,j,,) then
18: Follow(mode,c)
19: else if ¢ exists then
20: Follow(WANDERING,c)
21: ¢ < recompute current beacon, if any
22: if c exists then
23: UpdatePheromones(c)
24: reward < 0

This algorithm directly extends [16] to the more general connec-
tivity graph case. The functions used in the algorithm are:

UpdatePheromones(current beacon). Each pheromone is up-
dated using Equations 1 and 2, where s’ is the current beacon, and
where either Ry, aging OF Rperrying 18 set to the current reward, de-
pending on whether the mode is presently FERRYING or FORAGING
respectively. The other R), is set to 0.

Rand(prob). Return true with probability prob, else false.
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(a) Initial bounded environment with nest
(square) top left, food (diamond) bottom
right, and a T-shaped obstacle (shown pix-
elated, but the environment is continuous).

(b) Ants leave the nest and establish beacons
(shown at half range). Ferrying-pheromone
strength shown on left half of beacons. Ants
are black dots centered at current beacons.

(c) First path to food established. Foraging-
pheromone strength shown on right half of
beacons. Food-laden ants are red dots cen-
tered at current beacons.
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(d) Second shorter path to food established.

been abandoned.

(e) Second path is improved. First path has

(f) Ants move beacons to begin to optimize
the path. Disused pheromones are depleted.

Figure 2: Example trace of the algorithm in action.

CanFollow(mode, current beacon). Let beacon B be the neigh-
bor of the current beacon with the highest pheromone value corre-
sponding to mode. If B exists, return true, else false.

Follow(mode, current beacon). Move to the neighbor of the cur-
rent beacon with the highest pheromone value corresponding to
mode (break ties randomly).

3.3 Deploying, Moving, and Deleting Beacons

This initial algorithm is sensitive to beacon location. If the bea-
cons are positioned poorly, the ant trail will be suboptimal; and if
the graph is disconnected, the ants may not be able to find a trail to
food at all. For these reasons it is advantageous for the ants to be
able to deploy the beacons on their own, then later move them and
ultimately remove excess or unnecessary beacons to optimize the
graph. We now extend the algorithm to include these cases.

This requires a few new constants: ppepjoy is the probability of
deploying a new beacon, and ppsye is the probability of moving
the current beacon. Beacon deletion always occurs if it is feasible.
Certain other constants are described later. The algorithm only
differs from the previous one in certain lines, denoted with [ j .

The revised algorithm is:

1
2
3
4
5:
6.
7
8

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

r

L

: global variables:

mode < FORAGING, count < 0, and reward < REWARD

: loop

¢ < compute current beacon, if any
if c exists then
UpdatePheromones(c)
if food within range of me and mode=FORAGING then
Move to food, mode <— FERRYING,
reward <— REWARD
else if nest within range of me and mode=FERRYING then
Move to nest, mode < FORAGING,
reward <— REWARD
else if ¢ exists and CanRemove(c) then
Remove(c)
else if count>0 and c exists and has neighbors then
Move to random neighbor of ¢, count=count—1
else if Rand(pgypiore) then
count <— COUNT
else if ¢ exists and CanMove(c) and Rand(ppzoy.) then
Move(c) .
else if ¢ exists and CanFollow(mode,c) and Rand(pg,ion)

then
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Figure 3: Four experimental obstacle environments. Left to
right: L, Block, Block2, Ant Clock Obstacle. White is free
space and black is the obstacle.

22:
23:

Follow(mode,c)
else if CanDeploy() and Rand(ppepioy) then

24: Deploy() E
25: else if ¢ exists then

26: Follow(WANDERING,c)

27: else move to the closest beacon, breaking ties randomly j

28: ¢ < recompute current beacon, if any
29: if c exists then

30: UpdatePheromones(c)

31: reward < 0

Note line 27: deleting or moving a beacon can cause an ant
associated with that beacon to become stranded such that there
are no beacons within its range. On line 27 the ant searches (for
example, in a spiral) to find and move to the closest beacon.

The new deployment, deletion, and movement functions are:

CanDeploy(). The goal is to only deploy a beacon into an un-
crowded region, and only if there are beacons left to deploy.

This requires three new constants: DEPLOYTRIES (10), DE-
PLOYRANGE (0.9), and DEPLOYCROWD (0.6). If the maximum
number of beacons has been reached, return false. Otherwise the ant
tries DEPLOYTRIES times to find a random non-occluded location
no further than DEPLOYRANGE X range away from the current
beacon, or from the ant (if there is no current beacon), such that
there is no beacon within DEPLOYCROWD X range of that location.
If a location was found return true. Else return false.

The maximum number of beacons controls the overal beacon
density. Since we are most interested in sparse beacon deployment,
we’ve set this low (3).

Deploy(). Deploy a new beacon at the location computed by
CanDeploy(). Set its pheromones to 0. Move the ant to that location.

CanMove(current beacon). The goal is to move the beacon pre-
cisely in-between neighbors likely to be on the ant trail, so as to
straighten the trail, without breaking other possibly important trails.

Let locations By and B; be the positions of the neighbors of the
current beacon with the highest foraging and ferrying pheromones
respectively, breaking ties randomly; let P; and P; be those foraging
and ferrying pheromone values; and let W be the minimum wander
pheromone of the two. If the food is within range of the ant, replace
B; with the food location and set P; = REWARD; likewise if the
nest is within the range of the ant, replace B, with the nest location
and set ) = REWARD.

Compute a new location that is the midpoint between B and Bj.
Return false if any of the following are true:
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Figure 4: Mean food collected for the L environment with
PExplore = 0.1, prrore =0

e If B; or B, do not exist, or By = By, or P, =0, or P, =0.

o If after relocating to the move location, the set of “interesting”
neighbors of the current beacon, as defined next, would not
be a subset of the neighbors of the beacon at the new location.
Notionally this can be done by moving the ant to the location,
testing, then moving back.

o If the new move location is not reachable from the current lo-
cation due to an obstacle or environmental border. Notionally
this can be done by moving the ant to the location, testing,
then moving back.

Else return true.

An “interesting” beacon is one which is likely to be part of an
important path. We’d prefer to not damage such paths. At present we
test for such beacons conservatively based on how often they they’ve
been used (their wander pheromone). We define two new constants:
WANDERFRACTION (0.7) and MINWANDER (-200). A beacon is
“interesting” if its wander pheromone is < WANDERFRACTION
xW (it’s not been very much) and if the wander pheromone of the
current beacon is < MINWANDER (the region is old enough to have
reliable wander statistics).

Move(current beacon). Move the beacon, and the ant, to the mid-
point location computed by CanMove().

CanRemove(current beacon). There are two cases in which we
presently remove beacons: first, if the beacon appears to be stranded
or at the end of an abandoned string, and second, if the beacon is
redundant.

For the first test, we return true if the neighborhood of the current
beacon contains more than 2 other beacons, and the current beacon
is not within the range of the food or nest, and it’s old enough (its
wander pheromone is < MINWANDER).

For the second test, we return true if there is another beacon
(breaking ties randomly), called the merge beacon, within the range
of the current beacon which has both higher foraging and ferrying
pheromones, and which is within range of everything (food, nest,
other beacons) that are within the range of the current beacon.

If we fail both tests, we return false.

Remove(current beacon). Remove the current beacon. Set the
wander pheromone of the merge beacon (if any) to the minimum of
the merge beacon and the current beacon.
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Figure 5: Mean food collection for the four static environments adding obstacles. p,,,, = 0

3.4 Example

An example trace of the algorithm is shown in Figure 2. The ants
optimize the trail in two basic ways. First, they may adopt a new
route through the established beacons, or newly deployed beacons.
Second, they can move beacons and eventually remove beacons
which are “sufficiently close” to one another. Eventually the ants
establish a reasonably optimized route between the food and nest,
abandoning suboptimal routes and tightening up the best-discovered
route.

Note that the path will likely never be fully optimized in this exam-
ple because our present beacon-deployment and beacon-movement
rules are overly conservative: the beacon-movement rule tries at
all cost to avoid breaking chains; and the beacon-deployment rule
winds up refusing to deploy in certain situations it perceives as
overly crowded, even though they are needed to improve the current
route.

4. EXPERIMENTS

We tested our algorithm to demonstrate the ant’s ability to find the
food, to discover optimal transition sequences between the nest and
the food, and to recover when obstacles are added to the environment.
Our metric was the amount of food collected by all the ants every
50 timesteps.

Obstacles. To perform our experiments, we constructed several
different obstacle environments, which are shown in Figure 3. We
chose these environments to test two aspects of the algorithm: adap-
tively searching through the beacon graph (Exploration), and moving
beacons so as to optimize the path when allocated only a limited
budget of them (Optimization).

The L obstacle allowed ants to deploy beacons near the food
source but forced them to create a path around the edge of the
environment. The ants could effectively explore the majority of
the landscape. The Block and Block2 obstacles forced ants into
narrow corridors, and occupied much of the landscape. Finally, the
Ant Clock With Obstacle environment, discussed later, included a
large obstacle to complicate a dynamic environment. We compared
each of these obstacles with a Blank environment as a control. For
L, Block, Block2, and Blank the nest was placed in the upper left
corner at (10, 10), and the food in the lower right corner at (90, 90).

Minutiae. We ran 63 independent runs in the MASON simula-
tor [9] for 14,000 timesteps each. pryjiow and ppepioy Were fixed at

0.9. All experiments used 100 ants, a 100x100 bounded, continuous
world, and a beacon range of 10. We limited the number of avail-
able beacons to 60 for Block, 100 for Block2, and 400 for all other
environments. These limits provide just enough beacons to establish
a trail for the given environment. We compared results after 2,000
and 14,000 timesteps using an ANOVA test with a Tukey post hoc
comparison at the 95% confidence level.

4.1 Exploration

We began by examining the ants’ ability to find better routes
through the graph given beacons which, once deployed, could not
be moved or deleted. Accordingly, we set pyove = 0, and peypiore
varied over 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9 We studied two
cases: removing obstacles (which created new situations to exploit)
and adding new obstacles (which had to be worked around).

Removing obstacles. We began by letting the ants discover a
suboptimal trail around some obstacle for 3,000 timesteps, then
removed the obstacle to see how the ants would find new routes to
take advantage of their revised situation. Our obstacle of choice for
this experiment was the L obstacle. Figure 4 shows the performance
with pgypiore = 0.1 before and after removing the L obstacle. As can
be seen, the ants rapidly adapt to the new situation. After the obstacle
is removed, performance converges rapidly to approximately the
same performance of the ants on the Blank environment, as the ants
find a superior path through the beacon graph. Changing pgyiore
does not significantly alter this rate of adaptation: though larger
values of pgypiore generally result in significantly lower total food
collection as more time is spent exploring.

Adding obstacles. Next we examined how the ants would react
to environmental changes that made previously good trails no longer
viable. We let the ants explore an empty environment for 3000
time steps, and then introduced obstacles. When an obstacle was
introduced, it might collide with a number of beacons and ants. We
treated these as destructive events to the beacons and ants. Specifi-
cally, a beacon in collision was automatically removed. An ant in
collision was “killed” — it was eliminated entirely, and so the total
count of ants was reduced by one. We chose to do this rather than
artificially “restart” the ant at the nest or “move” it to a safe location.

Figure 5 shows the ants’ performance for two values of pgyiore-
In both cases we see that the ants can recover, but their performance
after the obstacle is introduced is reduced proportionally to the
number of resources (ants and beacons) that were destroyed by the
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Figure 6: Effect of encountering and adapting to an obstacle while following a moving food source. p,,,, = 0

obstacle. The L obstacle, which exhibits the best recovery, covers a
smaller area than either Block or Block2, both of which show more
limited performance.

In comparing the two graphs, it is important to note the scale.
While the ants recover faster with a higher pgyore value, their over-
all performance is less than the ants with a lower pgyjore. This is
essentially the same situation as noted in the previous experiment
(removing obstacles): as the ants spend more time exploring (repre-
sented by higher pgy,jore values), they spend less time ferrying food
to the nest. As pgyiore approaches 1, the performance of the ants
drops dramatically as they spend more time exploring.

4.2 Dynamic Food Location

Having shown that the ants could adopt better trails where the
food location was not moving, we next tested to see if this held
when the food was moving. To do this, we recreated an experiment
performed in [16], called the “Ant Clock”. In this experiment, the
nest started in the center of the environment (50, 50), and the food
was initially placed due east, 10 distance units from the right edge of
the environment. At each timestep, the food would rotate about the
nest in a clockwise direction at one-quarter of a degree per timestep.
We placed an obstacle north of the nest such that the food would
just clear the left and right edges of the obstacle in its orbit about the
nest (see Figure 3). As a control we had the food source rotate about
the nest, but without the obstacle to the north. We set pasore = 0,
and varied pgypiore-

Without the obstacle, the ants ably adapted to the constantly
moving obstacle, maintaining an approximately straight-line path
at all times. With the obstacle, the ants’ path would effectively
“bend” around the obstacle as the food passed by it, but eventually
the exploration would enable the ants to reestablish an optimized a
straight path. This “bending” is reflected in the periodic drops in
performance in Figure 6. Figures 6(a) and 6(b) illustrate another
tradeoff of more exploration: higher values of pgyyj,r. decrease the
absolute amount of food returned the nest; but higher pgypiore values
also decrease the severity of the periodic drops. The increased
exploration prevents the ants from spending too much time on the
established, suboptimal “bent” trail.

4.3 Optimization

In our final experiment, we set pgypiore = 0 and varied ppzoye test
the ants’ ability to optimize trails with a limited number of beacons.
Here we used the Block and Block2 environments. We sought
to test one of the key ideas behind our algorithm: that a sparse
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Figure 7: Mean food collected for the Block and Block2 envi-
ronments with pg,1,, = 0, Paggye = 0.1

representation of pheromones benefits from physical revisions and
updates. In the experiment, let the ants establish a trail for 3,000
timesteps and then removed the obstacle.

After removing the obstacle, the ants would begin to move the
beacons so as to straighten the trail, and eventually straighten the
trail entirely, deleting redundant beacons as the the trail became
shorter. For pysove = 0.1, Figure 7 shows that while performance
statistically improves after the obstacle is removed, it does not
converge to the performance of Blank. We can surmise two possible
reasons for this: first, though beacons would be removed, the trail
was ultimately still denser with beacons than if the ants had been (as
in Blank) free to deploy beacons in the space. Second, moving and
deleting beacons would occasionally trap ants in “islands” — small
disjoint beacon groups — and unable to participate.

Even so, the results on the Block2 environment verified our vi-
sual inspection that the trail line was rapidly straightened out and
optimized. In the Block environment this effect is not seen, largely
because the number of beacons remained approximately the same
before and after optimization. Similar performance is seen with
PMove = 0.5 and pprove = 0.9.

5. CONCLUSION

We presented an approach to establishing trails among swarm
ant robots using a non-invasive and non-destructive stigmergic com-
munication in the form of deployable and movable beacons. The
robots use those beacons as a sparse representation of a pheromone



map embedded in the environment. The algorithm uses a variation
of value iteration to update pheromones and make transitions from
beacon to beacon. We demonstrated the efficacy of the technique
and explored its present robustness, and optimization capabilities.

This work is intended as a stepping stone to actual deployment on
swarm robots, and using sensor motes as beacons. This deployment
is our first task in future work. We will also examine extending the
beacon model to more collaborative tasks than simply establishing
trails. For example, in other experiments we have demonstrated
sophisticated self-crossing, multi-waypoint tours. We believe we
can also employ beacons in this model to define regions to avoid or
requests for assistance (to move objects or establish formations, for
example).
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