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Abstract

Just how much can a pheromone-enabled swarm do? Moti-
vated by robotic construction, we set out to show that a swarm
of computationally simple ants, communicating only via
pheromones, can in fact perform classic compass-straightedge
geometry, and thus can make many shapes and perform many
nontrivial geometric tasks. The ants do not need specially-
designed stigmergic building materials, a prepared environ-
ment, local or global direct communication facilities (such as
radio or line-of-sight signaling), or any localization beyond
initial starting points for drawing. We describe the proof of
concept in replicable detail. We then note that its accuracy and
efficiency can be greatly improved through augmentation with
a simple embeddable broadcast mechanism.

Introduction

One of the biggest difficulties in swarm robotics, and in
swarm agent simulation in general, lies in how to commu-
nicate and coordinate. Due to their large numbers, swarm
agents often cannot communicate through a common broad-
cast medium such as radio, both because they would over-
whelm the medium, and because it would require every agent
to receive and deal with messages from all N other agents.
Instead artificial swarm schemes often use either local com-
munication or indirect communication, whereby agents leave
messages for one another — virtual breadcrumbs, if you will.

The biggest source of inspiration for indirect communi-
cation in robotics is surely the use of pheromones by ants,
termites, etc. to coordinate behaviors. These insects are
known to use pheromones for many tasks: but most swarm
robotics and swarm simulation literature has focused on their
most famous use, namely establishing foraging trails.

In prior work we have demonstrated trail optimiza-
tion, adaptation to environmental changes, and even multi-
waypoint, self-intersecting tours using only pheromones and
swarms of very simple agents (Panait and Luke| 2004). Our
later work extended the pheromone model to swarm foraging
robots which store and read pheromone information in intel-
ligent breadcrumbs (in the form of wireless sensor motes),
and then deploy, move, and retrieve these devices from the
environment (Hrolenok et al., [2010; [Russell et al.,|2015)).

The use of pheromones to build foraging trails is straight-
forward and well studied. We are instead interested in show-
ing that pheromones can be used for something much more
ambitious. Our research area is collective building construc-
tion, and among the first tasks in construction is the laying
out of survey lines to define the form of the object being built.
As such, we have chosen to demonstrate, as an elaborate
proof of concept, that swarms of very simple agents, commu-
nicating only via pheromones, can achieve all the operations
necessary to perform collective compass-straightedge con-
struction (or “classical construction”) from geometry, and
thus can build many nontrivial geometric shapes.

This is not easy: some of the basic operations are challeng-
ing to achieve and, while we show that such operations are
possible, they can be costly. We will compare against agents
that differ only in their communications medium (broadcast
beacons), but nevertheless can do the task much more rapidly.

In this paper we first discuss existing literature in
pheromones, swarm robotics, and collaborative construction.
We then explain classic compass-straightedge geometric con-
struction and its background. We then detail the pheromone
and swarm agent model being used, and describe the basic
procedures necessary to do compass-straightedge construc-
tion. Finally, we compare this approach against similar agents
using broadcast beacons instead of pheromones.

Previous Work

Swarm robotics and swarm agent research is naturally in-
spired by social insects (Brambilla et al., 2013) and stigmer-
gic approaches to collective behavior |Dorigo et al.| (2000).
Swarms are highly parallel, can be built with simple agents,
and are robust in the face of noise, agent failure, and dynamic
environments (Bonabeau, [1996). Swarms are commonly
used in tasks such as exploration and foraging (Wodrich and
Bilchev, [1997; [Panait and Lukel |2004; Russell et al., [2015;
Prabhakar et al.,|2012)), but one recent application has been
in collective construction (Ardiny et al., 2015)). Swarms are
typically limited to indirect, stigmergic, and local communi-
cation, which leads to one of the three following implementa-
tion trends:



First: agents may use inert, local, environmental features,
which can be sensed but do not directly communicate with
the agents or with each other. Landmarks or the presence of
other agents are common features which can be used to clear
ground for site preparation (Parker and Zhang, [2006) and
build circles around given locations (Pitonakova and Bullock,
2013)). Agents using these techniques do not need accurate
localization and can use a variety of building materials to
perform their tasks. However, the agents cannot easily do
planning or coordination as they neither know where they are
nor what has been accomplished so far.

Second: agents may exist in or create “smart” environ-
ments which can be used to localize the agents, such as
writable blocks (Allwright et al., [2014; Werfel and Nagpal,
2008; |Sugawara and Doil [2014)) or countable building materi-
als (Werfel et al., |2011)). This allows grid-world models to be
directly implemented with robots and has produced swarms
capable of making 3D user-defined shapes. The use of such
environments allows agents to be fully localized relative to
the structure they are building, but they must use highly spe-
cialized building materials or contrived environments.

Third: agents may lay temporary stigmergic markers
in the environment, such as breadcrumbs or pheromones
(Deneubourg et al.| [{1990; [Russell, |1999; |[Panait and Luke,
2004; |Chibaya and Bangay, [2007). This technique has pro-
duced behaviors such as circle building (Pitonakova and Bul{
lockl, 2013)), exploration (Wodrich and Bilchev} |1997), and
wall building (Stewart and Russell, |2006). One difficulty
with the method lies in the medium in which these stigmer-
gic markers are placed. In prior work we have attempted
to address this with portable local beacons (Russell et al.,
2015) but other methods, such as RFID tags (Mamei and
Zambonelli, 2007; Ziparo et al., 2007), lights (Stewart and
Russelll 2006)), and chemical dispersion (Kowadlo and Rus{
sell, 2008) have also been tried.

Our work in this paper is most comparable to that of “smart
environments, such as in |Wertfel et al.| (2011), as it allows
the collective construction of a very large number of possible
structures: but instead of using specially-made stigmergic
construction materials, we explore whether such tasks may
be performed solely through a general-purpose indirect com-
munication method such as pheromones.
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Compass-Straightedge Construction

The compass-straightedge technique has existed since the an-
cient Greeks and has a long history of constructive proofs to
build complex shapes and do many nontrivial geometric tasks.
Traditionally the only two tools permitted are a collapsing
compass and an arbitrarily long straightedge. The compass
loses its angle as soon as it is lifted off the drawing surface,
and so one cannot preserve distance by raising the compass
and moving it somewhere else. However, this is an artificial
limitation, as there is a way to transfer distance between two
points using a finite number of axiomatic steps (Sarhangil
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Figure 1: The five basic compass-straightedge geometry pro-
cedures. (A) Drawing a line between two points. (B) Draw-
ing a circle centered at one point and passing through an-
other. (C) Identifying the point at the intersection of two
lines. (D) Identifying and distinguishing the two points at
the intersection of two circles (one point if they are tangent).
(E) Identifying and distinguishing the two points at the inter-
section of a circle and a line (one point if they are tangent).

2007). It has also been shown that the straightedge is not
required at all, only a compass, (Mohr, [1672; |Mascheroni,
1797) but the resulting proofs can be much more complicated.

Figure|[T]shows the five basic abstract procedures sufficient
to do all compass-straightedge construction: drawing a line
through two points, drawing a circle centered at one point and
passing through another, identifying the intersection of two
lines, identifying the intersections of a line and a circle, and
identifying the intersections of two circles. Note that for the
last two procedures, not only must one identify the points, but
one must also uniquely identify and distinguish them from
one another. This problem does not arise for human proofs,
which are visual: but ants have only local information and so
must include ways to distinguish the points.

Composing these simple techniques, one can build much
more complicated constructions. One simple example for
constructing an equilateral triangle is as follows: start with
a line segment representing the desired base; use a compass
to construct two circles centered at the endpoints with radius
equal to the segment length; and, finally, draw two more
line segments connecting the desired intersection point to the
two endpoints of the base. Other basic things which can be
constructed include: bisecting arbitrary angles with a line;
constructing a square with twice the area of another square;
constructing a circle tangent to another circle; trisecting an
arbitrary line segment; and building any regular polygon
whose number of edges is equal to some power of 2 times
the product of zero or more primes of the form 22" + 1, for
some integer n; and many, many more. Overall the first ten
constructible polygons have 3, 4, 5, 6, 8, 10, 12, 15, 16, and,
thanks to Gauss, 17 sides (Gauss, |1801]).

There are many things that cannot be constructed: any
regular polygon not of the form above (such as the heptagon
or the nonagon), trisections of arbitrary angles, squares with
equal area to arbitrary circles (the legendary squaring the
circle), and many other classes of shapes. Several exten-
sions have been proposed: for example, the ability to make
marks on the straightedge permits angle trisection and the
construction of additional regular polygons (Gleason, |[1988).
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Figure 2: Effect of Evaporation on Circle Development. Too
high evaporation (A) produces incorrectly small and overly
noisy circles, but too low evaporation (D) produces octagons.

The Ant Model

Out ants” world is a non-toroidal, bounded 200 %200 square
grid environment holding 1000 ants. Any number of ants
may share the same grid cell, and can move horizontally, ver-
tically, or diagonally. Each grid cell can also hold multiple
kinds of pheromones. The ants may move about in the envi-
ronment, may read pheromone values in their local (9-cell)
neighborhood, and may write or update pheromone values
only to their current cell. As shown later, a grid world is not
critical to the model, but was chosen for simplicity.
Pheromones are used by the ants for various tasks: to mark
points of interest, to establish gradients to and from those
points of interest, to build up estimates of shapes, and to make
final line drawings in the environment. Each pheromone has
a pheromone type and a current numerical value > 0 which
by default automatically reduces (evaporates) at a rate of
0.5% per timestep. A pheromone in a cell can also be set to
be non-evaporating. Non-evaporating pheromones are used
to draw lines and circles and to mark points of interest, which
in turn serve as permanent maxima in a pheromone gradient.
We call cells holding non-evaporating pheromones sifes.
Because we ultimately will migrate this model to robots,
the pheromones in the model do not diffuse on their own, but
rather pheromone information can only be spread from one
cell to another by an ant. This is because, while diffusion
is used in biological pheromone models, it is not easy to
employ with physical robots, as it requires chemical sensors
and dispersion methods (Kowadlo and Russell, |2008)), or cells
or breadcrumbs which communicate with one another.
Lacking diffusion, evaporation becomes very useful for
a grid-world model as it causes the ants to naturally build
gradients with more circular and less octagonal cross-sections.
This results in straight paths at any angle, not just in the
eight compass directions, and more circular circles (see for
example Figure[2). Additionally, evaporation can be seen as
a potential benefit in more interesting dynamic environments
where old information should be treated skeptically. The
disadvantage of evaporation is that it is a major source of
noise: agents cannot rely on pheromone gradients being
consistent at infrequently visited locations as neighboring
cells may have been allowed to evaporate while the current
cell has just recently been “topped off”. This significantly
complicates our task and makes our procedures less efficient.

The Ants Each ant is a simple machine which iteratively
updates pheromone values in its cell, then either follows a
procedure to perform some task, or (with 0.1 probability)
moves randomly. Random movement encourages exploration
and nondeterminism: some procedures may temporarily dis-
able it so as to reduce noise.

An ant can move in any of the eight compass directions.
If an ant moves horizontally or vertically, it must wait one
timestep before it may continue. If an ant moves diagonally, it
must wait 1.5 steps (a discrete approximation of /2, though
neither has any real impact on the results over just using 1.0).

An ant can also sense pheromones in its grid cell or any
of the eight neighboring cells, and can determine if those
pheromones are set to evaporate or not. An ant also knows
where it was last timestep, and can perceive relative orienta-
tion (“to the left of me”, etc.). An ant can set a temporary
timer to know roughly how long it has been doing a task.
Finally, an ant is capable of storing a single pheromone value
in its sole register for later retrieval.

Updating Pheromones Every timestep, the ant first up-
dates all the pheromones at its cell location. If a pheromone
P at the ant’s location i is marked as non-evaporating, the ant
leaves it alone. Otherwise, it is updated as:

P+ max

a‘/in if j is a diagonal neighbor of i
J € Neighbors(i)

oP; otherwise

We set o to 0.88 based on experiment. As the ants wander
about, this equation effectively builds a pheromone gradi-
ent away the “tent-pole” locations in the grid (where a non-
evaporating value for P has been set). Note that even though
a¥? is used to (properly) cut down diagonal neighboring
cells, this is not sufficient to create a true circular gradient in
a grid world.

The Procedures

As this paper is a proof of concept of a challenging task,
and the procedures below are nontrivial, we describe them in
detail for replicability, and beg the reader’s forgiveness.
Though we describe the ant’s procedures below in algo-
rithmic pseudocode, we in fact implement each of them as
a finite-state automaton (a DFA) which iterates through its
process one step at a time as it is pulsed. Each state in the
automaton is associated with some behavior to iteratively
perform, which may be some simple action (like laying a
pheromone) or a call to a lower-level procedure (such as wall
following). Such a recursive DFA is known as a Hierarchi-
cal Finite-State Automaton (HFA). Any procedure can signal
done, which informs its calling procedure that it has finished.
The procedures make heavy use of building gradients
from various points in order to establish loci. They take
two kinds of arguments: pheromones, which are capitalized
(like PointA), and simple numerical values, which are lower-
case (like direction or m). A pheromone typically establishes



a gradient leading to a maximal spot in the environment. For
brevity, we often use the pheromone name (like PointA) to
also refer to the location of its maximum (typically a site).
There is always a single starting location for the ants: Home.

Some procedures assume a world border, however in an
environment with no border it could just as well be replaced
with following along the locus of points for which the Home
gradient is equal to some very small value. Only cells within
the world border are considered valid places to move and
read pheromones from.

We first describe various basic procedures, then the five
geometric procedures. Here is a summary of the five:

e Draw a Circle Draw a line segment from the center
to the edge point and use it to determine the radius (in
terms of pheromone gradient from the center). Build a
gradient from the center. Identify points whose gradient
value matches the radius. Trace a line through those points.

e Mark Line/Line Intersection This is simple: fan out
until the intersection is discovered, then mark it.

e Mark Circle/Circle Intersections Identify the intersec-
tions and determine which is which. To do this, each ant
randomly chooses to go to one or the other of the two
circle centers. It then heads towards the other center until
it finds the circle edge of its initial center, then follows
clockwise along the circle until it reaches an intersection.
The intersection is uniquely labeled according to which
circle was followed when it was discovered. The process
is illustrated below:

L
C
A ( B (or) A B
o/
o Mark Line/Circle Intersections Again, the trick is to
distinguish the intersections from each other. To do this,
the ants go to a certain extreme point on the line outside

the circle, then follow down the line, and as they find
intersections, mark them in the order they were found.

e Draw an Extended (‘“Infinite””) Line This is tricky.
Noise and the restriction to local information make the
obvious approaches impossible for drawing an extended
line, such going down the gradient away the circle centers,
or walking straight using some notion of momentum. In-
stead we set up a perpendicular bisector. The ants draw a
circle centered at the first point and passing through the
second point, then a circle centered at the second point,
passing through the first. They identify the two circle/circle
intersections, then draw the extended line that is the the
perpendicular bisector between the two points. The various
elements are shown below:

Basic Procedures

Backup() Back up one step, to the ant’s previous location.
Further backups are not possible (the ant has no history).

GoUp(P) Iteratively, in the current nine-cell neighborhood
around the ant, move to the cell where the value of pheromone
P is highest. Break ties randomly. If the highest value is zero,
MoveRandomly( ). When at a local maximum, signal done.

GoHome() The same as GoUp(Home).

GoDown(P, m (default =0)) Iteratively, in the current nine-
cell neighborhood around the ant, move to the cell where the
value of pheromone P is lowest. Break ties randomly. If the
lowest value is at or below m or the ant cannot move because
the surrounding area has a higher gradient (as happens at the
world border), signal done.

MoveRandomly() Move to a random location in the nine-
cell neighborhood around the ant. Because our environment
is bounded, we include an additional protective measure: if
the ant reaches a world border, GoHome( ).

MarkSite(P) Set the value of pheromone P at the ant’s
location to maximal, and mark it non-evaporating.

LoadRegister(P) Store in the ant’s register the value of
pheromone P at the ant’s location.

FollowWorldBorder(direction) Temporarily turn off ran-
domness so as not to lose the border. Head along the border
of the world in direction (clockwise or counterclockwise).

FollowLine(P, End) Temporarily turn off randomness to
not to lose the line. Among the eight-cell neighborhood
around the ant, iteratively move to the cell where P is highest.
Break ties by preferring forward-facing directions. When the
ant has reached a cell with the End pheromone, signal done.

WallFollow(P) Head clockwise such that pheromone P is
always maximal in the cell immediately to the ant’s right
(that is, follow along a “wall” of cells marked as sites for P).

MakeLine(PointA, PointB) This procedure sets up the gra-
dients for straight line from PointA to PointB, but does not
draw it. Iterate: GoUp(PointA), then GoUp(PointB). This
causes the ants to go back and forth between the points, opti-
mizing the trail until it is straight. After some time (perhaps
5000 steps), signal done.

BuildGradientDown(P, m (default = 0)) Build a gradi-
ent away from P, stopping when the gradient is well estab-
lished down to value m. This is done by repeatedly iterating:
GoUp(P), then GoDown(P, aox m). The o@ makes the ant
go one cell further than needed. The ant initially doesn’t go
straight down, but makes many random moves: and so we
only signal done when GoDowny(...) signals done and all the
neighboring cells around the ant have nonzero values for P,
indicating that it has likely built out the gradient well.



DrawLine(PointA, PointB, Trace) This procedure draws
a straight line of pheromone Trace from PointA to PointB.
First, MakeLine(PointA, PointB). Then GoUp(PointA). Tem-
porarily turn off random moves to make a straight line, then
GoUp(PointB) while calling MarkSite(Trace) on each new
grid cell. Upon reaching PointB, signal done.

MakePerpendicularBisectorLine(PointA, PointB, MarkA,
MarkB, Temp) The bisector line is the locus of cells where
the gradients from points PointA and PointB are equal. Its
ends are defined by MarkA and MarkB. This splits the swarm
into two groups to build the two gradients in parallel.

Randomly do either: (1) GoUp(PointA), then Make-
BisectorHalf( PointA, PointB, MarkA, MarkB, Temp); or
(2) GoUp(PointB), then MakeBisectorHalf(PointB, PointA,
MarkB, MarkA, Temp). Then signal done.

MakeBisectorHalf(MyPoint, OtherPoint, MyMark, Other-
Mark, Temp) This handles one sub-swarm. First, BuildGra-
dientDown(MyPoint). While doing so, when the pheromone
value of MyPoint is less than or equal to the pheromone value
for OtherPoint, MarkSite(Temp); and whenever Temp is set at
the ant’s current location but the pheromone value of MyPoint
is greater than the pheromone value of OtherPoint, remove it,
as it has been set incorrectly due to pheromone evaporation.
Occasionally (with 0.1 probability) stop gradient-building
and do the following. GoDown(OtherPoint) until the agent
hits the world border, then FollowWorldBorder(clockwise) un-
til one of three things happens: (1) If the value of OtherPoint
is greater than MyPoint, the ant is too far: GoUp(MyPoint),
then continue BuildGradientDown(MyPoint) as before. (2) If
the ant finds a cell with Temp set, this is the far end of the line.
MarkSite(MyMark), FollowWorldBorder(counterclockwise)
a short distance (perhaps 100 steps), GoUp(MyPoint),
GoUp(OtherPoint), GoUp(Home), and GoUp(MyPoint), then
continue to BuildGradientDown(MyPoint) as before. This
spreads the MyMark pheromone. (3) If the ant finds
a non-zero MyMark gradient, the task is already com-
pleted: GoUp(MyPoint) and continue to BuildGradient-
Down(MyPoint) as before. Whenever both MyMark and
OtherMark have been set at the ant’s cell, GoUp(MyPoint),
then BuildGradientDown(MyPoint): this erases Temp in all
cells. After some time (perhaps 1000 steps), signal done.

The Five Geometric Construction Procedures

DrawCircle(Center, EdgePoint, Temp, Circle) This pro-
cedure draws a circle with pheromone Circle, centered at
Center, and which passes through EdgePoint. A temporary
and much thicker circle is marked first, then the outer border
traced, since fluctuations in pheromones and random move-
ments of the ants can cause variation in what the ants perceive
as being the correct distance from the center.
MakeLine(Center, EdgePoint), then GoUp(Center), then
GoUp(EdgePoint). At this point, LoadRegister(Center) to
measure the gradient from Center, which will define the

radius of the circle. GoUp(Center). Next, repeatedly it-
erate through BuildGradientDown(Center, register), then
GoDown(Center), then MarkSite(Temp). This causes the
ant to mark the outer edge of the circle with Temp. After
some time (perhaps 3000 steps), enough marks have been set
to form a solid circular wall. At this point, the ant must find
its way to the outside of this wall. To do this, GoUp(Center),
then GoDown(Center, B X register), which causes the agent
to move out well beyond circle whose radius is defined by
register, then GoUp(Center) until it finds a cell with a Temp
pheromone value (the wall). We set = 0.01 based on ex-
periment. Finally, trace the circle: WallFollow(Temp) while
simultaneously doing MarkSite(Circle) on each new grid cell.
After some time (perhaps 500 steps), signal done.

MarkCircleCircleIntersections(CenterA, CenterB, TempA,
TempB, CircleA, CircleB, Markl, Mark2) This procedure
identifies and uniquely distinguishes the intersections of two
circles, one centered at CenterA and traced with CircleA, and
one centered at CenterB and traced with CircleB. The Temp
pheromones were those used to generate the original circles:
they are called upon again to assist in wall-following.

First randomly GoUp(CenterA) or GoUp(CenterB). If the
ant chose CenterA, then GoUp(CenterB) until it finds CircleA,
then WallFollow(TempA ) until the ant reaches a cell with both
CircleA and CircleB: then MarkSite(Markl ). If the ant chose
CenterB, then GoUp(CenterA) until it finds CircleB, then
WallFollow(TempB) until the ant reaches a cell with both
CircleA and CircleB: then MarkSite(Mark2). In either case,
GoHome( ) and stay there for a while (perhaps 500 steps) to
ensure other ants have seen the markings, then signal done.

MarkCircleLineIntersections(PointA, PointB, Circle, Line,
Markl, Mark2) This procedure identifies and uniquely dis-
tinguishes the (up to) two intersections of a circle traced out
with Circle, and a line delimited by PointA and PointB, and
traced out with Line. To make things simple, we assume that
PointA and PointB are at the extrema of the line: this is not
a problem, as the procedure for marking extended lines will
mark the points at the borders of the environment.

First GoUp(PointA), then FollowLine(Line, PointB), and as
the ant is doing so, MarkSite(...) the first intersection (which
has both Line and Circle pheromones) with Markl, and the
second such intersection, if any, with Mark2.

MarkLineLineIntersection(LineA, LineB, Mark) This
identifies the intersection between two lines. One simple
(and inefficient) approach is to search the space until we have
discovered the unique intersection, then mark it.

GoUp(Mark) (which moves randomly unless Mark is non-
zero) until the agent has found a cell marked as both LineA
and as LineB: at this point, MarkSite(Mark) then GoHome( ),
then signal done. If another ant finds the intersection first,
we may see the Mark pheromone already, in which case
GoHome( ) to tell the other ants, then signal done.
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Figure 3: Building an Equilateral Triangle from Two Provided Points. (A) Emerging from Home. (B) Building the first line
between the provided points. (C) Building the circle. (D) Building the second circle. (E) Determining the intersections, then

building the second line. (F) Tracing the third line. (G) Finished.

DrawExtendedLine(PointA, PointB, TempA, TempB,
CircleA, CircleB, IntersectionA, IntersectionB, MarkA,
MarkB, Line) This procedure requires nine distinct
pheromones because of its approach to drawing an extended
(arbitrarily long) line between two points PointA and PointB.
It first draws circles with PointA and PointB each as centers
and passing through the other point, respectively. It then
identifies the intersections of these circles. The extended line
is the perpendicular bisector of these two intersection points.

The procedure is as follows. First DrawLine(PointA,
PointB, Line). Then DrawCircle(PointA, PointB, TempA,
CircleA). Then DrawCircle(PointB, PointA, TempB, Cir-
cleB). Then MarkCircleCirclelntersections(PointA, PointB,
TempA, TempB, CircleA, CircleB, IntersectionA, Intersec-
tionB). Next, MakePerpendicularBisectorLine(IntersectionA,
IntersectionB, MarkA, MarkB) to identify the extrema of the
extended line. Finally, DrawLine(MarkA, PointA, Line), then
DrawLine(MarkB, PointB, Line).

Demonstration and Comparison

At this stage, if a shape can be provably built with compass-
straightedge geometry, the ants can theoretically build it,
given a finite-state automaton coded with the steps necessary.
As a simple example, Figure [3]shows the process of building
an equilateral triangle from two prespecified points. Using
this approach, we have built a variety of structures: see for ex-
ample the hexagon and angle bisector in Figure d Noise can
cause some failures: in our simulator triangles presently have
a 95% success rate, angle bisection is 91%, and hexagons are
87%: we believe these rates can still be improved.

While we have demonstrated that a basic pheromone model
is capable of a nontrivial task such as this, we admit that it is
not efficient: the agents build a variety of gradients through-
out the environment, and if the system must use evaporation,
then they must also maintain gradients until they have fin-
ished a subtask. Because of the locality of the pheromone
model, and the need to move randomly, the approach is also
quite noisy. As can be seen in Figures[3|and[4] the resulting
lines, shapes, and angles are not ideal.

Broadcasting With small amount of global embedded com-
munication, we can dramatically outperform a pheromone

Figure 4: Hexagon (left) and Angle Bisection (right).

model. To show this, we compare the model against the same
model augmented with broadcast beacons: objects which an
ant may deploy at any time and associate with a pheromone.
Ants can detect the presence, distance to, and relative angle to
a broadcast beacon anywhere in the environment. As a result,
they can easily follow along a circle (the locus of points a
certain distance from a beacon), or head down a line passing
through two beacons (the locus of points where both beacons
are at the same relative angle or opposite angles). This elimi-
nates the need to build and maintain gradients, and so ants
with broadcast beacons can generally complete most tasks
over dramatically faster. Furthermore, as they do not use lo-
cal updating on a square grid, broadcast beacons’ “gradients”,
so to speak, are circular without evaporation.

Except for the addition of broadcast beacons deployment
and sensing, the ants are the same: in fact the revised pro-
cedures work largely the same way as the all-pheromone
approach. One exception: because relative angle to beacons
is reliable, the ants can do DrawExtendedLine(...) by simply
going away from both beacons (that is, having both beacons
directly behind the ant), though the original perpendicular
bisector approach could still have been used.

For some examples, consider Figure [5 and compare
against the same tasks done in Figures [3| and [} there is
something to be said for globally accessible informationﬂ

Here we describe the additional basic procedures, then the
geometric construction procedures, for ants using beacons.

'With three beacons, you could just do triangulation! But we
want to show the ants’ capability without sophisticated trigonometry.



Further Basic Procedures with Broadcast Beacons

GotoOrPlaceBeacon(P) If a beacon for P exists, head to-
wards the beacon, and signal done on arrival. If the beacon
does not exist, GoUp(P) until a site is discovered marked
with P, then place a beacon for P at that site, and signal done.

GotoOrPlaceBeaconShortCircuit(P) If a beacon for P
exists, simply signal done. If the beacon does not exist,
GoUp(P) until a site is discovered marked with P, then place
a beacon for P at that site, and signal done.

DrawLine(LineA, LineB, P) GotoOrPlaceBeaconShort-
Circuit(LineB). GotoOrPlaceBeacon(LineA). This ensures
that beacons are located at both LineA and LineB, and that
the ant is at LineA. Then head along the line between LineA
and LineB, towards LineB, drawing the line with pheromone
P. When at LineB, signal done.

Geometric Construction with Broadcast Beacons

MarkLineLinelntersection(LinelA, LinelB, Line2, B)
GotoOrPlaceBeacon(LinelA). Then head down the line
which passes through LinelA and LinelB. It doesn’t mat-
ter what direction. If the ant has gone “too far” (we define
this as being at the world border, but any large measure is
fine), turn around and head the other direction. When the
ant discovers the pheromone Line2, denoting the trace of the
second line, this is the intersection of the two lines. Place
beacon B at this position and signal done.

MarkCircleLineIntersections(LineA, LineB, Circle, A, B)
GotoOrPlaceBeacon(LineA). Then head down the line which
passes through LineA and LineB in the direction of (and past)
LineB. When the ant has gone “too far”, turn around and head
the other direction. When the ant discovers the pheromone
Circle, denoting the first intersection of the line and circle,
place beacon A at this position. Then head down the line past
LineA. When the ant has again gone “too far”, turn around
and head the other direction. When the ant discovers the
pheromone Circle, denoting the second intersection, place
beacon B at this position and signal done.

MarkCircleCircleIntersections(CenterA, CenterB, Cir-
cleA, CircleB, A, B) GotoOrPlaceBeacon(CenterA), then
GotoOrPlaceBeacon(CenterB). Next, randomly head either
to CenterA from CenterB or to CenterB from CenterA. If the
ant goes to CenterA, then when the ant finds the circle traced
with CircleB, follow clockwise along the CircleB pheromone
until an intersection point is found (having both CircleA and
CircleB), then PlaceBeacon(A). Continue along CircleB until
another intersection point is found, then PlaceBeacon(B). On
the other hand, if the ant goes to CenterB, then when the ant
finds the circle traced with CircleA, follow clockwise along
the CircleA pheromone until an intersection point is found
(having both CircleA and CircleB), then PlaceBeacon(B).
Continue along CircleB until another intersection point is
found, then PlaceBeacon(A). Either way, finally signal done.

Figure 5: Equilateral Triangle (left), Hexagon (center), and
Angle Bisection (right) using Broadcast Beacons. Compare
with Figures [3]and 4]

Figure 6: Circle (left) and Perpendicular Line Bisector (right)
using a simulator for robots with deployable sensor motes.

DrawExtendedLine(LineA, LineB, P) GotoOrPlaceBea-
conShortCircuit(LineA ). Then GotoOrPlaceBeacon(LineB).
This ensures that beacons are located at both LineA and LineB,
and that the ant is at LineB. Then head along the line between
LineB and LineA, towards and ultimately past LineA, drawing
the line with pheromone P. When the ant has gone “too far”,
GotoOrPlaceBeacon(LineA). Once at LineA, head along the
line between LineA and LineB, towards and ultimately past
LineB, drawing the line with pheromone P. When the ant has
again gone “too far”, signal done.

DrawCircle(Center, EdgePoint, P) GotoOrPlaceBeacon-
ShortCircuit(Center). Then GotoOrPlaceBeacon(EdgePoint).
This ensures that beacons are located at both Center and Edge-
Point, and that the ant is at EdgePoint. LoadRegister(Center).
Then head along the path (either direction) where the Center
pheromone is equal to the register (this essentially traces
along the circle), while drawing the line with pheromone P.
When the ant is back at EdgePoint, signal done.

Conclusion

We have demonstrated through proof of concept that, using
only non-diffusing pheromones as a communication model,
a swarm of ants can work together to perform compass-
straightedge construction. This is a nontrivial task, but it
demonstrates that indirect communication can enable sophis-
ticated collaborative work.

This demonstration also illustrates a potential weakness in
our pheromone model: it can be very inefficient, as whole ar-



eas must be painted with pheromones and perhaps constantly
updated. For this reason we feel our demonstration falls near
the limit of what these models are realistically capable of sup-
porting. The broadcast beacons method, on the other hand,
still allows for efficient constructions while using only sparse,
robot-deployable devices.

Both methods are applicable to real robots, and imme-
diate future work is to demonstrate this on an actual robot
swarm. We have gathered preliminary (and noisy) results for
the pheromone model in a simulator in which robots use de-
ployable wireless sensor motes to create a sparse pheromone
graph (as in|Hrolenok et al.|(2010) and Russell et al.| (2015));
this is shown in Figure[6] To use such capabilities in a real-
world scenario, however, will require solutions to a number of
additional issues, including: obstacles in the environment, dy-
namic environments where marked areas might be removed,
and environments without a known border.
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