Training Heterogeneous Teams of Robots

Keith Sullivan, Ermo Wei, Bill Squires, Drew Wicke, and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA
ksulliv2@cs.gmu.edu, ewei@gmu.edu, wsquires@gmu.edu,
dwicke@gmu.edu, sean@cs.gmu.edu

Abstract. Heterogeneous multi-robot teams are common solutions to
complex tasks, especially those that are inherently cooperative. Training
robots, rather than coding them, to work together in these teams is
an attractive prospect, but is very difficult due to the extremely large
state space and the inherent inverse problem which separates the agents’
micro-level behaviors and the desired macro-level emergent phenomenon.
We approach this problem with HiTAB, a learning from demonstration
system which uses behavior decomposition to allow rapid training of
teams with minimal samples. This paper presents and compares two
approaches to training teams of heterogenous robots: first, forming a
multiagent control hierarchy which scales to large numbers of robots but
requires the training of additional virtual controller agents; and second,
modifying each robot’s feature space to include information about other
robots’ current behaviors or limited internal state.

1 Introduction

Learning from Demonstration (or LfD) is the training of a robot in real-time by
a human who iteratively demonstrates a behavior, observes the learned result,
and steps in to correct errors through additional demonstration. LfD may be
done by teleoperation (as we do), or through the robot observing the human
performing the behavior himself. LfD has natural application to a great many
areas, particularly when humans wish to develop new robot behaviors rapidly,
but lack the skills to program them. But while there is a rich literature on
single-robot learning from demonstration, this is not the case for training multiple
collaborative robots, and the literature on real-time training of heterogeneous
teams is very rare.

This is in part because multi-robot learning from demonstration is nontrivial.
At its core lie two challenges inherent in cooperative multiagent learning. First,
there is the design space issue. Setting aside numerosity, agents may be het-
erogeneous, be broken into multiple classes, have complex interactions amongst
themselves, and have complex internal actions and sensors. This results in a
potentially high-dimensional space requiring large numbers of samples.

Second, there is the daunting inverse problem. Presume that we wished
to teach the robots to storm a castle. Even if we knew how to quantify this

macro-level task, ultimately each robot must learn its own micro-level behavior.
Even if we had a function f to translate micro-behaviors to emergent macro-
phenomena (a multirobot simulator), we still wouldn’t have the inverse function
f~! which yields the individual micro-behaviors necessary to produce the macro-
phenomenon. The standard way to solve such inverse problems is optimization,
and indeed in [13] we found that nearly all cooperative multiagent learning papers
use such methods, primarily stochastic optimization or reinforcement learning.
Optimization, also, tends to require many samples.

Unfortunately, in multiagent LfD samples are costly, as they arise from a
human trainer working in real-time with physical robots. Thus the multiagent
LfD literature is extremely sparse. Adding heterogeneity to the mix makes it
even more so.

We suggest a different approach to multi-robot training which applies super-
vised learning rather than optimization, and can be used to train many robots
in real time to perform nontrivial, heterogeneous, collaborative behaviors. Our
method, Hierarchical Training of Agent Behavior (HiTAB), uses manual task
decomposition in two different ways to simplify the problem dimensionality and
to break the inverse function down into multiple simple and trivially solved ones.

We have previously used HiTAB to train single agents, and to train hundreds
of homogeneous agents doing collaborative tasks [19]. We also used HiTAB to
achieve a first at RoboCup 2014: we trained three homogeneous attacker robots
how to play soccer, via demonstration at the venue, then entered them into the
competition, where they won half their games [6]. In this paper we turn to the
much more complex heterogeneous case: training different kinds of robots, in real
time, to perform a collaborative task from a single human demonstrator. To our
knowledge, this paper is the first such demonstration.

A major issue in training heterogeneous teams lies in their coordination
architecture. We will examine two different methods. First, we put the robots
under a hierarchy of virtual, trained controller agents to coordinate them. This
approach scales to large numbers of robots, but requires more agents to be trained.
Second, we modify each robot’s feature space to include information about other
robots’ current behaviors.

2 Related Work

LfD uses input from a human demonstrator to learn proper behavior for a given
situation [2,23]. Since the agent is given the proper action for a given situation,
LfD is broadly speaking a supervised problem, though much of the literature
uses reinforcement learning to solve it. The LfD literature may be divided into
two categories: learning plans or behaviors [1], and learning robot trajectories or
paths [15]. In the first case there are usually very few samples to learn from, as
the important samples usually only arrive on transition from one operation to
another in the plan or behavior; this is not true for the second case, where every
slight change in trajectory may be a useful sample. Our work falls in the first

category, and so much of it lies in approaches to effective learning of nontrivial
behaviors despite an extreme paucity of samples.

Online multi-robot LfD presents unique difficulties, and as discussed earlier,
research in this area is extremely sparse. Some work exists though: for example,
[5] trained multiple robots to work together by having one request help from a
demonstrator when it felt unsure of the proper action. A similar approach was
used to train Sony AIBO robots to play soccer [8,4]. Finally, Raza et al used
human demonstrators to train multiple soccer agents within the RoboCup 3D
Simulation League [18,17]. Some work has dealt with the inverse problem by
eliminating macrobehaviors entirely and issuing separate micro-level training
directives to each individual agent [22, 11].

The multirobot examples cited above used homogeneous teams. Some work
has used heterogeneous teams, notably the L-ALLIANCE architecture, used
to learn hazardous waste clean up and box-pushing [14]. Blokzijl-Zanker and
Demiris recently used multiple demonstrators to train a plan for a heterogenous
robot team to open doors [3].

3 Training a Single Agent with HiTAB

HiTAB learns behaviors in the form of hierarchical finite state automata (HFA)
represented as Moore machines [9, 21]. Each state in the HFA maps to a previously-
learned HFA or hard-coded built-in behavior. The motivation behind HiTAB is
to rapidly train nontrivial agent behaviors, and particularly multiagent behav-
iors, in environments with a paucity of samples. HITAB uses manual behavior
decomposition to reduce the size of the learning space and to simplify the micro-
to macro-behavior gulf. This manual decomposition breaks complex automata
and state transitions into simple, often simplistic, ones which can be learned
from a small number of samples each.

Once the hierarchical structure is specified, the experimenter begins training
bottom-up. Initially, the behavior library consists only of basic hard-coded
behaviors, and these correspond to states in the initial automaton to be learned.
The training process thus produces only the transition function of the automaton.
This takes the form of one classifier per state, based on sensor features available
to the robot. Before training an automaton the experimenter may choose which
sensor features are available to the transition function, thus reducing the size of
the learning space. Features within HiTAB are can be categorical, continuous,
or toroidal, such as “bumper pressed”, “angle to target”, or “distance to wall”.
Though we do not do so in this paper, both features and behaviors can be
parameterized. For example, instead of training the three behaviors GoTo Wall,
GotoTeammate, and GotoHomeBase, we may instead train a single behavior
Goto(X) where X is chosen from a set of available targets (the wall, the teammate,
the home base) when the behavior is used later.

Training of a behavior iterates between a training mode and a testing mode. In
the training mode, the agent performs behaviors as directed by the demonstrator,
and each time a behavior (thus state) transition occurs, the agent records a

training example: a tuple (S, f,;, St4+1) which stores the current feature vector,
along with the previous and new states. If the behavior associated with state
Siy1 is designed to be executed exactly once, then no additional samples are
recorded. Otherwise, a default sample is also stored: (Si41, f:, Sit1). This tells
the agent to continue in the current state if the given feature vector does not
change.

Once enough samples are collected, the demonstrator switches to testing mode,
causing the agent to build the transition function. For a given state S;, HITAB
takes all samples of the form (S;, ﬁ7Sj>(V t,j), reduces them to <f_;75’j>, and
feeds them to a classification algorithm (with ﬁ as a data point and S; is its
label). The resulting classifier forms the transition function for outgoing edges
from S;. Many classification algorithms can be used: here we use C4.5 [16].

After all the transition functions are built for a given behavior, the agent
begins performing the learned behavior as described above. If the demonstrator
observes the agent performing an incorrect behavior, he may switch to training
mode to collect additional samples. New transition functions are then rebuilt with
the additional data to create a new trained behavior. This turn-taking continues
until the demonstrator is satisfied with the agent’s behavior.

Once a behavior is trained satisfactorily, unused states and other information
are trimmed from the automaton, and it is saved to the behavior library to
become available as a state for future to-be-trained automata. This process
repeats until the entire hierarchy of behaviors is trained.

4 Multiagent Heterogeneous HiTAB

Once we have trained agents with necessary individual behaviors, depending
on the number of agents and the degree of agent interaction needed, we might
train the agents independently with dummies standing in for the other agents;
or train them concurrently (with multiple parallel trainers); or train them using
behavioral bootstrapping [20]. Here, one robot is trained to perform a rudimentary
version of a behavior in the presence of other (non-functioning) robots. This
behavior is distributed to similar robots, then another robot is selected to learn
a higher-level version of its current behavior in the presence of robots performing
their present rudimentary behaviors, and so on.

Such approaches will work for very small groups of agents (or potentially larger
swarms of simple homogeneous agents). To train large swarms of coordinated
heterogeneous robots, we must rely on an abstraction mechanism to simplify
the complexity of their coordination. One approach is to manually decompose
the swarm into an agent hierarchy, a tree structure where leaf nodes are the
individual robots performing tasks, and non-leaf nodes are virtual controller
agents, each one in charge of coordinating its children in the tree. For example,
we might decompose a soccer team into offensive and defensive groups, then
decompose the defensive groups into defenders and the goalie, and the offensive
group into attackers and midfielders. We then train the agent hierarchy bottom-
up: we first train a small group of heterogeneous agents (the midfielders, say)

to perform various collaborative behaviors. We create a controller agent for the
midfielders, whose basic behaviors correspond to the collaborative behaviors we
had trained for them, and whose features correspond to statistics or signals from
the midfielders necessary to develop behaviors to coordinate them: for example
“a robot in my group has the ball” or “the average Y coordinate of robots in
my group.” We then train automata in this virtual agent using HiTAB. This
continues up the hierarchy: the midfielder and attacker controller agents are
grouped and trained to work together; then a controller agent is assigned to them,
ete.

This approach has two advantages: first, controller agents provide a straight-
forward way of doing coordination among agent groups, and second, hierarchies
scale to arbitrarily large swarms, because regardless of its size, at any position
in a hierarchy an agent (and his trainer) must deal only with a fixed number of
agents (his superior and immediate subordinates).

However for small swarms, a controller hierarchy may be cumbersome and
overly complex: and it requires that the designer manually group joint behaviors
together to form basic behaviors in the controller, and to manually define features
to pass to the controller. An alternative is to simply let agents know the current
top-level behaviors of their collaborators. We do this by changing the feature
vector f; = (f1y ey fn) tO fi= (f1y s fr, b1, e, b)) where each b; is the current
top-level behavior performed by agent i. For example, when an agent switches
from acquiring a ball to kicking it, other agents might sense this and update their
behaviors accordingly. A trainer can use this method to perform signaling as well:
one agent might be trained to move forward, then switch to forwardSpecial, a
behavior which simply does forward but, by virtue of its name, signals to other
agents to change their behaviors as well.

We call this method behavior-signaling, which introduces a communication
overhead and feature space growth that is unlikely to scale to large numbers of
agents. But for small groups it might be a simpler coordination procedure.

5 Demonstration and Comparison

We want to do two things:

— Demonstrate successful real-time training of a
collaborative, heterogeneous team of robots, albeit
a small one, by a single demonstrator.

— Compare using a controller hierarchy to do this
training against using behavior signaling.

Though each training session took only about an
hour, it required experienced human trainers highly
familiar with a complex piece of software: this made
it extremely difficult to gather rigorous statistically
significant comparison with many demonstrators. And
so by the nature of the problem we are largely reduced Fig. 1. Flockbot

to anecdote. With this in mind, we will report the the
number of samples required as a measure of technique
complexity. We report this for two independent human
demonstrators, each attempting both techniques.

For this demonstration and comparison, we set out
to reproduce a well-known heterogeneous three-robot
box-pushing experiment described in [12,7]: the goal
was to push a long box across the room using two
robots, with a third robot in the back monitoring the
box’s angle. The critical difference being, of course,
that in our work the robots would be trained rather
than hand-coded.

The two robots pushing the box were Flockbots
(Figure 1), roughly 7-inch-diameter differential robots
of our design [10]. These robots are sensor poor and
cannot monitor the box’s angle. The third robot was
a Pioneer 3DX (Figure 2), a much larger differential-
drive robot equipped with a variety of sensors, includ-
ing a scanning laser range finder, used to monitor the
angle of the box.

This arrangement demonstrated two notions of
heterogeneity. Clearly the Pioneer was different from
the Flockbots in its capability. But while the Flock-
bots were homogeneous in capability, they were in fact
different from one another in their necessary coordi-
nated behavior.

Figure 5 shows the robot setup for the box-pushing
experiment. To help replicability, we describe in detail
exactly those automata trained and the features they
relied on. The automata are summarized in Figure 4.

5.1 Training with a Controller Hierarchy

Fig. 2. Pioneer 3DX

Group Controller

Flockbot Controller

Pioneer 3DX

Flockbot Flockbot

Fig. 3. Agent Hierarchy

We arranged the three robots into a two level agent hierarchy as shown in Figure 3:
the three robots were the leaves, and a Flockbot Controller agent was responsible
for coordinating the two Flockbots. The top-level controller agent (called the
Group Controller) coordinated the Flockbot team and the Pioneer.

Each level of the hierarchy required different features:

— Each Flockbot used one sensor feature, BumpPressed, returning whether

the Flockbot’s bump sensor was pressed.

— The Pioneer used a single sensor feature DistanceToBox which measured
the distance between the Pioneer and box with a laser range finder.

— The Flockbot Controller relied on the feature AllDone, which informed it
that both Flockbots had completed initialization and reached Done.

— The Group Controller used two features: AllDone and BoxAngle. AllDone
informed it that both the Pioneer and Flockbot Controller had reached Done.
BoxzAngle used data passed to the Group Controller by the Pioneer, used a
split-merge algorithm to compute the angle of the longest line (box) from
the laser range finder.

Similarly, each robot type had different basic behaviors. The Flockbot had
four behaviors: Done, Stop, ForwardFast (0.4 meters per second), and For-
wardSlow (0.1 meters per second). The Pioneer had three behaviors: Done,
Stop, and Forward which moved the robot forward at 0.5 meters per second.
Done simply raised a signal that it had been reached.

We first trained additional HFA for each of the robots:

— FlockbotInit: Used BumpPressed. Moved the Flockbot forward until it
contacted the box.

— GotoBox: Used DistanceToBox. Kept the Pioneer within a pre-specified
distance of the box.

— PioneerlInit: Used DistanceToBox, GotoBoz, and Done. Moved the Pioneer
within a pre-specified distance of the box, and then signaled Done to its parent
automaton. Although it appears that they could be merged, PioneerInit and
GotoBoz were in fact used at different times.

We then grouped the two Flockbots together, defining the following joint
heterogeneous behaviors which later were mapped to basic behaviors in the
Flockbot Controller:

FlockbotGrouplnit: both Flockbot ran FlockbotInit.

— FlockbotForward: both Flockbots ran ForwardFast.

CorrectLeft: the left Flockbot ran ForwardSlow and the right Flockbot ran
ForwardFuast.

— CorrectRight: the left Flockbot ran ForwardFast and the right Flockbot
ran ForwardSlow.

We then trained this Flockbot Controller behavior:
— FlockbotControllerInit: ran FlockbotGroupInit until AllDone was signaled.

Next, we grouped the Flockbot Controller with the Pioneer, defining the
following joint heterogeneous behaviors which mapped to basic behaviors in the
Group Controller:

— GroupCorrectLeft: the Pioneer ran GotoBoz and the FlockbotController
ran CorrectLeft.

— GroupCorrectRight: the Pioneer ran GotoBox and the FlockbotController
ran CorrectRight.

— GroupForward: the Pioneer ran GotoBozx while the FlockbotController ran
FlockbotFoward.

RightFlockbotPushBox

Q

Pioneer:Behavior is
PushFoward

Done
Flockbot Init

Init » Done

Pioneer:Behavior is

PushFoward

Pioneer:Behavior is
CorrectLeft

Pioneer:Behavior is
CorrectRight

Forward
Fast

Pioneer:Behavior is
PushFoward
LeftFlockbotPushBox , o
Pioneer:Behavior is Forward
PushFoward Fast
Q Pioneer:Behavior is

PushFoward

Done
Flockbot > Init

Init Done

PioneerPushBox

Both Flockbot:Behaviors are
InitDone

Q,

Pioneer:Behavior is

PushFoward

Box Angle <-a

Pioneer:Behavior is
CorrectLeft

Pioneer:Behavior is

CorrectRight

Forward
Slow

Correct
/" Left

t Push
Goto > sl

Box

Forward

Box Angle >= -a

Box Angle <a

Box Angle >= a

N\ Correct
Right

Group Main

Push

: AllDone

Group
Init

Box Angle < a

Push

Group

Box Angle >= a

N

Flockbot Controller Init

Forward

Box Angle < -a,

Group
Correct
Right

Box Angle >= -a

Distance to Box < B

AllDone

—C)

Pioneer Init* Q
Goto
Box
GotoBox Q{
Flockbot Init Q

Distance to Box > B

Distance to Box < B

Bump Sensor Not Pressed

GO

Bump Sensor Pressed

Fig. 4. Trained HFA for box pushing: both Controller and Behavior-signaled HFAs
shown together for brevity. Both techniques relied on the Pioneer and Flockbot groups
of HFA at the bottom of the figure. Additional Controller or Behavior-signaled HFA are
shown above them. *Note that Pioneer Init was only used by the Controller technique.
The trivial Init Done, Correct Left, Correct Right, and Push Forward behaviors are not

shown.

Bump Sensor Pressed

Right Flockbot
Behavior-Signaled

Left Flockbot
Behavior-Signaled

Pioneer
Behavior-Signaled

Group
Controller

Flockbot
Controller

Pioneer

Flockbot

e
€5
- o
°
(=3
&
@2
S
S
H
B
5
o
3
2
o
T
5
£
o
°
N
s
<
©
v
o
S
2
<
X
3
o
=
3
H
5
8
¢
v
©
>
2
<
<
3
o
>
)
o
©
<
&
Q
~

Signaling

Controller Agent's Transition Based on Signaling

Transition Based on Feature

Basic
Behavior

Transition Based on

Trained
HFA

Entry
Point

Joint Behavior Behavior of Other Robot(s) Behavior

Value Propagated to Controller

Feature Value

Finally, we trained the following Group Controller HFAs:

— Push: A servoing automaton which kept the box straight based on BoxAngle,
by alternating between GroupForward, GroupCorrectLeft, and GroupCorrec-
tRight. While it would seem that this behavior would naturally reside in the
Flockbot Controller, because it relied on the box angle, it needed to be one
level higher in our model.

— GroupMain: A top-level automaton which moved the robots to their initial
positions, then began calling Push.

5.2 Training with Behavior-Signaling

With Behavior-Signaling, there was no hierarchy: instead the three robots coordi-
nated via sensing the top-level behaviors of the other robots. Behavior-Signaling
required slightly different features:

— Each Flockbot used the BumpPressed feature as before. It also used the
signaled behavior of the Pioneer robot as the feature Pioneer:Behavior.

— The Pioneer used DistanceToBox as before. Unlike the Controller situ-
ation, where BoxAngle was only used by the Group Controller, in the
Behavior-Signaled situation BoxAngle was used by the Pioneer behaviors
directly. The Pioneer also used the signaled behaviors of both Flockbots
Flockbot:Behavior for coordination.

To do Behavior-Signaling, we first trained the robots to do the FlockbotInit
and GotoBox behaviors in the same way as in the Controller case. We also
trained the Pioneer to do the PioneerInit behavior, except that Done was not
signaled.

At this point the training diverged from the Controller case. We first trained
three simple behaviors whose primary function was to signal to other agents:

— InitDone (Flockbot): The Flockbot stopped. This behavior was used to
synchronize pushing among all robots.

— PushForward (Pioneer): The Pioneer did GotoBox. This behavior signaled
to the Flockbots that the box was sufficiently straight and they could just
move forward.

— CorrectLeft and CorrectRight (Pioneer): The Pioneer ran GotoBoz. This
behavior served to signal to the Flockbots that the box was tilted.

We then trained HFAs of each robot involve coordination:

— PioneerPushBox: Used DistanceToBox, BoxrAngle and Flockbot: Behavior
as features. The Pioneer did GotoBoz to approach the box, and once both
Flockbots signaled FlockbotInitDone, the Pioneer ran PioneerPushForward,
correcting with CorrectLeft and CorrectRight as necessary when the box angle
was too tilted.

Fig. 5. Experimental Setup. The holes in the box are incidental.

— LeftFlockbotPushBox and RightFlockbotPushBox: These HFAs are
symmetric, so only LeftFlockbotPushBox is described. The Flockbot ran
FlockbotInit until Done was signaled, then transitioned to FlockbotInitDone
behavior waiting for the Pioneer. Once the Pioneer started to run Pioneer-
PushForward behavior, the Flockbot started to move forward, using the
ForwardFast behavior. When the Pioneer performed the signal behavior
CorrectLeft, the Flockbot would transition to ForwardSlow; and when the
Pioneer performed the signal behavior CorrectRight, the Flockbot would stay
at ForwardFast.

5.3 Experimental Details

Two experienced demonstrators each attempted to train the box-pushing ex-
periment using both methods (Controllers and Behavior-Signaling). Training
required teaching the Flockbots not to allow the box to deviate too far from
a tilt angle of a and for the Pioneer to stay a given distance [away from the
box. These values appear in transition edge labels in Figure 4. In all cases, the
trainers endeavored to train with f ~ 960 mm and o ~ 11.5°.

6 Results

6.1 Demonstration

In all four cases (two experimenters, two methods), the robots were successfully
trained to perform the proper box-pushing behavior in less than an hour each.

Trainer 1 Trainer 2

Group Main 4 4

Push 10 10

Flockbot Controller Init 3 3
Pioneer Init 3 7

Goto Box 5 6

Flockbot Init 10 10

Total Samples 35 40

Table 1. Number of samples required to train each HFA using the Controller method.

Trainer 1 Trainer 2
Correct Left (Right) 2 (2) 2 (2)

Push Forward 2 2

Goto Box 6 6

Pioneer Push Box 14 14

Flockbot Init 5 5

Init Done 1 2

Left (Right) Flockbot Push Box 14 (14) 14 (14)
Total Samples 60 61

Table 2. Number of samples required to train each HFA using the Behavior-Signaling
method.

6.2 Comparison

Which method was simpler to train? The metric we used was the total number
of user-provided demonstration samples required. Tables 1 and 2 break down
these samples on a per-HFA and per-trainer basis.

The number of samples equates, more or less, to the amount of time required
to train. As can be seen by the number of samples, certain complex behaviors
were significantly harder to train than others. In general, the most complex
behaviors took roughly between 10 and 15 minutes to train, while the simpler
HFA took 2 minutes each. The trivial signaling HFA, InitDone, CorrectRight,
CorrectLeft, and PushForward, took well less than 1 minute each.

We expected that the behavior Behavior-Signaling method would be simpler
than the Controller method, as it required less complexity in terms of number of
agents. But the experiments suggest that it actually required more total samples.
This is partially because we had to train the Box-Pushing HFAs for each of
the Flockbots separately. Additionally, due to the explicit coordination of the
Behavior-Signaling method, the typical HFA was significantly more complex than
in the Controller method. This could be another factor influencing Behavior-
Signaling’s scalability: the interaction among robots could make the HFAs too
complex to easily decompose.

Still, this glosses over the fact that we had to hand-code domain-specific
features for the Controller method (passing to controllers the Pioneer’s Box Angle

and the fact that all robots are Done) and to manually specify joint behaviors
(Group Correct Right, Group Forward, Group Correct Left, Flockbot Group Init).
In the Behavior-Signaling method, none of this was necessary: robots simply
needed to know what other behaviors other robots were doing, and custom
signaled behaviors could be trained by the experimenter without any coding. In
short: while the Controller method required less training, it required much more
problem-specific coding.

The Controller is clearly superior to Behavior-Signaling method when there
are a great many agents, since its hierarchy allows scalable automata with lower
communication overhead. However, there is no reason the two techniques cannot
be used simultaneously: we may try this in the future.

7 Is This Programming or Machine Learning?

The demonstration in this paper showed successful training of heterogenous
multi-robot teams on a box-pushing task from the literature. Such training is
rare, because the mixture of multiple agents, heterogeneity, and stateful behaviors
yields a situation which often requires a large number of samples to successfully
learn: but samples are very expensive.

Our approach enables a demonstrator to train a robot in a very short time,
even in scenarios involving multiple heterogeneous robots and agents. We think
this demonstration succeeded in showing this. But this was achieved by manually
decomposing complex joint automata into very simple ones: indeed a great many
are trivial and were able to be trained in a single presentation (thus < 5 samples).
The reason for this simplicity is that the decomposition process injects a great
deal of user knowledge into the problem. For example, we knew that the Flockbots
would have to be able to rotate the box, and so created joint behaviors which
did just that.

Is this going too far? By using this level of task decomposition and joint
behavior composition, we are in some sense programming the robots, only we
are doing so not with a programming language but with the help of machine
learning. We are trading domain knowledge (a kind of “programming”) for the
need to provide more samples. We believe that more general-purpose, knowledge-
poor approaches have not proven successful in the multirobot training scenario:
they are simply too costly in terms of samples. By injecting significant domain
knowledge into the task we have been able to make headway in a quite difficult
problem.

8 Conclusions and Future Work

We presented a multiagent supervised learning from demonstration system capable
of training heterogeneous teams of agents in real time. By using a variety of tricks,
we can simplify an ordinarily complex problem to the degree that supervised
training becomes possible.

Using this, we have shown that heterogeneous teams can indeed be trained
in real time by a single demonstrator to do a useful collaborative task. In
previous work [19] we showed that HITAB scales to large numbers of homogeneous
agents. But we have not yet shown the combination of the two: training large
heterogeneous robot teams with nontrivial stateful behaviors. Additionally, while
we showed that training heterogeneous teams is possible, it still requires significant
knowledge and (in the Controller case) coding. To make this method feasible, we
need to address this. These issues will constitute much of our future work.

9 Acknowledgments

Our thanks to Kevin Andrea, Michael Bowen, and Ian Fleming.

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57(5), 469-483 (2009)
2. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: Proc. ICML. pp.
12-20 (1997)
3. Blokzijl-Zanker, M., Demiris, Y.: Multi-robot learning by demonstration. In: Proc.
AAMAS (2012)
4. Browning, B., Xu, L., Veloso, M.: Skill acquisition and use for a dynamically-
balancing soccer robot. In: Proc. AAAL pp. 599-604 (2004)
5. Chernova, S., Veloso, M.: Confidence-based multi-robot learning from demonstration.
International Journal of Social Robotics 2(2), 195-215 (2010)
6. Freelan, D., Wicke, D., Sullivan, K., Luke, S.: Towards rapid multi-robot learning
from demonstration at the robocup competition. In: Proc. RoboCup (2014)
7. Gerkey, B., Mataric, M.: Pusher-watcher: An approach to fault-tolerant tightly-
coupled robot coordination. In: Proc. ICRA. pp. 464-469 (2002)
8. Grollman, D., Jenkins, O.: Dogged learning for robots. In: Proc. ICRA. pp. 2483—
2488 (2007)
9. Luke, S., Ziparo, V.: Learn to behave! Rapid training of behavior automata. In:
Proc. Adaptive and Learning Agents Workshop, AAMAS. pp. 61-68 (2010)
10. Luke et al, S.: The Flockbots. Open specification. Available at
http://cs.gmu.edu/~eclab/projects/robots/flockbots/ (2014)
11. Martins, M.F., Demiris, Y.: Learning multirobot joint action plans from simultane-
ous task execution demonstrations. In: Proc. AAMAS. pp. 931-938 (2010)
12. Mataric, M., Nilsson, M., Simsarin, K.: Cooperative multi-robot box-pushing. In:
Proc. IROS. vol. 3, pp. 556-561 (Aug 1995)
13. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387434 (November 2005)
14. Parker, L.E.: Heterogeneous Multi-Robot Cooperation. Ph.D. thesis, Massachusetts
Institute of Technology (1994)
15. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of
motor skills by learning from demonstration. In: Proc. ICRA. pp. 763-768 (2009)
16. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, first edn.
(1993)

17.

18.

19.

20.

21.

22.

23.

Raza, S.: On teaching collaboration to a team of autonomous agents via imitation.
In: Proc. IJCAI (2013)

Raza, S., Haider, S., Williams, M.A.: Teaching coordinated strategies to soccer
robots via imitation. In: Proc. International Conference on Robotics and Biomimet-
ics (2012)

Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In:
Proc. AAMAS (2012)

Sullivan, K., Luke, S.: Real-time training of team soccer behaviors. In: Proc.
RoboCup (2012)

Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration on
humanoid robots. In: Proc. Humanoid Robots Learning from Human Interaction
Workshop, HUMANOIDS (2010)

Takécs, B., Demiris, Y.: Balancing spectral clustering for segmenting spatio-
temporal observations of multi-agent systems. In: Proc. ICDM. pp. 580-587 (2008)
Yeasin, M., Chaudhuri, S.: Automatic robot programming by visual demonstration
of task execution. In: Proc. ICAR (1997)

