
Learn to Behave!
Rapid Training of Behavior Automata

Sean Luke
Department of Computer Science

George Mason University
4400 University Drive MSN 4A5

Fairfax, VA 22030 USA
sean@cs.gmu.edu

Vittorio Amos Ziparo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Ariosto 25, I-00185

Rome, ITALY
ziparo@dis.uniroma1.it

ABSTRACT
Programming robot or virtual agent behaviors can be a chal-
lenging task, and makes attractive the prospect of automat-
ically learning the behaviors from the actions of a human
demonstrator. However, learning complex behaviors rapidly
from a demonstrator may be difficult if they demand a large
number of training samples. We describe an architecture for
rapid learning of recurrent behaviors from demonstration.
The architecture is based on deterministic hierarchical finite-
state automata (HFAs) with classification algorithms taking
the place of the state transition function. This architecture
allows for task decomposition, statefulness, parameterized
features and behaviors, per-behavior feature set customiza-
tion, and storage of learned behaviors in libraries to be used
later on as elements in more complex behaviors. We describe
the system, then illustrate its application in a simple, but
nontrivial, foraging task involving multiple behaviors.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Human Factors

Keywords
Learning from Demonstration, Hierarchical Finite-state Au-
tomata, Agents, Robotics

1. INTRODUCTION
Our goal is to enable the rapid, real-time training of com-

plex, stateful agent behaviors. Agent behavior training has
applications in a variety of fields, including 3D animation,
game level design, and autonomous robotics. In these areas,
programming custom domain-specific behaviors on-the-fly
may not be desirable or possible, and so it is attractive to
instead have the agent learn them from a trainer.

One of the challenges facing training, however, is the con-
flict between the real-time nature of training and the large
numbers of samples that may be demanded by a challeng-
ing, high-dimensional domain. It may not be feasible to
ask a trainer to perform hundreds of trials to satisfy the
needs of a learning algorithm. Thus, one of our goals is to
develop methods to reduce domain complexity, and ideally
reduce the number of necessary samples, while not sacrific-
ing the gamut of learnable behaviors. We do this by taking

advantage of domain knowledge in various ways, and thus
our method lies somewhere in the middle-ground between
explicit programming (that is, specification) and full, unfet-
tered learning.

Our learned agent behaviors take the form of determinis-
tic hierarchical finite-state automata (HFA). Obviously HFA
are not as expressive as other models: for example, the paral-
lelism inherent in Petri Nets; or the richer computational ca-
pacity afforded stack automata or arbitrary functions. The
motivation underlying the choice of HFAs is twofold. First,
HFA are a widely adopted tool for modeling agent and robot
behaviors, rich enough for a broad range of common be-
haviors, yet are simple enough to allow the straightforward
demonstration of our learning approach. Second, we chose
HFAs as they enabled us to do task decomposition easily.

There are many HFA formulations. Ours is straightfor-
ward: a learned behavior is a standard Moore Machine
finite-state automaton, where each state is associated with a
certain behavior, and also with a transition function which
stipulates, given the current world situation, which state to
transition to in the next time step. There is a start state
but no accepting states.

Our approach is to build an HFA iteratively: we allow the
user to easily create an HFA based on a current library of
behaviors (some of which may themselves be HFAs). When
the HFA is complete, it is added to the library to help build
a more complex higher-level HFA. One can create of course
an HFA by coding it by hand: but of interest to us is the
ability to learn the HFA by watching a demonstrator ma-
nipulate the agent. As the agent moves about in the en-
vironment, the demonstrator directs it to perform various
behaviors (and thus to transition to various new states).
Each time the demonstrator requests such a transition, the
system records the transition and the current world situa-
tion. At the end of the training period, from these records
the system builds, for each state (behavior), a learned tran-
sition function indicating under what conditions the agent
should transition to new states. This is essentially a super-
vised learning task and can employ a variety classification
algorithms: at present our learned models take the form of
decision trees.

The approach also lends itself to both stochastic and de-
terministic transitions. Decision trees traditionally compute
classes deterministically, based on the most common class
among the relevant training examples. Our method can be
set up to do this; or to choose classes stochastically based
on the proportion of examples from a given class. The ex-
periments in this paper apply the latter method.

The learning domain for an HFA behavior can obviously
be complex and of high dimensionality, depending on the
number of basic behaviors and the dimensionality of the
agent’s feature vector. This in turn can require a large num-
ber of training sessions to adequately describe the domain.
It is not reasonable to expect a demonstrator to perform
that many training sessions, and so it is important to re-
duce the domain space complexity or training difficulty. We
have done this in three ways:

• An HFA encourages task decomposition. Rather than
learn one large behavior, the system may be trained
on simpler behaviors, which are then composed into a
higher-level learned behavior. This essentially projects
the full learning space into multiple lower-dimensional
spaces.

• Feature vector reduction. Our system allows the user
to specify precisely those features he feels are neces-
sary for a given learned HFA, which in turn dramati-
cally reduces the learning space. Each HFA, including
lower-level HFAs, may have its own different reduced
feature vector.

• Generalization by parametrization. All behaviors, in-
cluding HFAs themselves, may be parameterized with
targets: for example, rather than create a behavior
go-to-home-base, we can create a general behavior go-
to(A), and allow for higher-level behaviors to specify
the meaning of the target A at a future time. This
can significantly reduce the number of behaviors which
must be trained.

By employing these complexity-reduction measures, our
system ideally enables the rapid construction of complex be-
haviors, with internal state and a variety of sensor features,
in real time entirely by training from demonstration.

The remainder of the paper is laid out as follows. We be-
gin with a discussion of related work. We then describe the
basic HFA model and our approach to learning the transi-
tion functions in the automaton. We follow this with a train-
ing example of a nontrivial foraging behavior, then conclude
with a discussion of future directions.

2. RELATED WORK
Our approach generally fits under the category of learning

from demonstration [3], an overall term for training agent ac-
tions by having a human demonstrator perform the action
on behalf of the agent. Because the proper action to per-
form in a given situation is directly provided to the agent,
this is broadly speaking a supervised learning task, though
a significant body of research in the topic actually involves
reinforcement learning, whereby the demonstrator’s actions
are converted into a reinforcement signal from which the
agent is expected to derive a policy. The lion’s share of
learning from demonstration literature comes not from vir-
tual or game agents but from autonomous robotics. For a
large survey of the area, see [2].

Learning Plans. One learning from demonstration area,
closely related to our own research, involves the learning
of largely directed acyclic graphs of behaviors (essentially
plans) from sequences of actions [1, 16, 18, 21], possibly

augmented with sequence iteration [25]. Like our approach,
these plans are often parameterizable.

Such plan networks generally have limited or no recur-
rence: instead they usually tend to be organized as se-
quences or simultaneous groups of behaviors which activate
further behaviors downstream. This is mostly a feature of
the problem being tackled: such plans are largely induced
from ordered sequences of actions intended to produce a re-
sult. Since we are training goal-less behaviors rather than
plans, our model instead assumes a rich level of recurrence:
and for the same reason the specific ordering of actions is
less helpful.

Learning Policies. Another large body of work in learning
from demonstration involves observing a demonstrator per-
form various actions when in various world situations. From
this the system gleans a set of 〈situation, action〉 tuples per-
formed and builds a policy function π(situation) → action
from these tuples. This can be tackled as a supervised learn-
ing task [4, 5, 8, 10, 12, 15]. However, some literature in-
stead transforms the problem into a reinforcement learning
task by providing the learner only with a reinforcement sig-
nal based on how closely the learned policy matches the
tuples provided by the demonstrator [9, 24]. This is curious
given that the problem is, in essence, supervised; the rein-
forcement methods are in some sense working with reduced
information.

Our approach differs from these methods in an impor-
tant way. Instead of learning situation→action rules, our
model learns the transition functions of an HFA with pre-
defined internal states, each corresponding to a possible ba-
sic behavior. This enables the demonstrator to differentiate
transitions to new behaviors not just based on the current
world situation but also the current behavior. That is, we
learn rules of the form 〈previous action, situation〉 →action.
Another, somewhat different use of internal state would be
to distinguish between aliased observations of hidden world
situations, something which may be accomplished through
learning hidden Markov models (for example, [13]).

Hierarchical Models. The use of hierarchies in robot or
agent behaviors is very old indeed, going back as early as
Brooks’s Subsumption Architecture [7]. Hierarchies are a
natural way to achieve layered learning [22] via task decom-
position. This is a common strategy to simplify the state
space: see [11] for an example. While it is possible in these
cases to induce the hierarchy itself, usually such methods
iteratively compose hierarchies in a bottom-up fashion.

Our HFA model bears some similarity to hierarchical be-
havior networks such as those for virtual agents [6] or phys-
ical robots [17], in which feed-forward plans are developed,
then incorporated as subunits in larger and more complex
plans. In such literature, the actual application of hierar-
chy to learning from demonstration has been unexpectedly
limited. However, learning from demonstration has been ap-
plied more extensively to multi-level reinforcement learning,
as in [23], albeit with a fixed hierarchy.

Language Induction. One cannot mention learning finite
state automata without noting that they have a long his-
tory in language induction and grammatical inference, with
a correspondingly massive literature. For recent surveys of
techniques using automata for grammar induction, see [19,

Rotate
Left

Rotate
Right

Forward

If
obstacle is in front

or
obstacle is ≤ 2.3 to left

If
no obstacle is in front

and
obstacle is ≥ 5.2 to left

Always

Always

Start

Always

Figure 1: A simple finite-state automaton for wall
following (counter-clockwise). All conditions not
shown are assumed to indicate that the agent re-
main in its current state.

26]. However the goal of this literature is fundamentally
different from ours in this paper. Specifically, in language
induction, the learning algorithm is given a set of positive
and negative string examples and generates an automaton
which induces an underlying language. Typically these al-
gorithms make no assumptions about the number of states,
assume the states are unlabelled, typically assume a small
set of transition conditions, and include accepting or reject-
ing states. In contrast we are not interested in terminating
automata, and seek to induce only the edges among a pre-
specified set of labeled states, given examples with labelled
transitions from state to state.

3. THE HFA MODEL
Using our system, a trainer iteratively develops new finite-

state automata, whose states encompass behaviors drawn
from a behavior library. An automaton is learned by ob-
serving the trainer as he selects various behaviors in various
situations. Once learned, the automaton can then be added
as a behavior in the library, and then may be itself used as
a state in more complex automata. In the following, we first
describe the hierarchical finite state automaton model, and
in the next section we detail our approach for learning the
automaton by demonstration from the trainer.

States and Behaviors. Our HFAs model Moore machines:
that is, each state corresponds to a behavior, and when in a
state, the HFA performs that behavior. A behavior may be
an atomic behavior or may itself be another HFA, leading to
the hierarchical definition of the model. Atomic behaviors
are hard-coded behaviors provided by the system. For ex-
ample, the behavior rotate-left might be an atomic behavior:
when employing this behavior, the agent will spin counter-
clockwise at some rate. The HFA always begins in the start
state, associated with a special idle behavior, and which al-
ways transitions immediately to some other state. Another

special state is the optional done state, whose behavior sim-
ply sets a done flag and immediately transitions to the start
state. This is used to potentially indicate to higher-level
HFAs that the behavior of the current HFA is “done”.

Figure 1 shows a simple automaton with four states, corre-
sponding to the behaviors start, rotate-left, rotate-right, and
forward. It may appear at first glance that not all HFAs can
be built with this model: for example, what if there were two
states in which the rotate-left behavior needed to be done?
This can be handled by creating a simple HFA which does
nothing but transition to the rotate-left state and stay there.
This automaton is then stored as a behavior called rotate-
left2 and used in our HFA as an additional state, but one
which performs the identical behavior to rotate-left.

Features. Transitions from state to state are triggered by
observable features of the environment. One such fea-
ture might be distance-to-closest-obstacle-on-my-left. At any
time, this feature yields a non-negative value indicating
the distance to such an obstacle. In our system features
presently take three forms: categorical features, which re-
turn unordered values like “red” or “blue”; continuous fea-
tures, which return real-valued numbers (like distances);
and toroidal features, which return real-valued numbers but
which are assumed to wrap around in a toroidal fashion (like
angles). Boolean features are typically modeled as categori-
cal features. One special boolean feature is the done feature,
which is true if the current behavior is a lower-level HFA,
and if it has triggered its done flag.

Targets. Importantly, our approach supports parameter-
ized, general-purpose behaviors and transitions. Rather
than create a behavior called go-to-obstacle-number-42, we
can create a behavior called go-to(A), where A may be speci-
fied later. Similarly, rather than the aforementioned feature
distance-to-closest-obstacle-on-my-left, we might instead have
the more general feature distance-to(B). This separates fea-
tures and behaviors from the targets to which they apply.
For example, a feature or behavior may be either specified
with regard to one or more ground targets (“obstacle 42”
or “the closest obstacle on my left”) — resulting in a behav-
ior such as go-to(obstacle-42) — or the target may simply be
left unspecified (A), to be bound to a ground target at some
later time. In the latter case, the unbound target is called a
parameter.

When an HFA employs features or behaviors with as-
of-yet unbound targets (parameters), it must itself present
those parameters when used as a behavior by some higher-
level HFA. Thus HFAs themselves may be parameterized.

Transitions. In traditional finite-state automata, transi-
tions are represented by directed edges between nodes, each
labelled with a condition which may or may not be true
about the current features of the environment. Without
loss of generality, it’s more useful for us to think of a transi-
tion function which maps the current state and the current
feature vector into a new state. The start state always tran-
sitions to a specific other state; and the done state always
transitions to the start state.

Operating the HFA. Each timestep the HFA is advanced
one tick: it performs one step of the behavior associated

with its current state, then applies the transition function
to determine a new state for next timestep, if any. When a
performed behavior is itself an HFA, this operation is recur-
sive: the child HFA likewise performs one step of its current
behavior, and applies its transition function. Additionally,
when an HFA transitions to a state whose behavior is an
HFA, that HFA is initialized: its initial state is set to the
start state, and its done flag is cleared.

Formal Model. For the purposes of this work, we define
the class of hierarchical finite-state automata models H as
the set of tuples 〈S,F , T,B,M〉 where:

• S = {S0, S1, . . . , Sn} is a set of states, including a dis-
tinguished start state S0, and possibly also one done
state S∗. Exactly one state is active at any time.

• F = {F1, F2, . . . , Fn} is a set of observable features in
the environment. The set of features is partitioned
in three disjoint subsets representing categorical (C),
continuous (R) and toroidal (A) features. Each Fi can
assume a value fi drawn from a finite (in the case of C)
or infinite (in the case of R and A) number of possible
values. At any point in time, the present assumed val-

ues ~f = 〈f1, f2, . . . , fn〉 for each of the F1, F2, . . . , Fn

are known as the environment’s current feature vector.

• T : F1×F2× . . .×Fn×S → S is a transition function
which maps a given state Si, and the current feature
vector 〈f1, f2, . . . , fn〉, onto a new state Sj . The done
state S∗ is the sole state which transitions to the start
state S0, and does so always: ∀Sk 6= S∗ ∀~f T (~f, Sk) 6=
S0 and ∀~f : T (~f, S∗) = S0.

• B = {B1, B2, . . . , Bn} is a set of atomic behaviors. By
default, the special behavior idle, which corresponds to
inactivity, is in B, as may also be the optional behavior
done.

• M : S → H ∪ B is a one-to-one mapping function
of states to basic behaviors or hierarchical automata.
M(S0) = idle, and M(S∗) = done. M is constrained by
the stipulation that recursion is not permitted, that is,
if an HFAH ∈ H contains a mappingM which maps to
(among other things) a child HFA H ′, then neither H ′

nor any of its descendent HFAs may contain mappings
which include H.

We further generalize the model by introducing free vari-
ables (G1, . . . , Gn) for basic behaviors and features: these
free variables are known as targets. The model remains un-
altered, by replacing behaviors Bi with Bi(G1, . . . , Gn) and
features Fi with Fi(G1, . . . , Gn). The main differences are
that the evaluation of the transition function and the exe-
cution of behaviors will both be based on ground instances
of the free variables.

4. LEARNING FROM DEMONSTRATION
The above mechanism is sufficient to hand-code HFA be-

haviors to do a variety of tasks; but our approach was meant
instead to enable the learning of such tasks. Our learning
algorithm presumes that the HFA has a fixed set of states,
comprising the combined set of atomic behaviors and all pre-
viously learned HFAs. Thus, the learning task consists only

of learning the transitions among the states: given a state
and a feature vector, decide which state (drawn from a fi-
nite set) to transition to. This is an ordinary classification
task. Specifically, for each state Si we must learn a classi-

fier ~f → S whose attributes are the environmental features
and whose classes are the various states. Once the classi-
fiers have been learned, the HFA can then be added to our
library of behaviors and itself be used as a state later on.

Because the potential number of features can be very high,
and many unrelated to the task, and because we want to
learn based on a very small number of samples, we wish
to reduce the dimensionality of the input space to the ma-
chine learning algorithm. This is done by allowing the user
to specify beforehand which features will matter to train a
given behavior. For example, to learn a Figure-8 pattern
around two unspecified targets A and B, the user might
indicate a desire to use only four parameterized features:
distance-to(A), distance-to(B), direction-to(A), and direction-
to(B). During training the user temporarily binds A and B to
some ground targets in the environment, but after training
they are unbound again. The resulting learned behavior will
itself have two parameters (A and B), which must ultimately
be bound to use it in any meaningful way later on.

The training process works as follows. The HFA starts in
the “start” state (idling). The user then directs the agent to
perform various behaviors in the environment as time pro-
gresses. When the agent is presently performing a behavior
associated with a state Si and the user chooses a new be-
havior associated with the state Sj , the agent transitions
to this new behavior and records an example, of the form

〈Si, ~f, Sj〉, where ~f is the current feature vector. Immedi-
ately after the agent has transitioned to Sj , it turns out to
be often helpful to record an additional example of the form

〈Sj , ~f, Sj〉. This adds at least one “default” (that is, “keep
doing state Sj”) example, and is nearly always correct since
in that current world situation the user, who had just tran-
sitioned to Sj , would nearly always want to stay in Sj rather
than instantaneously transition away again.

At the completion of the training session, the system then
builds transition functions from the recorded examples. For
each state Sk, we build a decision tree DSk based on all ex-
amples where Sk is the first element, that is, of the form

〈Sk, ~f, Si〉. Here, ~f and Si form a data sample for the classi-

fier: ~f is the input feature and Si is the desired output class.
If there are no examples at all (because the user never tran-
sitioned from Sk), the transition function is simply defined
as always transitioning to back to Sk.

At the end of this process, our approach has built some
N decision trees, one per state, which collectively form the
transition function for the HFA. After training, some states
will be unreachable because the user never visited them, and
so no learned classification function ever mapped to them.
These states may be discarded. The agent can then be left
to wander about in the world on its own, using the resulting
HFA.

Though in theory many classification algorithms are ap-
plicable (such as K-Nearest-Neighbor or Support Vector Ma-
chines), in our experiments we chose to use a variant of the
C4.5 Decision Tree algorithm [20] for several reasons:

1. Many areas of interest in the feature space of our agent
approximately take the form of rectangular regions
(angles, distances, etc.).

Figure 2: The foraging scenario in our testbed.

2. Decision trees nicely handle various kinds of data: in
our case, we used categorical, real-valued, and toroidal
data (the latter requiring so-called “pie-slice” decision
tree splits).

3. Decision trees are particularly adept at handling un-
scaled dimensions in the feature space. In our case, we
would otherwise be faced with asking how many units
of distance were equivalent to a degree of angle, or to
a change from “true” to “false”.

In decision trees, the class is most commonly computed
deterministically: the leaf node in a decision tree is set to
the class appearing among the plurality of training examples
which wound up at that leaf node. During the implemen-
tation and the evaluation of our algorithm, we found out
that in many cases we would not want a deterministic clas-
sification. For example, when performing a wall-following
behavior, we’d need to turn left some percentage of time.
As a result, our decision tree procedure can also compute
classes stochastically, with probability based on the propor-
tion of relevant examples at a given leaf node rather than a
plurality vote. In the following example, we solely use this
second method.

5. EXAMPLE
We have implemented an experimental research testbed

for training agents using this approach (Figure 2), writ-
ten with the MASON multiagent simulation toolkit [14] (see
http://cs.gmu.edu/∼eclab/projects/mason/). In the environ-
ment, our agent can sense a variety of things: the relative lo-
cations of obstacles, other agents of different classes, certain
predefined waypoints, food locations, etc. In this testbed,
the experimenter trains an HFA by first selecting features
relevant to the behaviors (see Figure 3), then grounding tar-
gets for behaviors and features, then directing the agent to

Figure 3: Feature selection and target assignment.

perform behaviors by pressing various buttons or keystrokes,
and then finally adding the trained HFA to the system li-
brary.

We have successfully trained several simple behaviors,
tracking and acquiring a target, wall-following, generic ob-
stacle circumnavigation, and tracing paths (such as a figure
eight path between two targets). In this section, we give
an example where we have trained the agent to perform a
moderately complex foraging task: to harvest food from food
sources and bring it back to deposit at the agent’s central
station. Food can be located anywhere, as can the station.
Food at a given location can be in any concentration, and
depletes, eventually to zero, as it is harvested by the agent.
The agent can only store so much food before it must return
to the station to unload. There are various corner cases:
for example, if the agent depletes food at a harvest loca-
tion before it is full, it must continue harvesting at another
location rather than return to the station. The scenario is
shown in Figure 2: the black circle is the agent, pink areas
are food sources, and the red “×” (labelled “Home Base”) is
the station.

Foraging tasks are of course old hat in robotics, and are
not particularly difficult to code by hand. But training such
a behavior is less trivial. We selected this task as an ex-
ample because it illustrates a number of features special to
our approach: our foraging behavior is in fact a three-layer
HFA hierarchy; employs “done” states; involves real-valued,
toroidal, and categorical (boolean) inputs; and requires one
behavior with an unbound parameter used in two different
ways.

The behavior is shown in Figure 4. It requires seven ba-
sic behaviors: start and done, forward, rotate-left, rotate-
right, load-food (deplete the current location’s food by 1,
and add 1 to the agent’s stored food), and unload-food (re-
move all the agent’s stored food). It also requires several
features: distance-to(A), angle-to(A), food-below-me (that is,
how much food is located here), food-stored-in-me, and done.
Finally, it requires two targets to bind to A: the station and
nearest-food.

From this we manually decomposed the foraging task into
a hierarchy of four HFA behaviors, and trained each one in
turn as described next. All told, we were able to train all four

Rotate
Left

Rotate
Right

Forward

If A
is to my left

If Ai s roughly
ahead

AlwaysStart

If A is roughly
ahead

If A
is to my right

If A
is to my left

GoTo (A)

Done

If A is close
enough If A

is to my right

If A is close
enough

If A is close
enough

Load
Food

GoTo
(Nearest

Food)

Done If I Am Full Start

If No Food is
Below Me and
If I am Not Full

If Food is
Below Me and
I Am Not Full

If I Am Not FullIf I Am Full

Harvest

Unload
Food

GoTo
(Station)

Done If I Am Empty Start

If I Am Empty If I Am Not Empty

If I Am Near
the Station

Deposit

HarvestDeposit

Start

If Done

If Done

Forage

Always

Figure 4: The Forage behavior and its sub-behaviors: Deposit, Harvest, and GoTo(Parameter A). All condi-
tions not shown are assumed to indicate that the agent remain in its current state.

behaviors, and demonstrate the agent properly foraging, in
a manner of minutes.

The GoTo(A) Behavior. This behavior caused the agent
to go to the object marked A. The behavior was a straight-
forward bang-bang servoing controller: rotate left if A is to
the left, else rotate right if A is to the right; else go forward;
and when close enough to the target, enter the “done” state.

We trained the GoTo(A) behavior by temporarily declar-
ing a marker in the environment to be Parameter A, and
reducing the features to just distance-to(A) and angle-to(A).
We then placed the agent in various situations with respect
to Parameter A and“drove”it over to A by pressing keys cor-
responding to the rotate-left, rotate-right, forward, and done
behaviors. After a short training session, the system quickly
learned the necessary behaviors to accurately go to the tar-
get and signal completion. Once completed, it was made
available in the library as go-to(A).

The Harvest Behavior. This behavior caused the agent to
go to the nearest food, then load it into the agent. When
the agent had filled up, it would signal that it was done.
If the agent had not filled up yet but the food has been
depleted, the agent would search for a new food location and
continue harvesting. This behavior employed the previously-
learned go-to(A) behavior as a subsidiary behavior, binding
its Parameter A to the nearest-food target. This behavior
also employed the features food-below-me and food-stored-
in-me.

We trained the Harvest Behavior by directing the agent
to go to the nearest food, then load it, then (if appropriate)
signal “done”, else go get more food. We also placed the
agent in various corner-case situations (such as if the agent
started out already filled up with food). Again, we were
able to rapidly train the agent to perform harvesting. Once
completed, it was made available in the library as harvest.

The Deposit Behavior. This behavior caused the agent
to go to the station, unload its food, and signal that it is
done. If the agent was already empty when starting, it
would immediately signal done. This behavior also used the
previously-learned go-to(A) behavior as a subsidiary state
behavior, but instead bound its Parameter A to the station
target. It used the features food-stored-in-me and distance-
to(station). We trained the Deposit Behavior in a similar
manner as the Harvest Behavior, including various corner
cases. Once completed, it was made available in the library
as deposit.

The Forage Behavior. This simple top-level behavior just
cycled between depositing and harvesting. Accordingly, this
behavior employed the previously-learned deposit and har-
vest behaviors. The behavior used only the done feature.

6. CONCLUSION
In this paper, we have presented an approach for train-

ing agent behaviors using a hierarchical deterministic finite
state automata model and a classification algorithm, imple-
mented as a variant of the C4.5 algorithm. The main goal of
our approach is to enable users to train agents rapidly based
on a small number of training examples. In order to achieve
this goal, we trade off learning complexity with training ef-
fort, by enabling trainers to decompose the learning task in a
hierarchical manner, to learn general parameterized behav-
iors, and to explicitly select the most appropriate features to
use when learning. This in turn reduces the dimensionality
of the learning problem.

We have developed a proof of concept testbed simulator
which appears to work well: we can train parameterized,
hierarchical behaviors for a variety of tasks in a short period
of time. We are presently deploying the platform to robots
in our laboratory. In the mean time, there are a number of
interesting issues that remain to be dealt with.

Multiple Agents. Our immediate next goal is to move to
training multiple agents. In the general case, multiagent
learning is a much more complex task than single-agent
learning, involving game-theoretic issues which may be well
outside the scope of the learning facility. However we be-
lieve there are obvious approaches to certain simple mul-
tiagent learning scenarios: for example teaching agents to
perform actions as homogeneous behavior groups (perhaps
by training an agent with respect to other agents not un-
der his control, but moving them similarly). Another area
of multiple agent training may involve hierarchies of agents,
with certain agents in control of teams of other agents.

Unlearning. There are two major reasons why an agent
may make an error. First, it may have learned poorly due
to an insufficient number of examples or unfortunately lo-
cated examples. Second, it may have been misled due to
bad examples. This second situation arises due to errors in
the training process, something that’s surprisingly easy to
do! When an agent makes a mistake, the user can jump
in and correct it immediately, which causes the system to
drop back into training mode and add those new examples
to the behavior’s collection. However this does not cause
any errant examples to be removed. Since the agent made
an error based not on examples but rather based on the

learned function, identifying which examples were improper,
and whether to remove them, may prove a challenge.

Programming versus Training. We have sought to train
agents rather than explicitly code them. However we also
aimed to do so with a minimum of training. These goals are
somewhat in conflict. To reduce the training necessary, we
typically must reduce the problem space complexity and/or
dimensionality. We have so far done so by allowing the user
to inject domain knowledge into the problem (via task de-
composition, for example, or by explicitly training for cer-
tain corner cases). This is essentially a step towards having
the user explicitly declare part of the solution rather than
have the learner induce it. So is this learning or coding?

We think that training of this sort is somewhere in-
between: in some sense the learning algorithm is relieving
the trainer from having to “code” everything himself. The
question worth studying is: how much learning is useful be-
fore the number of samples required to learn outweighs the
reduced “coding” load, so to speak, on the trainer?

Other Representations. HFAs cannot straightforwardly
do parallelism or planning. We chose HFAs largely because
they were simple enough to make training intuitively feasi-
ble. Now that we’ve demonstrated this, we wish to examine
how to train with other common representations, such as
Petri nets or hierarchical task network plans, to demonstrate
the generality of the approach.

7. ACKNOWLEDGMENTS
This work was supported in part by NSF grant 0916870.

8. REFERENCES
[1] R. Angros, W. L. Johnson, J. Rickel, and A. Scholer.

Learning domain knowledge for teaching procedural
skills. In The First International Joint Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), pages 1372–1378. ACM, 2002.

[2] B. D. Argall, S. Chernova, M. Veloso, and
B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57:469–483, 2009.

[3] C. G. Atkeson and S. Schaal. Robot learning from
demonstration. In D. H. Fisher, editor, Proceedings of
the Fourteenth International Conference on Machine
Learning (ICML), pages 12–20. Morgan Kaufmann,
1997.

[4] M. Bain and C. Sammut. A framework for behavioural
cloning. In Machine Intelligence 15, pages 103–129.
Oxford University Press, 1996.

[5] D. C. Bentivegna, C. G. Atkeson, and G. Cheng.
Learning tasks from observation and practice. Robotics
and Autonomous Systems, 47(2-3):163–169, 2004.

[6] R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I.
Badler, A. K. Joshi, and M. Palmer. Dynamically
altering agent behaviors using natural language
instructions. In Autonomous Agents, pages 293–300.
ACM Press, 2000.

[7] R. A. Brooks. Intelligence without representation.
Artificial Intelligence, 47:139–159, 1991.

[8] S. Calinon and A. Billard. Incremental learning of
gestures by imitation in a humanoid robot. In
C. Breazeal, A. C. Schultz, T. Fong, and S. B. Kiesler,
editors, Proceedings of the Second ACM
SIGCHI/SIGART Conference on Human-Robot
Interaction (HRI), pages 255–262. ACM, 2007.

[9] A. Coates, P. Abbeel, and A. Y. Ng. Apprenticeship
learning for helicopter control. Communications of the
ACM, 52(7):97–105, 2009.

[10] J. Dinerstein, P. K. Egbert, and D. Ventura. Learning
policies for embodied virtual agents through
demonstration. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages
1257–1252, 2007.

[11] D. Grollman and O. Jenkins. Learning robot soccer
skills from demonstration. In IEEE 6th International
Conference on Development and Learning (ICDL),
pages 276–281, July 2007.

[12] M. Kasper, G. Fricke, K. Steuernagel, and E. von
Puttkamer. A behavior-based mobile robot
architecture for learning from demonstration. Robotics
and Autonomous Systems, 34(2-3):153–164, 2001.

[13] D. Kulic, D. Lee, C. Ott, and Y. Nakamura.
Incremental learning of full body motion primitives for
humanoid robots. In 8th IEEE-RAS International
Conference on Humanoid Robots, pages 326–332, Dec.
2008.

[14] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. Mason: A multi-agent simulation
environment. Simulation, 81(7):517–527, July 2005.

[15] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng,
S. Schaal, and M. Kawato. Learning from
demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems, 47(2-3):79–91,
2004.

[16] M. N. Nicolescu and M. J. Mataric. Learning and
interacting in human-robot domains. IEEE
Transactions on Systems, Man, and Cybernetics, Part
A, 31(5):419–430, 2001.

[17] M. N. Nicolescu and M. J. Mataric. A hierarchical
architecture for behavior-based robots. In The First
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 227–233.
ACM, 2002.

[18] M. N. Nicolescu and M. J. Mataric. Natural methods
for robot task learning: instructive demonstrations,
generalization and practice. In The Second
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 241–248.
ACM, 2003.

[19] R. Parekh and V. Honavar. Grammar inference,
automata induction, and language acquisition. In
Handbook of Natural Language Processing, pages
727–764. Marcel Dekker, 2000.

[20] J. R. Quinlan. C4.5: Programs for Machine Learning
(Morgan Kaufmann Series in Machine Learning).
Morgan Kaufmann, 1 edition, January 1993.

[21] P. E. Rybski, K. Yoon, J. Stolarz, and M. M. Veloso.
Interactive robot task training through dialog and
demonstration. In C. Breazeal, A. C. Schultz, T. Fong,
and S. B. Kiesler, editors, Proceedings of the Second
ACM SIGCHI/SIGART Conference on Human-Robot

Interaction (HRI), pages 49–56. ACM, 2007.

[22] P. Stone and M. M. Veloso. Layered learning. In R. L.
de Mántaras and E. Plaza, editors, 11th European
Conference on Machine Learning (ECML), pages
369–381. Springer, 2000.

[23] Y. Takahashi and M. Asada. Multi-layered learning
system for real robot behavior acquisition. In
V. Kordic, A. Lazinica, and M. Merdan, editors,
Cutting Edge Robotics. Pro Literatur, 2005.

[24] Y. Takahashi, Y. Tamura, and M. Asada. Mutual
development of behavior acquisition and recognition
based on value system. In 2008 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 386–392. IEEE, 2008.

[25] H. Veeraraghavan and M. M. Veloso. Learning task
specific plans through sound and visually interpretable
demonstrations. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2599–2604. IEEE, 2008.

[26] E. Vidal. Grammatical inference: An introductory
survey. In Grammatical Inference and Applications,
pages 1–4. Springer, 1994.

