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Abstract. Multiagent systems often require coordination among the
agents to maximize system utility. Using the notion of favors, we propose
a technique, flexible reciprocal altruism, which determines when one agent
should grant a favor to another agent based on past interactions. The
desired rate of altruism is controllable, and as a result the loss associated
with granting unmatched favors is bounded and amortized over all past
interactions. In flexible reciprocal altruism the desired acceptable loss is
independent of the cost and value of the favors. Experiments show that
our technique performs well with different cost/value tradeoffs, numbers
of agents, and load.

1 Introduction

In a multi-agent system environment, the agents typically have limited resources
(e.g., sensors, communications) that restrict the problems they can solve. If the
agents coordinate, then the system can be made more effective. In particular,
system performance generally improves if the agents can coordinate both locally
and globally. Example applications include cooperative target observation [1],
foraging [2], and peer-to-peer systems [3]. One useful approach to agent coordi-
nation is to consider the agents as providing favors to the other agents.

Most of the existing work on favors has naturally followed from some version
of reciprocal altruism: one agent is willing to incur a cost now to provide a value
to another agent in return for (hopefully) receiving value in the future from the
other agent, who in turn will incur some cost. Existing work in reciprocal altruism
in multiagent systems has focused to date on rational agents, trust, social laws,
and reputation. We instead tackle the issue from the viewpoint of amortized risk:
the degree to which an agent is willing to go out on a limb for another agent is
restricted in such a way that if the second agent never reciprocates again, the
first agent’s loss, amortized over all previous interactions with the second agent,
is bounded.

Why would an agent behave like this? We argue that in many multiagent
systems tasks, a moderate number of agents are essentially working towards
the common good, and have a reasonable expectation of similar behaviors from
other agents. However, the agents do not yet know exactly the nature of the
other agents. The other agents could be dishonest, of course, but often instead
they may have a poor perception of their own abilities; or they may simply



be swamped with work; or there may be noise in the system. In the latter sit-
uations, an optimistic view of one’s neighbors is called for. We believe there
is a broad array of possible real-world applications which yield this situation:
for example, cooperative “swarm-style” unmanned vehicular foraging and obser-
vation; or peer-to-peer networks; or distributing tasks over heterogeneous grid
computing systems.

Bounded amortized risk yields a very simple, almost simplistic, decision rule
which we call flexible reciprocal altruism. In a nutshell: the sum total degree to
which an agent A is willing to provide help to another agent B is simply a linear
function of the help A has received from B in the past.

As discussed later, this is not Tit-for-Tat. One of the consequences of flexible
reciprocal altruism is that as the agents cooperate back and forth, they begin to
be willing to provide larger and larger favors to one another, and furthermore,
we may control this rate of growth. In Tit-for-Tat the size of favors remains
fixed, as is the version in [4].

2 Related Work

The social science and economic communities have devoted considerable atten-
tion to cooperation, in particular, the nature of altruism and why it evolved
[5,6]. Continuing the same line of reasoning, several researchers examined how
reciprocity and altruism effect the development of social agents [7-10].

More closely related to our work, Trivers examined how reciprocal altruism
evolved in nature [11]. Using Triver’s work as motivation, Axelrod developed
some of the original theory of cooperation in a game-theoretic setting [12]. He
developed an evolutionary model based on the probability that two agents would
interact again in the future, and showed how stable behavior arrises, when agents
exhibit deterministic reciprocity towards each other. Sen extended this work to
probabilistic reciprocity, using publicly available discount factors to encourage
sharing of resources [4,13-15]. That work, in various guises, generally bases the
probability of agent A assisting agent B directly on the historical difference in
cost and benefit to A of interacting with B. This is related to our approach,
which will instead increase the degree to which A helps B based on the ratio
of historical cost and benefit; thus as A and B interact more, A is willing to
help B to a larger and larger extent. We elaborate on a portion of this work
[4] in Section 3. Hazard further broadened Sen’s work by using private discount
factors [16].

Altruism is also studied in cooperative game theory [17], which deals with
coalition formation. Coalitions are groups of agents where the benefit received
by an individual agent is higher when acting with the group than when acting
alone. Shapley showed that under certain conditions the core of such a game
is non-empty [18]. In other words, there exists a coalition structure such that
no agent has incentive to change (similar to the idea of Nash equilibria). Fuzzy
coalition theory seeks a middle ground between coalitions and self-interested
agents [19, 20]. Economists have studied reciprocity and favors using cooperative



game theory and fuzzy coalition theory, focusing on the economy that develops
when favors are associated with a cost and a benefit [21-24]. A similar approach
was used to improve wireless sensor networks between two organizations [25].

Closely related to reciprocity and cooperative game theory is the notion of
trust and its extension in the form of reputation. Since interactions form the
basis of a multi-agent system, the multi-agent community has devoted consid-
erable effort towards understanding trust in large scale systems [26,27]. Hand
in hand with trust is the idea of reputation [28,29]. While trust and reputation
are significant research areas within multi-agent systems, our flexible reciprocal
altruism does not use either mechanism per se; instead it relies on historical
pairwise interactions.

3 Model Description

In flexible reciprocal altruism, an agent grants favors by considering the degree
to which it has had favorable interactions with the grantee agent in the past. If
the grantee agent has provided many significant favors in the past to the grantor,
the grantor is willing to offer the grantee more unmatched favors in the future.
Imagine that agent ¢ is determining whether to grant agent j a favor. Let v;; be
the sum total value to agent i of the favors which agent j has granted agent i up
to this point. Let ¢;; be the sum total cost to agent ¢ of the favors which agent
1 has granted agent j up to this point. Agent ¢ will grant the proposed favor if:

¢ij — vj; + cost(favor) < avj; + f.

The idea here is that the degree to which agent i will go out on a limb for
agent j (that is, ¢;; + cost(favor) — v;;) is no more than some constant («) times
how well agent j has treated agent i in the past (that is, vj;). a is essentially
a measure of risk tolerance: highly altruistic agents may have a high value of
«, whereas risk-averse agents will have a low value. An initialization constant,
B > 0, determines the initial level of altruism, i.e., how many favors should an
agent grant initially before requiring the other agent to reciprocate. Without (3,
agents would never grant favors to grantees with which they have had no history
(that is, when v;; = 0). Rearranging, we get:

B+ (14 a)vj; > ¢;j + cost(favor). (1)

This is our decision equation: a favor will be granted so long as it does not
increase ¢;; to greater than 5 + (1 + a)vj;. This decision equation is not based
on rational agents per se: rather, it is based on amortized altruism. Imagine
that agent ¢ and j have had a history of interactions, and then agent j cheats
1 and walks away. To agent 7 this is acceptable if the amortized ratio of cost to
benefit over all interactions with j does not exceed some amount. Clearly from
the previous equation, ¢;; = O(vj;), and (rearranging yet again) the augmented
cost to benefit ratio is:

¢ij + cost(favor) — 3
Vjsi

<l+oa. (2)
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Fig. 1. Average number of completed tasks for 2 and 64 agents and various task queue
lengths (Q).

As the agents gain a transaction history and ¢;; and vj; both grow, 8 becomes
inconsequential and the ratio of cost to benefit approaches 1 + .

Tit-for-Tat and the Reciprocal Norm  It’s worthwhile to compare this rule to
others. Using our rule, if an agent A is being asked by another agent B for a
string of favors, it will provide them up to its level of risk tolerance (). Initially
the allowed strings will be small, but ultimately they may be very large if needed.
Because we can tune «, the rate of growth of allowed strings is not dependent
on the cost and value of favors.

Now consider a simple variation of Tit-for-Tat which disregards the relative
costs and values of the tasks to the agents. Here, agent A will only grant B a
favor if the number of favors A has granted B in the past is less than or equal
to the number B has granted A. If B needs a string of favors in a row, A will
provide only enough of them to achieve parity plus one favor, and no more

We take liberties with the simple variation of Tit-for-Tat to consider costs
and values in the tasks. In this “Expanded” version, an agent A will grant B a
favor only if the cost to A of the favors A has granted B in the past is less than



or equal to the value to A of the favors A has received from B. Assuming that
all tasks have the same cost and the same value, this is equivalent to Equation 1
with o = 0. In this model the strings of favors agents offer one another will grow
without bound if the cost of a task is less than the value of the task. However
this growth rate is entirely determined by the ratio of cost to value, since « is
disregarded. Furthermore, if the cost and value are the same, then this model
reduces to the simple Tit-for-Tat scenario earlier.

A more elaborate system described in [4] permits consideration of various
task types with different costs and values, expectation of future distribution of
tasks by type, and a probability model of other agents providing future favors.
The authors suggest a reduced version in which both the future distribution of
tasks and the future favor probability model are estimated using the results from
the immediately previous time step (we may generalize this to some window of
previous time steps). If we employ a single task type with a given cost and
value, as is done in the experiments in this paper, the model may be simplified
to Pra.p % Prp a, where Pr; ; is the recent probability that, when asked, ¢ has
given j a favor. We believe this is a manifestation of the so-called reciprocal norm,
that is, A gives B favors because he feels indebted to B. We would augment this

?

to Prap < Prp.a to enable granting when the two are evenly matched. An
approach along these lines, like Tit-for-Tat, fixes the length of favor strings if
the two agents are evenly matched.

We note that our method is also in some sense more robust to noise once the
agents have warmed to one another. Imagine if agent A believes he has given
agent B a favor or two, but B did not receive them due to noise. In the three
systems described above, ultimately the situation may arise where each agent
believes the other owes him, and refuses further interactions. In our approach,
depending on how many interactions A and B have had with one another, this
situation can only arise after a large number of noise-caused failures.

Free Riders  Because of its optimism, our approach is susceptible to free-riding
agents (“leeches”) in two ways. First, if an agent A meets an unknown agent B
for the first time, A will always agree to offer B a small initial favor no greater
than 3. Were there an infinite number of agents, B could wander about forever,
getting one favor from each agent. Second, a smart agent B could ratchet up the
favors he steals from A by building up a transaction history with A, then asking
for a large number of favors, then walking away.

It’s important to note that, from the perspective of A, the first situation is
in some sense worse. Consider the case where the cost and value of favors are
both 1. For B to prime A to give out an unmatched string of N favors, B would
have had to provide A with some =1 favors in turn (and vice versa). But if
some N rogue friends of B’s each asked A for one favor, A would offer it to all
of them without any reciprocation.

In a finite-sized group, free-riders of the first kind are capped automatically:
they’ll run out of people to cheat. Free-riders of the second kind can extract
any single amount they wish from the altruistic agents, but to extract more
they will need to give back more. The total amount they can cheat the system



(a) @ = 0.0, 50,000 timesteps (b) @ = 1.0, 50,000 timesteps

Fig. 2. Average queue length per agent. Maximum queue length was 10.

is unlimited, but the ratio of loss, with respect to the value they provided the
system, is bounded. Importantly, this ratio may be set by the altruistic agents: if
they are risk averse they may cut « clear to 0, in which their loss is never more
than 3 (here, 1). Or they can cut « clear even further, down to -1, at which
point they never grant more than a single favor to a requester, and ignore him
after that.

Favor Brokers  Though our approach allows agents to warm to one another
relatively quickly regardless of the ratio of cost to value, it also makes possible
extensions which promise even faster warming. We are particularly interested in
the notion of favor brokers which can act as a bridge between two agents who
otherwise know little about one another. Consider two agents A and C' who do
not know one another well. A needs a significant favor but C' ordinarily would
not provide it because of limited transaction history between the two. However,
broker B has a significant history with both A and C. A asks B for a favor, and
B agrees to broker it by in turn asking C' to perform the favor. C' agrees to do
the favor for B. A receives the value and C' the cost of the favor; but C believes
that C' has done B, not A, a favor ; and A likewise believes that B, and not C,
has done A a favor. Note that neither A nor C have changed in opinion about
one another.

The idea behind brokerage is to provide a special channel whereby a popu-
lation may offer favors despite little prior history; or for two alien populations
to offer favors to one another. Though this approach is related to notions of
reputation and trust (for example [29]) it is different in an important way: B is
not introducing A and C' to one another. At the end of the day, A and C have
no additional transaction history. B has not used its reputation to convince C
that A is worthwhile; rather B has assumed responsibility as a middle-man for
the transaction.

Though it would be interesting for future study, we do not at this time permit
transitivity in brokerage.



4 Experiments

Our experimental problem is an abstraction of common basic factory-floor mod-
els. Each agent has a queue of a certain length (how many tasks it can hold),
and each timestep it removes a single task from its queue, if there is any, and
performs it. As time passes, new tasks stochastically arrive for each agent, some-
times many at a time. If the agent’s queue is not yet full, it will put the tasks in
its own queue. Otherwise the agent will ask others for favors: to put the tasks
in their queues instead. If an agent cannot curry a favor, and his queue is full,
the task will be dropped on the floor and be lost.

When an agent places a task into his queue (to perform it in the future) he
immediately incurs a cost, but the task’s owner receives a value. Costs are less
than or equal to values: and in our experiments all tasks have the same cost
and the same value. Thus granting a favor costs the grantor in two ways. First,
when a grantor performs a grantee’s task, the grantor incurs the cost but the
grantee receives the value. Second, by accepting tasks, the grantor runs the risk
of filling his own queue such that newly arriving tasks of his own are dropped
on the floor.

Tasks arrive following a Poisson distribution with mean of 100 timesteps,
and normally round robin selection determines which agent receives the tasks.
When asking for a favor, agent A asks a random agent B, and if B does not
grant the favor, then A chooses another random agent to ask, then another, and
so on. If ultimately no agent grants A’s favor request, then the task is lost. «
usually ranged from -1 to 10 in steps of 0.5. Runtime was set to either 10,000
or 50,000 timesteps. All experiments were done in the MASON simulator [30]
and the results were averaged over 50 independent runs. Except in Experiment
3, task value was set to 3 and task cost to 2.

Our primary statistic was number of tasks performed per agent in the allot-
ted time. We chose this, rather than total value minus total cost, because it is
insensitive to the particular task costs and values chosen (in particular, if task
cost and value are the same, then total value minus total cost will always be
zero). Another statistic was the average number of tasks completed per agent in
a given timeframe.

Experiment 1: Task Load, Number of Agents, and Degree of Altruism — We first
set out to examine the dynamics of the system: what happens with increasing
load (shorter queue lengths), more agents, and varying amounts of altruism («).
Figure 1 shows the results. In the left column we show the results for 10,000
timesteps, which emphasizes the warm-up period until the agents were offering
large favors to one another; and in the right column we show 50,000 timesteps,
which is closer to the steady state of the system.

As would be obvious, smaller queue lengths resulted in more tasks being
dropped on the floor, and thus lower numbers of tasks completed per agent.

Figure 1 also demonstrates that the more altruistic agents (with larger values
of a) are able to warm up to one another more rapidly. Agents with a = —1
(approximately greedy agents who only provide just one favor per grantee for the
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entire duration of the run) cannot improve. “Expanded Tit-for-Tat” style agents,
with a = 0, are also able to warm to one another because their decisions are
based on the ratio of value to cost rather than on the specific number of favors
granted. But for agents with larger « values, the rate of warming increases even
more, resulting in more tasks competed per agent.

Last, but most importantly, it would seem intuitive that having more agents
would allow for more favor opportunities, and this in turn should improve the
average number of tasks performed. But in fact this is not the case: as he spreads
his favors over more agents at random, a grantee takes longer to warm up to
any given grantor. As a result, the total number of tasks performed is reduced
until the agents have adequately warmed to one another. Ultimately, however,
the steady state results converge to the same values regardless of the number of
agents.



Ezperiment 2: Queue Saturation  To verify that larger numbers of agents were
in fact taking longer to warm up, we examined how full agents’ queues were
during the task. Figure 2 shows the number of tasks waiting in a queue, per
agent, for & = 1 (other « values were similar). The maximum queue length was
10. Note that as the number of agents increases, there are fewer interactions,
and so the agents are idle until much longer in the run; however, at the steady
state, eventually all the queues are filled.

Ezxperiment 3: Tit-for-Tat  Experiment 1 showed that “Expanded Tit-for-Tat”
(a = 0) would in fact warm to larger and larger favors. However, this is mostly
due to the cost/value ratio involved. By default we had set this ratio to % But
if the cost and value of a task were the same, then Tit-for-Tat can do scarcely
better than approximately greedy agents (o« = —1). This is shown in Figure 3.
As the cost/value ratio approaches 1, Tit-for-Tat starts performing poorly. In
fact, the more agents involved, the worse Tit-for-Tat performs, since each agent
must make up favors over more agents without a warm-up mechanism. Larger
values of a (that is, more altruistic agents) are much less sensitive to this ratio.

Experiment 4: Task Allocation and Noise  Next we studied how changing which
agent receives the tasks effects performance. We examined two methods for
choosing which agent receives tasks: round robin selection (our previous default)
and random selection. In this experiment, we also added noise to the system by
increasing the probability that the grantor does not receive any value. In other
words, the grantee will think it granted a favor while the grantor will think the
favor was not granted.

We set the number of agents to 125, a = 1.0, 8 = 2, and the queue length to
10. For the noisy experiments, we set the noise level at 0.1 and 0.25 (a noise level
of 0.1 meant that 10% of the time, the grantor would not receive any value).

Figure 4(a) shows that changing how agents receive tasks alters performance.
In the round-robin case, after all the agents have received the tasks once (around
timestep 12,500), all the agents will then grant one another a favor; thus the spike
in the graph. If instead we chose agents at random to receive tasks, the agents
require additional time to build a history, thus resulting in poorer performance.
Figure 4(b) shows how noise effects system performance. As expected, increasing
the noise level caused performance to drop. However, our model formulation
overcomes the noise, although it requires more time to do so.

Experiment 5: Initially Altruistic Societies  This experiment studied one pos-
sible method to decrease the warmup period. In flexible reciprocal altruism, 3
controls how initially altruistic the society is: as [ increases, agents are willing
to grant more initial favors before expecting the other agent to reciprocate. In
other words, increasing [ decreases the warmup period.

Figure 5 shows how the length of the warmup period changes with 3, given
a = 1.0, maximum queue length of 10, and 125 agents. We ran the experiment
for 50,000 timesteps but truncated the figure to 20,000 timesteps to emphasize
the warmup period; after 20,000 timesteps all the curves are statistically the



i
15

! .
Loy AR R h e v AN A AN
R P e S RV Y O
AR R A iy

Average Number of Tasks Completed per 100 timesteps

L L L
0 5000 10000 15000 2000

Timesteps

Fig. 5. Average number of tasks completed for different levels of initial altruism. o =
1.0, queue length = 10, and 125 agents.

same. Note that for a very altruistic society (high ) the average throughput is
maximal from the beginning.

Experiment 6: Favor Brokers  Finally, we studied how introducing favor bro-
kers influences performance. Recall that a broker is an intermediary who can
ask a favor of one agent on behalf of another, despite possible distrust between
the two. In a society with low altruism, brokers (and their trusted status) offer
a potential way to increase interactions amongst the agents, and thus decrease
the warmup period. Figure 6 shows the average number of tasks completed per
100 timesteps per agent, for a = 1.0, § = 2.0, a maximum queue size of 10 and
50 agents. Increasing the percentage of brokers in the population increases the
number of interactions between agents, thus causing quicker convergence even
in a society that is not very altruistic. Changing « and the number of agents
does not significantly alter the results.

This experiment, along with Experiment 5, suggests that either increasing the
global level of altruism, or increasing the number of brokers within the society,
will decrease the warmup period. While both techniques could be combined, the
problem domains where such an arrangement is sensible may be limited.

5 Conclusions and Future Work

We have presented a simple formula which enables cooperating agents to warm to
one another, offering larger and larger favors based on past experience. Though
at any time an agent can cheat another agent and walk away, the second agent’s
amortized loss is bounded. This optimistic approach, which we have termed flex-
ible reciprocal altruism, allows agents to optimize the collective performance of
the system, and is particularly apropos to environments with moderate num-
bers of agents, significant and highly variable task load, and moderate noise.
Our technique adapts faster and more flexibly than Tit-for-Tat and similar tech-
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niques, and can handle situations they cannot: such as when the cost and value
of a task are the same.

For future work: our existing approach lacks a time-discounting procedure:
agents have perfect memory of all previous favor transactions. We have not yet
examined the effects of different ways of doing this: for example, what would be
the result of having longer memories for costs than for values?

We may also examine possible approaches to transitivity in favor brokerage,
and using brokers to introduce entire disjoint populations to one another. Last,
we have not experimented with per-agent values of «, or different o values on a
pairwise basis. It might also be helpful to consider dynamic « values, producing
nonlinear functions or ones designed to cut off freeloaders more effectively.
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