
Throwing in the Towel:
Faithless Bounty Hunters as a Task Allocation Mechanism

Drew Wicke Ermo Wei Sean Luke
Department of Computer Science, George Mason University

4400 University Drive MSN 4A5
Fairfax VA 22314 USA

{dwicke, ewei, sean}@cs.gmu.edu

Abstract
Bounty hunting has been shown to solve the multia-
gent task allocation problem robustly in noisy and
dynamic scenarios with multiple other agents of un-
known quality. This bounty hunting model does
not require task exclusivity, but does require task
commitment. We examine eliminating this second
requirement, thus allowing bounty hunters to com-
mit to tasks but abandon them later (to jump ship) for
more promising tasks, without telling other agents
of their intent. Bounty hunting agents must use an
adaptive valuation mechanism in order to avoid too
much redundancy in working on tasks. We examine
how one might revise this mechanism in the face
of task abandonment. We compare jumping ship
favorably against other bounty hunting methods and
against methods which are more “auction-like” in
that they permit exclusivity, and we do so under both
static environments and ones in which agents, and
task scenarios, change dynamically.

Introduction
In dynamic multiagent task allocation, some N agents are
tasked with collectively deciding how to divvy up tasks that ap-
pear dynamically. There is no central task assignment system,
and the agents act independently and under certain commu-
nication constraints. Creating a globally efficient mechanism
arising from the task assignment decisions of individual agents
can be difficult. Many distributed methods have been auctions,
where each agent bids for tasks they would prefer to do. When
a task is available, an auctioneer offers it to the agents, who
bid according to their own individual valuations of the task.
After a clearing time has passed, the winning agent is offered
the task, and it is normally exclusive to him.

Dynamic multiagent task allocation was formally described
in Lerman et al. [2006]. The area of multiagent task allo-
cation has seen numerous surveys, which provide detailed
taxonomies of the task allocation literature [Gerkey, 2004;
Khamis et al., 2015; Korsah et al., 2013]. Some early ap-
proaches using markets have been explored as a means to
solve the task allocation problem [Botelho and Alami, 1999;
Pustowka and Caicedo, 2012; Walsh and Wellman, 1998]
as well as multiagent exploration [Simmons et al., 2000;

Zlot et al., 2002]. Current solution methods include cen-
tralized approaches using integer programming and combi-
natorial optimization; and decentralized approaches like auc-
tions, markets, task swapping and bounty hunting [Lagoudakis
et al., 2004; Liu et al., 2014; Liu and Shell, 2012; Nan-
janath and Gini, 2006; Wicke et al., 2015]. Auction methods
such as MURDOCH [Gerkey and Matarić, 2002], CoMu-
TaR [Shiroma and Campos, 2009], traderBots [Dias, 2004;
Jones et al., 2006], and repeated auctions [Nanjanath and Gini,
2010] are frequently studied in task allocation literature. In
some cases adaptation has been explored from the auctioneer
side, [Pippin and Christensen, 2012].

As argued in Wicke et al. [2015], auctions are a strange fit
for this problem for a variety of reasons, but we repeat two
here: because dynamic task allocation requirements usually
resort to outfitting agents with multi-task queues or clearing
times; and because the task exclusivity of an auction makes
it a poor performer in environments with significant noise.
Instead, they proposed using bounty hunting as a more robust
mechanism for dynamic task allocation. This model is loosely
based on the tradition of bounty hunters (the agents) competing
to complete tasks in return for gradually increasing rewards
posted (bounty) by a bail bondsman.

In a bounty hunting model, as tasks become available, they
are assigned a gradually-increasing bounty which an agent
will win if he completes the task before any other agent does.
Normally there is no exclusivity; multiple agents may compete
for the same task. There is however, the notion of commitment:
an agent must commit to a task before he can begin work on it,
an agent may commit to no more than one task at a time, and
once an agent has committed to a task, he may not abandon
that task until either he, or some other agent, has completed it.
If an agent completes a task, he receives a reward equal to the
bounty posted when he originally committed to the task. Note
that this doesn’t cause the lock-in problems that exclusivity
does: if an agent has committed to a task but cannot complete
it, eventually the bounty on the task will rise to the point that
some other agent will jump in and do the task instead.

All this allows agents to work in environments with other
agents of unknown capability, heterogeneity, number, or even
existence. But because agents may work on the same task, a
bounty hunting model can be inefficient unless the agents can
adapt to one another so as to pursue tasks that each is likely to
win. Thus the previous bounty hunting work concerned itself

with adaptive valuation methods to do this. They showed that
with such a valuation method, bounty hunting is competitive
with auction-like methods in static and dynamic environments,
and significantly outperforms them in noisy scenarios such as
unreliable collaborators or unexpectedly bad tasks. Another
possible way to improve efficiency is to allow agents to aban-
don a task (to jump ship, so to speak). This might reasonably
happen when a task turns out to be unexpectedly difficult for
an agent to pursue, or because another, more capable agent
has committed to compete on the task. Unfortunately, our pre-
vious experimental work in jumping ship used a very simple
decision model, and the results were not promising.

In this paper we revisit the notion of abandoning tasks.
We ask: under what circumstances is it actually more effi-
cient to allow agents to give up on a task rather than wait
for another agent to steal it from them? To do this, we first
review the bounty hunting model, as well as issues such as
valuation, exclusivity, and so on. We then propose a much
more sophisticated model to learn when to jump ship. We
then recreate the experimental setup of the original paper, and
compare our jump-ship method to previously studied methods
using the original five experiments. We also examine these
methods in two new scenarios: one where the bounty rate is
non-homogenous among the tasks, and one where certain task
classes do not appear until well after learning has converged.

Our empirical results are surprising. Abandoning tasks is
effective in our two new scenarios, but they were devised to
demonstrate the obvious corner cases where it ought to work
well. However we have found that abandoning tasks also
performs as well as, and usually better than, all other methods
in six out of seven experiments, including our pseudo-auction
method. This suggests that jumping ship can be very effective
in combination with adaptive valuation.

Model Description
We will use roughly the same model and notation as Wicke
et al. [2015]. There is a single bondsman1 and a set of one or
more bounty hunter agents A : {a1,a2, ...,}. There exists a set
of task classes S : {S1,S2, ...}, and for each such task class Si,
there exists a set of possible tasks {Ii,1, Ii,2, ...} of that class
which might appear. We will presume that at most one task of
a given class will be posted at any time. At a given timestep t
there is a set Q(t) of uncompleted tasks available for the bounty
hunters to pursue. These tasks will be known by the integers
1,2, ..., i, Each such uncompleted task i ∈Q(t) has a bounty
bi ∈ R, which unless otherwise specified (as in Experiment 6)
rises at a fixed rate ri = 1.0. When an agent commits to a task
at time t, it establishes a relationship between the agent, the
task it committed to, and the bounty it will receive, which is
fixed to the task’s current bounty at time t. If the agent has not
committed, we denote its current “task” as 2, whose bounty
is unimportant. This relationship is defined as the mapping
Mt : A×{Q(t)∪{2}}→ R.

A bounty hunter may commit to at most one task at a time.
Agents could refuse to commit to any task for some period of
time, but in our model this is generally irrational to do (and

1 The bondsman is fake: several bondsman could post tasks if you
liked, or tasks could post themselves and award their own bounties.

by design, agents do not do this). A bounty hunter may not
work on a task until he has committed to it; when he commits,
this fact is announced to the other agents. Committing does
not imply exclusivity: agents may and can commit to the
same task. In some methods discussed later, an agent must
complete his committed task, or be beaten to its completion by
some other agent, before he can work on a new one. In other
methods, he may abandon unfinished tasks and start working
on new ones immediately. When a bounty hunter successfully
completes a task, he receives a payment from the bondsman.

Exclusivity and the Bounty “Auction” Method In Wicke
et al. [2015] it was argued that auction methods from the
literature can be difficult to adapt to dynamic multiagent allo-
cation problems such as their test problem, but they managed
to test against pseudo-auction-like techniques by modifying
their bounty model to permit exclusivity. We have selected
one such technique for comparison in later experiments here.

In this method, called a “bounty auction” (or simply auc-
tion), when an agent commits to a task, he has exclusive own-
ership of it (no other agents may commit to it). Committing
uses an abstract auction-like approach as follows: at a given
time t, when one or more agents wish to commit, all agents
are queried for their valuations of all the uncommitted tasks
in Q(t). The agent with the highest valuation of a task is paired
with that task, breaking ties randomly, and both the task and
agent are removed from consideration. From the remainder,
we once again pair the highest valuation agent-task pair and
remove them from consideration, and so on until all agents
have been paired to some task. Then any agent who wants to
commit to a task is assigned the task to which he was paired.
This mechanism by its nature incorporates a kind of single-
task queue of sorts: if an agent is working on a task it can still
claim a highly valued task in Q(t).

Adaptive Valuation
Previous work defined two approaches to adaptive valuation,
denoted Simple and Complex, which vary in what information
they consider when making historical valuations of tasks. Both
methods do well in different circumstances. They also used
Bounty Auctions and a Greedy agent for comparisons. Here is
a brief summary.

Simple In the Simple method, the agent does not consider
the other agents in his historical valuation of tasks. Given the
bounty bi for an open task of class i and the agent’s historical
time to completion Ti of tasks in this class, an agent would
value the task as the “bounty per timestep” of the task bi

Ti
, times

the historical probability Pi of completing tasks in this class.
When choosing a task to commit to, the agent would with
some ε probability select a random task, else select the task
I∗← argmaxi ∈Q(t)

bi
Ti

Pi.
The values Ti and Pi start at 1 each, and are updated as

follows. When an agent completes a task to which he has
committed, they are updated as Ti← (1−α)Ti +αt (where t
was the time taken to complete the task) and Pi← (1−β)Pi +
β respectively. If the agent was instead beaten out by some
other agent, then we only update Pi← (1−β)Pi. Finally, after
an agent has completed a task or has been beaten out of one, in

order to make the agent a bit more optimistic about task classes
in general we update all task classes as ∀i : Pi← (1− γ)Pi + γ .

As in the previous paper, we fixed α = 0.1,β = 0.2. The
choice of γ and ε , our exploration parameters, varied depend-
ing on the version of Simple being tried. We tested ordinary
(but good performing) Simple (ε = 0,γ = 0), and a new version
of called SimplePR (ε = 0.002,γ = 0.001). The reasoning be-
hind SimplePR was that it would have exploration properties
similar to SimpleJump (discussed later), and so could serve as
a control better than Simple would.

Complex In the Complex method, the agent considers which
agents beat him out to a task when valuing task performance.
To do this, the Complex method defines Pi,a to be the his-
torical probability of completion of tasks of class i when
agent a has also committed to the same task. The naive
estimate of Pi is the product, over all agents a presently
committed to i, of Pi,a. Thus the agent now chooses a ran-
dom task with some ε probability, else it selects the task
I∗← argmaxi ∈Q(t)

bi
Ti

∏ a presently committed to i Pi,a.
Ti again starts at 1 and is updated exactly as it was in Sim-

ple. Pi,a starts at 1 and is updated as follows. When the
agent completes a task, ∀a presently committed to i : Pi,a ←
(1−β)Pi,a +β . When the agent is beaten out in its task by a
specific agent a∗, we only update Pi,a∗ ← (1−β)Pi,a∗ . Regard-
less, whenever an agent completes a task or is beaten out on
one, we update all Pi,a values to add optimistic exploration, as
∀i,a : Pi,a← (1− γ)Pi,a + γ .

Again, for Complex, α = 0.1,β = 0.2. We selected the
best-performing Complex method from Wicke et al. [2015],
called ComplexP, where ε = 0,γ = 0.001.

Bounty Auctions and Greedy Agents The Auction method
is exclusive, and so no other agents may be working on a given
task. Thus its valuation works like Simple, except that since P
now serves no purpose, we fix (∀i) Pi = 1, β = 0, γ = 0.

We also included the Greedy method from previous work
to serve as a rough upper bound. Here, an agent knows the
true expected time E(Ti) to complete a task of class i, and
just commits to the task I∗← argmax i ∈ Uncommitted Tasks

bi
E(Ti)

.
Only one agent will commit to a task.

Jumping Ship
The task-abandoning method we consider is an extension of
the Simple method, called SimpleJump. A fundamental differ-
ence in our approach from that in previous work is that, upon
task completion an agent receives the bounty posted when he
had committed to the task, but in our jump-ship method the
agent receives the bounty posted when the task is completed.
We will assume that the agent is altruistic in the sense that
he will not drag out the task in order to receive more bounty
(at any rate, this might not be a good strategy as it would risk
another agent beating him out).2

We had also considered a jump-ship version of the Complex
method, but our preliminary work suggested that it was consid-
erably worse than even plain (and poor-performing) Complex.

2 As reward is just a fiction for purposes of valuation, we are not
giving any “unfair advantage” to this method by changing the reward.

We believe this is because the other agents’ frequent task aban-
donment makes it difficult for the agent to build-up sufficient
information about them to determine whether to jump ship.
As a result, we focus on SimpleJump here:

In addition to Ti and Pi, agents also maintain Ri, an esti-
mation of the bounty growth rate for tasks of class i. For
most problems, this is simply set the fixed bounty rate,
that is, Ri = ri (= 1.0). In the Experiment 6, we vary the
bounty rate, and so every single timestep t, Ri is adapted as
Ri← (1−ρ)Ri +ρr(t)i , where r(t)i is the current bounty rate.
ρ is a new parameter, set like α to 0.1.

SimpleJump agents may abandon tasks at any time: but if
one revisits a task, he must start from scratch. Thus an agent
determines at every timestep which task he presently wants
to work on. Specifically, each time step t the agent chooses a
random open task with probability ε , else he chooses a task as:

I∗← argmax
i ∈Q(t)

bi +RiTi

Ti
Pi = argmax

i ∈Q(t)

bi

Ti
Pi +RiPi

That is, instead of using the current bounty bi as the es-
timated reward for task completion, the agent is using the
expected bounty received on task completion, bi +RiTi. If I∗
is different from the current task being worked on, the agent
will abandon the old task and commit to the new one.

While an agent is working on a task, three things could
happen. The agent might complete the task, be beaten out by
some other agent, or decide to abandon the task. In the first
two cases, we follow the rules of Simple to update T and P.
When the agent has abandoned a task, we only update P as:

Pi← (1−β)Pi +β j

where j denotes a small incentive for switching tasks, which
helps exploration. We set j = 0.25 (j = 0.0 performs poorly).
Exploration Strategy Because it relies so heavily on ε to
make decisions about task abandonment, SimpleJump doesn’t
use a fixed value of ε , but instead adapts ε to compensate for
poor T estimates. We implement the Value-Difference Based
Exploration (or VDBE) strategy as described in Tokic [2010]
to revise ε . Every timestep, the agent has either just updated Ti
to a new value T ′i , or has not changed it (so we define T ′i = Ti).
We then update ε as:

ε ← 1
|S|
× 1− e

−|T ′i −Ti |
σ

1+ e
−|T ′i −Ti |

σ

+(1− 1
|S|

)× ε

Recall that |S| is the size of S, the set of task classes. We set
σ = 0.85 so as to not be overly sensitive to changes in the
time to complete tasks. Initially ε = 0.002 in SimpleJump.

Experiments
To test the effectiveness of SimpleJump, we chose to use the
same simulated environment (retrieving balls) as described in
Wicke et al. [2015]. We used four agents, placed in each of the
four corners of the environment. For the first five experiments
the size of the environment was set to 60×40, and an initial
bounty of 100 was posted for new tasks. For the last two exper-
iments the environment was set to 600×400: Experiment 6
used an initial bounty of 50,000, and Experiment 7 used 1000.

Except for Experiment 6, the bounty rate ri was fixed to 1.0.
We defined twenty task classes, each with a mean location uni-
formly randomly chosen somewhere within the environment
between the agents’ corners. The simulation would start with
twenty balls (the tasks, one task per class), which appeared on
the field at random locations using a gaussian distribution cen-
tered at their task class means and with a standard deviation
σ = 5 in each dimension.

As in the previous bounty hunting paper, the agents could
move one grid square every timestep in any of the four car-
dinal directions, and upon completion of a task, any agent
working on the task was teleported back to their home base
(teleportation had little impact on the results and doubled the
simulation speed). Since we now permitted SimpleJump to
abandon tasks, if an agent decided to jump ship, it would be
automatically teleported back to its home base to prevent it
from taking advantage of its current position.

We tested six methods Simple, SimplePR, ComplexP,
Greedy, Auction, and SimpleJump, in seven scenarios. The
first five scenarios are drawn from Wicke et al. [2015]: a static
environment, dynamic collaborators, dynamic tasks, unreli-
able collaborators, and unexpectedly bad tasks. The remaining
two are new domains meant to highlight scenarios where Sim-
pleJump would clearly be preferred. The first such experiment
(Experiment 6), varies bounty rate for different classes. The
second spawns new tasks in the environment, with larger boun-
ties than have been seen before, after valuation has converged.

The first five experiments ran for 200,000 steps, and last
two for 400,000, as they had a larger environment. Each
method/scenario combination had 200 independent trials. The
metric used was the total bounty h(t) at time t. We verified
statistical significance with an ANOVA and Tukey at p = 0.05.

First Experiment: A Static Environment
In the first experiment, we implemented the static scenario,
where a ball of a given task class would appear (at new random
locations) some p∼ uniform(0,19) timesteps after a previous
one had been retrieved by an agent. If two agents completed
the same task simultaneously, the winner would be the one
with the lowest agent ID (1, 2, 3, or 4). This was used as a
baseline test to confirm that SimpleJump was able to adapt in
the simplest case. The results are shown in Table 1.

Results The results showed that the SimpleJump method in
the static case had a lower mean than all other methods (see
Table 1). Also, the SimpleJump method outperformed Greedy
as seen in Table 1. The main feature of the Greedy method
was its knowledge of the exact location of the tasks, so it did
not have to learn this. However, it did not know the order of
tasks or when they would appear, and like the Auction method,
the Greedy agents were committed to their task and the tasks
were exclusive. This experiment reaffirmed previous findings
and illustrated the performance of SimpleJump.

Second Experiment: Dynamic Agents
The second experiment tested a method’s ability to adapt sce-
narios where agents were prone to failure. This time Agent 1
was removed from the game every 30,000 timesteps, and
Agent 2 was removed every 60,000 timesteps. An agent was
reinserted 20,000 timesteps after being removed.

Equivalence Classes Method γ ε Mean
+ ComplexP 0.001 0 3525.45

+ + SimplePR 0.001 0.002 3513.05
+ + Simple 0 0 3449.96
+ Greedy - - 3417.09
+ Auction - - 3400.97

+ SimpleJump 0.001 0.002 3315.54

Table 1: Experiment 1 results, Static Environment, at
time = 200,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

Equivalence Classes Method γ ε Mean
+ SimplePR 0.001 0.002 6531.08

+ + Simple 0 0 6484.09
+ + ComplexP 0.001 0 6471.57
+ + SimpleJump 0.001 0.002 6394.3
+ + Auction - - 6383.78
+ Greedy - - 6354.95

Table 2: Experiment 2 results, Dynamic Agents, at
time = 200,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

Results Table 2 is a bit muddied: most methods fell in the
same statistical significance class, including SimpleJump. The
only significant difference was between SimplePR and Greedy.
However, this result might be a consequence of the partic-
ular cutoff at 2,000 timesteps; SimpleJump would generally
converge to a better value when all agents were again present.

Third Experiment: Dynamic Tasks
Here the distribution of the tasks could change suddenly by
rotating the home bases of the agents. A single rotation (agent
1’s corner became agent 2’s corner, and so on) would occur
every 25,000 timesteps, and a double-rotation would occur ev-
ery 50,000 timesteps: this invalidated the previous knowledge
learned by the agents, requiring rapid adaptation.
Results As shown in Table 3, this was the hardest domain for
SimpleJump; it placed in the last equivalence class, along with
Simple. We also noticed that although SimpleJump was in the
last tier of all the methods, it didn’t spike as high as Auction or
ComplexP (as can be seen in Figure 1), which would suggest
that abandoning tasks might help deal with instant changes.

Fourth Experiment: Unreliable Collaborators
This is the first of two experiments originally meant to show
the advantages of non-exclusivity. Here, two additional unre-
liable collaborators were added to the system (sharing home
bases with agents in the top two corners). These unreliable
collaborators committed to tasks at random and moved 10x
slower than other agents. Obviously, if these agents had exclu-
sive ownership they would slow things down significantly.
Results The results in Table 4 show that SimpleJump again
performed best, and confirm the previous result in Wicke et
al. [2015]: namely, that ComplexP also significantly outper-
forms Auction. We also note that in this setup Simple was in
the same equivalency class as ComplexP. However in previous

SimpleJump Auction ComplexP

0 500 1000 1500 2000
3000

3500

4000

4500

5000

5500

6000

Timesteps (1/100)

T
ot
al
B
ou
nt
y

Figure 1: Experiment 3, Dynamic Tasks (Selected Results),
200,000 steps. Lower values are better. Legends are read from
left to right corresponding to the plots top to bottom.

Equivalence Classes Method γ ε Mean
+ Simple 0 0 4161.35
+ SimpleJump 0.001 0.002 4072.62

+ SimplePR 0.001 0.002 3573.63
+ + Auction - - 3535.79

+ + ComplexP 0.001 0 3476.64
+ Greedy - - 3402.37

Table 3: Experiment 3 results, Dynamic Tasks, at
time = 200,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

work Simple was not included in the experiment. We also
found that Auction performed worst. This is important as it
shows that the ability to abandon tasks does not hinder the
ability to handle unreliable collaborators, but in fact helps.

One interesting result is how fast SimpleJump converges
(similar to Figure 1). It seems likely that the exploration
method used is the reason, but future analysis is still needed.

Fifth Experiment: Unexpectedly Bad Tasks
This experiment, which was also originally designed to demon-
strate the usefulness of non-exclusivity, produced tasks which
with 10% probability were unexpectedly “bad” for a randomly
selected agent. By “bad” we meant that the agent would be
10x slower to perform that task than normal.

Results Again, SimpleJump performed the best, as seen in
Table 5. The ComplexP method and SimplePR methods per-
formed equivalently, and Greedy and Auction performed worst.

Sixth Experiment: Variable Bounty Rate
The final two experiments were designed to isolate and make
evident the need for task abandonment, and so show the ef-
fectiveness of SimpleJump. Thus, in these experiments we
increased the environment size to 600 × 400 to make tasks
longer and thus give SimpleJump more opportunity to give up.

Experiment 6 was motivated by the fact that the bounty
rate can increase by more than 1.0. This might happen if

Equivalence Classes Method γ ε Mean
+ Auction - - 3779.99
+ Greedy - - 3742.71

+ SimplePR 0.001 0.002 3532.85
+ + ComplexP 0.001 0 3472.55
+ Simple 0 0 3438.33

+ SimpleJump 0.001 0.002 3281.78

Table 4: Experiment 4 results, Unreliable Collaborators, at
time = 200,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

Equivalence Classes Method γ ε Mean
+ Greedy - - 7293.69
+ Auction - - 7014.43

+ Simple 0 0 6300.30
+ SimplePR 0.001 0.002 5264.39
+ ComplexP 0.001 0 5010.31

+ SimpleJump 0.001 0.002 4609.13

Table 5: Experiment 5 results, Unexpectedly Bad Tasks, at
time = 200,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

the particular task suddenly becomes more urgent than others.
For this experiment we set the default bounty to 50,000, and
each task class’s bounty increment rate was chosen uniformly
randomly over the interval [1,50], keeping the conservative
rule established in Wicke et al. [2015], which relates bounty
rates with initial bounty values.

Results The results for this experiment were intriguing and
are listed in Table 6. Note that the means are higher due to
the higher initial bounty. The Auction method is in the same
equivalency class as Simple, but is significantly better than
ComplexP. This appears to be a scenario where the Auction
method does relatively well. Even so, SimpleJump still out-
performs it and all other approaches. We think that part of the
reason that SimpleJump is good in this domain is that it can
rapidly identify fast-growing bounties and shift to their tasks.

We note that in Figure 2 SimpleJump does not have as large
of an initial spike in the total bounty as compared to either
the ComplexP method or the Auction method. Furthermore,
SimpleJump in Figure 2 lacks a second, smaller spike which
is present in the other methods. We hypothesize that incor-
porating the learned bounty rate into the decision function
SimpleJump avoids the second spike. The longer runlength
(400,000 timesteps), reveals Auction’s gradual decline.

Seventh Experiment: Emergent Tasks
In our final experiment, in addition to the standard 20 task
classes, we added four additional emergent task classes. A task
from an emergent class appears only after 20,000 timesteps,
then iteratively reappears 20,000 timesteps after it has been
completed. Unlike the regular task classes, the emergent task
classes have an initial bounty of 2,000. These type of emer-
gent tasks are meant to simulate a scenario where some very
important but infrequent tasks must be done. This would
benefit from agents who abandon their existing tasks to handle
emergent ones as soon as possible.

ComplexP Auction SimpleJump

0 1000 2000 3000 4000
1.0×106

1.2×106

1.4×106

1.6×106

1.8×106

2.0×106

2.2×106

Timesteps (1/100)

T
ot
al
B
ou
nt
y

Figure 2: Experiment 6, Variable Bounty Rate (Selected Re-
sults), 400,000 steps. Lower values are better. Legends are
read from left to right corresponding to the plots top to bottom.

Equivalence Classes Method γ ε Mean
+ SimplePR 0.001 0.002 1.49×106

+ + ComplexP 0.001 0 1.47×106

+ + Simple 0 0 1.44×106

+ + Greedy - - 1.43×106

+ Auction - - 1.42×106

+ SimpleJump 0.001 0.002 1.34×106

Table 6: Experiment 6 results, Variable Bounty Rate, at
time = 400,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

Results This experiment again demonstrates the value of
SimpleJump. As shown in Table 7 SimpleJump does signifi-
cantly better than all other methods, and again Auction does
better than ComplexP and SimplePR.

Figure 3 illustrates that SimpleJump can easily handle emer-
gent tasks than the other methods, as the spikes in the graph
are not as pronounced. Also, notice that although the methods
spike when the emergent tasks are present, as time increases
the spikes decrease in height. This indicates that the other
methods are taking a much longer time to learn how to handle
the emergent tasks, since they show less frequently compared
to other tasks. However, SimpleJump can make the right de-
cision solely based on the bounty value of these tasks, which
suggests why the spike height of the bounty method is shorter.

Conclusions and Future Work
We have shown that bounty hunting can be improved by elimi-
nating task commitment. We compared this approach, called
SimpleJump, against an auction-like mechanism and various
commitment-based bounty methods, and demonstrated that
it performed statistically significantly best in five of seven
experiments, and fell in the top significance tier in one experi-
ment. Only in one scenario did it perform suboptimally. The
five strong-performing experiments included not only meth-
ods meant to highlight the advantages of SimpleJump, but also
several for which we did not expect it to fare well.

ComplexP Auction SimpleJump

0 1000 2000 3000 4000
40000

50000

60000

70000

80000

Timesteps (1/100)

T
ot
al
B
ou
nt
y

Figure 3: Experiment 7, Emergent Tasks (Selected Results),
400,000 steps. Lower values are better. Legends are read from
left to right corresponding to the plots top to bottom.

Equivalence Classes Method γ ε Mean
+ ComplexP 0.001 0 46274.6
+ SimplePR 0.001 0.002 45777.7

+ Simple 0 0 43878.2
+ Greedy - - 43675.7
+ Auction - - 43515.9

+ SimpleJump 0.001 0.002 42442.3

Table 7: Experiment 7 results, Emergent Tasks, at
time = 400,000. Lower means are better. Equivalence Classes
show statistically insignificant differences between methods.

We think that SimpleJump does not do well in Experiment 3
because its exploration strategy has failed. In Figure 3 the Sim-
pleJump method does not spike as high, but the method also
does not converge back to the level of ComplexP or Auction.
This seems to be due to slow exploration, which also occurs
with Simple, as was illustrated in Figure 3 of Experiment 3 in
Wicke et al. [2015]. Still, we conclude that jumping ship often
outperforms exclusive (pseudo-auction) methods. Never did
an exclusive method outperform all other bounty techniques.

Our present methods assume no collaboration among the
agents. Since bounty hunting allows multiple agents to work
on the same task, it seems natural to examine coalitions as a
straightforward extension for future work. Along the same
lines we are also interested in bail bondsman hierarchies,
whereby a bail bondsman may act as a broker for agents (or
other bondsman) in his sub-group, filtering useful tasks for
them to work on. We may also look into more promising ex-
ploration strategies. SimpleJump relies heavily on its various
exploration strategies to perform well, and updates them very
rapidly. We think that it is critical to understand how explo-
ration effects the convergence of the system and how effective
it can be when system dynamics have suddenly changed.

Acknowledgments
The work presented in this paper is supported by NSF NRI
Grant 1317813.

References
[Botelho and Alami, 1999] S. C. Botelho and R. Alami. M+:

a scheme for multi-robot cooperation through negotiated
task allocation and achievement. In IEEE International
Conference on Robotics and Automation, volume 2, pages
1234–1239, 1999.

[Dias, 2004] M. Bernardine Dias. Traderbots: A New
Paradigm for Robust and Efficient Multirobot Coordination
in Dynamic Environments. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 2004.

[Gerkey and Matarić, 2002] B. P. Gerkey and M. J. Matarić.
Sold!: auction methods for multirobot coordination. IEEE
Transactions on Robotics and Automation, 18(5):758–768,
2002.

[Gerkey, 2004] B. P. Gerkey. A formal analysis and taxonomy
of task allocation in multi-robot systems. International
Journal of Robotics Research, 23(9):939–954, 2004.

[Jones et al., 2006] E. Gil Jones, B. Browning, M. Bernar-
dine Dias, B. Argall, M. Veloso, and A. Stentz. Dynami-
cally formed heterogeneous robot teams performing tightly-
coordinated tasks. In IEEE International Conference on
Robotics and Automation, pages 570–575, 2006.

[Khamis et al., 2015] Alaa Khamis, Ahmed Hussein, and
Ahmed Elmogy. Multi-robot task allocation: A review
of the state-of-the-art. In Cooperative Robots and Sensor
Networks 2015, pages 31–51. Springer, 2015.

[Korsah et al., 2013] G. Ayorkor Korsah, A. Stentz, and
M. Bernardine Dias. A comprehensive taxonomy for multi-
robot task allocation. International Journal of Robotics
Research, 32(12):1495–1512, 2013.

[Lagoudakis et al., 2004] M. G. Lagoudakis, M. Berhault,
S. Koenigt, P. Keskinocak, and A. J. Kleywegt. Simple
auctions with performance guarantees for multi-robot task
allocation. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, volume 1, pages 698–705,
2004.

[Lerman et al., 2006] Kristina Lerman, Chris Jones, Aram
Galstyan, and Maja J Matarić. Analysis of dynamic task al-
location in multi-robot systems. The International Journal
of Robotics Research, 25(3):225–241, 2006.

[Liu and Shell, 2012] Lantao Liu and Dylan Shell. A dis-
tributable and computation-flexible assignment algorithm:
From local task swapping to global optimality. In Proceed-
ings of Robotics: Science and Systems, 2012.

[Liu et al., 2014] Lantao Liu, Nathan Michael, and Dylan
Shell. Fully decentralized task swaps with optimized lo-
cal searching. In Proceedings of Robotics: Science and
Systems, 2014.

[Nanjanath and Gini, 2006] M. Nanjanath and M. Gini. Dy-
namic task allocation for robots via auctions. In Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 2781–2786, 2006.

[Nanjanath and Gini, 2010] Maitreyi Nanjanath and Maria
Gini. Repeated auctions for robust task execution by a

robot team. Robotics and Autonomous Systems, 58(7):900–
909, 2010.

[Pippin and Christensen, 2012] Charles E. Pippin and Henrik
Christensen. Learning task performance in market-based
task allocation. In Proceedings of the 12th International
Conference on Intelligent Autonomous Systems, volume 2,
pages 613–621, 2012.

[Pustowka and Caicedo, 2012] A Pustowka and E.F. Caicedo.
Market-based task allocation in a multi-robot surveillance
system. In Robotics Symposium and Latin American
Robotics Symposium, pages 185–189, 2012.

[Shiroma and Campos, 2009] P. M. Shiroma and M. F M
Campos. Comutar: A framework for multi-robot coor-
dination and task allocation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4817–
4824, 2009.

[Simmons et al., 2000] R. Simmons, D. Apfelbaum, W. Bur-
gard, D. Fox, M. Moors, S. Thrun, and H. Younes. Co-
ordination for multi-robot exploration and mapping. In
Proceedings of the AAAI National Conference on Artificial
Intelligence, 2000.

[Tokic, 2010] Michel Tokic. Adaptive ε-greedy Exploration
in Reinforcement Learning Based on Value Differences. In
Proceedings of the 33rd Annual German Conference on
Advances in Artificial Intelligence, pages 203–210, 2010.

[Walsh and Wellman, 1998] William E Walsh and Michael E
Wellman. A market protocol for decentralized task alloca-
tion. In International Conference on Multi Agent Systems,
pages 325–332. IEEE, 1998.

[Wicke et al., 2015] Drew Wicke, David Freelan, and Sean
Luke. Bounty hunters and multiagent task allocation. In
International Conference on Autonomous Agents and Mul-
tiagent Systems, 2015.

[Zlot et al., 2002] Robert Zlot, A. Stentz, M. Bernardine Dias,
and Scott Thayer. Multi-robot exploration controlled by
a market economy. In IEEE International Conference on
Robotics and Automation, 2002.

