
Distributed, Automated Calibration of Agent-based Model
Parameters and Agent Behaviors

Extended Abstract

Matteo D’Auria
Università degli Studi di Salerno

Fisciano, Italy
matdauria@unisa.it

Eric O. Scott
George Mason University

Washington, D.C.
escott8@gmu.edu

Rajdeep Singh Lather
George Mason University

Washington, D.C.
rlather@gmu.edu

Javier Hilty
George Mason University

Washington, D.C.
jhilty2@gmu.edu

Sean Luke
George Mason University

Washington, D.C.
sean@cs.gmu.edu

ABSTRACT
Agent-based models can present special challenges to model cal-
ibration due in part to their high parameter count, tunable agent
behaviors, complex emergent macrophenomena, and potentially
long runtimes. However, due to this difficulty, these models are
most often calibrated by hand, or with hand-coded optimization
tools customized per-problem if at all. As simulations increase in
complexity, we will require general-purpose, distributed model cal-
ibration tools tailored for the needs of agent-based models. In this
paper, we present the results of a system we have developed which
combines two popular tools, the MASON agent-based modeling
toolkit, and the ECJ evolutionary optimization library. This system
distributes the model calibration task over many processors, pro-
vides many stochastic optimization algorithms well suited to the
calibration needs of agent-based models, and offers the ability to
optimize not just model parameters but agent behaviors.

KEYWORDS
Agent-basedModels, Model Calibration, Evolutionary Computation
ACM Reference Format:
Matteo D’Auria, Eric O. Scott, Rajdeep Singh Lather, Javier Hilty, and Sean
Luke. 2020. Distributed, Automated Calibration of Agent-based Model Pa-
rameters and Agent Behaviors. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
Agent-based models (ABMs) are widely used in research areas such
as computational biology, the social sciences, multi-agent systems,
and robotics. One of the most challenging steps in the development
of an ABM is the calibration of the model’s parameters and agent
behaviors. ABM calibration is challenging due to the number of
agents, their heterogeneity, and the complex interaction among
them. Suchmodels are also often slow and consequently the number
of possible calibration trials can be low. Because of these difficulties,
many ABMs are not calibrated at all or ad hoc solutions are applied.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

For example, in Heppenstall et al. [1] half of the examined AMBs
do not show any sort of calibration.

In this paper we address the need for a general tool that allows for
the calibration and optimization of ABMs in an assisted, automatic,
and distributed fashion. Given the importance and difficulty of
calibrating agent-based models, this is an important item: yet there
are surprisingly few existing facilities available at this time.We then
demonstrate some basic capabilities of the system in distributed
model optimization and in optimization of agent behaviors.

2 APPROACH
Calibration is essentially an optimization process, but as testing is
done in simulation, we do not have a formal objective function nor
its gradient; thus wemust rely on stochastic optimization techniqies.
To do ABM calibration, we have combined two tools popular in their
respective fields: the MASON agent-based simulation toolkit [4]
and the ECJ evolutionary optimization library [6]. Themethodology
is not reliant on either of them: but both make it easy to implement.

The calibration process is as follows. The modeler first builds the
simulation and sets those parameter values he knows or assumes to
be correct. The model is then given to the calibration system, which
optimizes the parameters, or behaviors, according to an objective
function specified by the modeler. The modeler then examines the
results obtained, and based on these results, determines if there are
errors in the model, incorrect assumptions, etc. The modeler then
improves the simulation and fixed parameter values and resubmits
the simulation to the calibration system in the next iteration.

In our distributed and assisted calibration approach, the modeler
must define an ECJ process called themaster, which runs a top-level
model optimization algorithm. This process maintains a population
of candidate solutions (or individuals), which are tested by pack-
aging them and sending them to remote processes called workers.
Each candidate solution is simply a set of parameter values or be-
haviors which define a possible complete model definition. Each
worker creates a MASON simulation using these parameters, runs
it several times, and evaluates its performance. Then the worker
returns the performance results to the master, which uses them in
its resampling procedure on the population.

By default the modeler need only provide the ranges of parame-
ters to be optimized. But if the modeler has special needs (a special



1 2 4 8 16 32
0

2000

4000

6000

8000

10000

1 2 4 8 16 32

Number of Workers

R
un
tim
e
(S
ec
on
ds

)

(a) Strong Scalability

1 16 32 64 128

1150

1200

1250

1300

1350

1400

1450
1 16 32 64 128

Number of Workers

R
un
tim
e
(S
ec
on
ds

)
(b) Weak Scalability

Figure 1: Scalability Analysis, Refugee model

representation of agent behaviors, for example), he can completely
customize the optimization procedure using ECJ, but it will require
more work. ECJ has a great many stochastic optimization facilities
available to use. We discuss this latter scenario in Section 3.

3 EXPERIMENTS
Our experiments were performed using a cluster of 24 machines.
Each node had a Dual Intel Xeon E5-2670 @ 2.60GHz with 24 GB
RAM and an Intel 82575EB Gigabit Ethernet network adapter. On
each node we installed Red Hat Enterprise Linux Server 7.7 (Maipo)
and OpenJDK 1.8.0. All of the experimental results were statistically
significantly different from one another (p < 0.01) as verified by a
one-way ANOVA with a Bonferroni post-hoc test. These methods
use evolutionary algorithms: the details of these algorithms are
described in more detail in [3].

Speedup Demonstration. For this demonstration we used the
Refugee model, part of the collection of contributed models in the
GeoMASON distribution,1 and which explores the pattern of mi-
gration in the Syrian refugee crisis. We calibrated this model over
four real-valued parameters (so-called DangerCare, FamilyAbroad-
Care, EconomyCare, and PopulationCare), each ranging [0...1], and
compared the number of arrivals in each city in the model against
real-world data. The model ran for 10,000 steps. We used a gen-
erational genetic algorithm with a tournament selection of size 2,
one-point crossover, and Gaussian mutation with a 100% probability
and a standard deviation of 0.01. The results are shown in Figure 1.

Strong scalability analysis: we fixed the problem to ten genera-
tions, each with 32 individuals. In our case, the strong scalability
efficiency came to 71.88%, using 32 workers to solve the problem.

Weak scalability analysis: we varied the problem difficulty by
adjusting the population size such that, regardless of the num-
ber of workers, each worker was responsible for four individ-
uals per generation. For each optimization process the number
of generations was fixed to 10 and the population size varied in
{4, 8, 16, 32, 64, 128, 256, 512}, and thus the number of workers var-
ied as p ∈ {1, 2, 4, 8, 16, 32, 64, 128}. In our case, the weak scalability
efficiency was 83.18%.

Asynchonous Evolution Experiment. In this experiment we
considered an asynchronous evolutionary algorithm (that is, the
distributed version of a so-called steady-state algorithm) to improve
efficiency when the model runtimes varied greatly. We compared
the generational genetic algorithm discussed earlier against an
asynchronous evolutionary algorithm using a standard steady-state
1http://cs.gmu.edu/∼eclab/projects/mason/extensions/geomason/

0 10 20 30 40 50
1

2

3

4

5

6

Generation

B
es
t-
S
o-
F
ar
P
er
fo
rm
an
ce

Figure 2: Mean best-so-far performance, over 30 runs, of ge-
netic programming on the Serengeti model (lower is better).

genetic algorithm as its foundation. There were 128 workers and
the population size was set to 128. To simulate varying runtimes in
the Refugee model, we randomly varied the number of simulation
steps each time: 1/4 the time we halved the steps and half the time
we doubled them. The results were as follows:

Method Mean Runtime (Seconds)
Asynchronous Evolution 293.77
Generational Evolution 437.77

Optimizing Agent Behaviors. Agent behaviors are essentially
programs that dictate how the agents operate in the environment
and interact with one another. This is more complex than simple
parameter optimization, because when calibrating agent behaviors
the modeler must specify both the nature of the representation of
these agent behaviors, and must also write the simulation code
which, when given an individual, evaluates its behaviors in the
simulation proper.

An agent behavior may take different representations, such as
neural networks or automata, but for demonstration we will focus
here on the classic “Koza style” genetic programming style, where
behaviors take the form of executable Lisp parse trees [2].

Our example is drawn from the Serengeti model [5], in which
four “lion” agents are tasked to capture a “gazelle” in a real-valued
toroidal environment. Each individual consists of four parse trees,
one per lion. We used a genetic-programming facility closely fol-
lowing the approach in Luke and Spector [5]. We ran the genetic
programming algorithm as described, but with a population size of
5760 spread over 276 workers: each worker was thus assigned 20
individuals per generation. Assessment of an individual’s behaviors
was done over 10 random trials. The results are shown in Figure 2.

4 CONCLUSION
Like all models, calibration of ABMs is very important, but as ABMs
continue to increase in complexity and run length, model calibra-
tion becomes more and more difficult to do. ABM calibration is
also unusual because agent behaviors, as well as global or agent
parameters, may be optimized during the calibration process. These
and other reasons motivate the use of massively distributed evolu-
tionary optimization tools aimed at agent-based model calibration.

We have developed a tool of this kind which combines MA-
SON and ECJ, both popular libraries in their respective fields. We
have shown how their combination can produce a powerful, fully-
featured model calibration facility with special capabilities of inter-
est to the agent-based modeler. This facility will soon be available
as open source.



REFERENCES
[1] Allison Heppenstall, Nick Malleson, and Andrew Crooks. 2016. “Space, the Final

Frontier”: How Good are Agent-Based Models at Simulating Individuals and
Space in Cities? Systems 4, 1 (2016).

[2] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[3] Sean Luke. 2013. Essentials of Metaheuristics (second ed.). Lulu. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[4] Sean Luke, Robert Simon, Andrew Crooks, Haoliang Wang, Ermo Wei, David
Freelan, Carmine Spagnuolo, Vittorio Scarano, Gennaro Cordasco, and Claudio

Cioffi-Revilla. 2018. The MASON Simulation Toolkit: Past, Present, and Future.
In International Workshop on Multi-Agent-Based Simulation (MABS).

[5] Sean Luke and Lee Spector. 1996. Evolving Teamwork and Coordination with
Genetic Programming. In Genetic Programming 1996: Proceedings of the First
Annual Conference. 141–149.

[6] Eric Scott and Sean Luke. 2019. ECJ at 20: Toward a General Metaheuristics
Toolkit. In GECCO ’19 Companion.


	Abstract
	1 Introduction
	2 Approach
	3 Experiments
	4 Conclusion
	References

