Do Multiple Trials Help Univariate Methods?

Daniel Rothman
Dept. Computer Science
George Mason University
4400 University Dr., MSN 4AS5
Fairfax, VA 22030
drothmal @gmu.edu

Abstract—Cooperative Coevolutionary Algorithms (CCEAs)
and Univariate Estimation of Distribution Algorithms (Univariate
EDASs) are closely related algorithms in that both update marginal
distributions/populations, and test samples of those distribu-
tions/populations by grouping them with collaborators drawn
from elsewhere to form a complete solution. Thus the quality
of these samples is context-sensitive and the algorithms assume
low linkage among their variables. This results in well-known
difficulties with these methods. While EDAs have commonly
overcome these difficulties by examining multivariate linkage,
CCEAs have instead examined basing the fitness of each marginal
sample on the maximum of several trials. In this study we
examine whether multiple-trial CCEA approach is really effective
for difficult problems and large numbers of subpopulations; and
whether this approach can be used to improve Univariate EDAs
as well.

I. INTRODUCTION

In this paper we explore the effects of multiple trials on the
effectiveness of univariate or marginal evolutionary algorithms.
By this we mean those algorithms which do not search for
single candidate solution but rather search, in parallel, for
separate parts of the solution, and test those parts by combining
them with one another. The two most common examples of
this are Cooperative Coevolutionary Algorithms (CCEAs) and
Univariate (or Marginal) Estimation of Distribution Algorithms
(EDAs).

Both CCEAs and Univariate EDAs are designed for chal-
lenging, high dimensional problems for which linkage among
variables is presumed to be low. Their approaches are of course
very different. CCEAs, like traditional EAs, develop popula-
tions of samples, one for each subsolution, while Univariate
EDAs maintain marginal distributions which estimate these
populations. However the two methods are very similar in how
they update these “populations”: by taking samples from each
of the populations (or distributions) and testing them together
with samples from other populations (or distributions) to form
complete solutions.

This similarity results in similar game-theoretic pathologies:
both CCEAs and Univariate EDAs tend to converge to subopti-
mal solutions because each population, or distribution, can only
see its own projection of the problem. In the Univariate EDA
realm the solution to this problem has generally been to move
to multivariate EDAs which consider joint distributions among
variables. CCEAs allow more general solution representations

Sean Luke
Dept. Computer Science
George Mason University
4400 University Dr., MSN 4AS5
Fairfax, VA 22030
sean@cs.gmu.edu

Keith Sullivan
Dept. Computer Science
George Mason University
4400 University Dr., MSN 4A5
Fairfax, VA 22030
ksulliv2@cs.gmu.edu

and so cannot really do this: instead CCEA research has tended
to set the fitness of a sample to the maximum over some [N
trials rather than a single trial. At the limit this has been
shown to guarantee reduction of the CCEA to something more
approximating an EA [1].

In other work [2] we have examined the performance of
various CCEA parameters for hard problems. Here we continue
this work by examining the effect of multiple trials on CCEAs
and on Univariate EDAs to see if this effect is significant for
CCEAs and if it might be transferred to the Univariate EDA
case as well. To date EDAs have rarely made use of mechanisms
employing multiple trials. Research in EDAs has been focused
on explicit modeling of multivariate joint distributions. In this
paper we also explore the idea of applying multiple trials
to existing univariate EDAs as an alternative to multivariate
EDA:s.

Our approach to computing fitness assessment from multiple
trials is a procedure we call shuffling, which proved easily the
best approach in our previous CCEA work for nontrivial/non-
separable functions. In CCEAs this approach is essentially
the selection of collaborators without replacement: each sub-
population is shuffled randomly, then collaborators from each
subpopulation are paired off. In a Univariate EDA the situation
is similar: we sample M times from each distribution, then treat
these samples essentially as “subpopulations” in the CCEA
shuffling case. The details of the methodology are discussed
in Sections IV for CCEAs, and V for Univariate EDAs.

We test these methods using a variety of target functions,
shown in Table I. We chose hard, high dimensional, real-valued
target functions to provide a challenging testbed. The CCEA
methods were tested with a subset of these methods, consistent
with previous work. We then expanded on them to investigate
the Univariate EDA situation more widely.

In the paper we begin with related work and description of
these target functions, then move on to CCEA experiments,
then finally to the Univariate EDA experiments.

II. RELATED WORK

Estimation of Distribution Algorithms (EDAs) replace the
traditional evolutionary computation population with a statisti-
cal distribution of an infinite population. At each generation,
individuals are generated from this distribution, and their
fitnesses are used to update the distribution such that high

Problem Description Bounds

Rosenbrock* M = 24)? 4 100(zi4q — 22)? —2.048 < z; < 2.048
Rastrigin®* 10n >_" | 22 — 10 cos(2mz;) —-5.12 < z; <5.12
Schwefel* Y7 —z; sin< 7] ~512.03 < z; < 511.97

3
Weierstrass 10 (% noL 2% cos(2m3k (z; +1/2)) — fo) + fren(Z) + fopt —-5<z;<5
z; = RyAY10OR Ry (Tos: (T — 37)))
Gallagher’s Gaussian 101-me Peaks Tosz <10 — max}%} wie_ﬁ(f‘_ydm)TRTC'iR(‘"E_y—(l))> + %fpen(f) + fopt —-5<g; <5

v, J10 i=1
CTL1485E i>1
§O =
Rotated Rosenbrock* rosenbrock(R.(&))
Rotated Rastrigin* rastrigin(R(Z))
Rotated Schwefel* schwefel(R(Z))

vector of length n uniformly drawn from [—4, 4]™

i=1

vector of length n uniformly drawn from [—4.9,4.9]" > 1

—2.048 < z; < 2.048
—512 < z; < 5.12
—512.03 < z; < 511.97

TABLE I
TEST PROBLEMS USED IN THE STUDY.

* indicates a minimization problem: the study negates all minimization problems to make them maximization problems for consistency. The input vector to
each function if &, and is of length n. R is an orthonormal rotation matrix, computed as described in Section III. A is a diagonal matrix with constant entries.
C; is a diagonal matrix with random entries ¢ € [0, 1]. Tb; is a small oscillatory perturbation. fopr is a small x offset for the optimum value and fpen is an

edge penalty function.

fitness individuals are more likely to be generated in the future
(and in some cases, low fitness individuals are generated less
often). A simplifying approach to the very difficult task of
generating a high-dimensional joint distribution is to break the
joint distribution into separate univariate distributions for each
gene. Implementations include Univariate Marginal Distribution
Algorithm (UMDA) [3], the Compact Genetic Algorithm (CGA)
[4], and Population Based Incremental Learning (PBIL) [5].
These are often referred to as univariate or marginal EDAs.

By projecting the high dimensional distribution into mul-
tiple marginal distributions, univariate EDAs ignore linkages
between genes, resulting in potentially poor performance on
non-separable problems. To remedy this, various multivariate
EDAs have been proposed that include information about
the linkages between genes. These multivariate EDAs repre-
sent the linkages explicitly as joint distributions in various
ways. The extended compact GA (ECGA) [6] establishes
joint distributions among subsets of variables. The Iterated
Density Estimation Evolutionary Algorithm (IDEA) [7] builds
explicit conditional distributions across the variable space. The
Bayesian Optimization Algorithm (BOA) [8], and Hierarchical
BOA (hBOA) [9], represent linkages between variables as
Bayesian networks, with various compact local representations
of joint distributions.

Recent theoretical connection has been established between
univariate EDAs and CCEAs [10] which opens up the possi-
bility of using ideas from cooperative coevolution to improve
univariate EDAs. The CCEA community has long understood
that these (essentially identical) performance difficulties are due
to certain game-theoretic anomalies arising from the multiple
optimization procedures occurring in parallel along each
margin [11]. Rather than establish multivariate relationships,
CCEA theory instead suggests assessing individuals using
the maximum over multiple trials with other collaborating
individuals to form joint solutions [1]. In basic test problems,

it has been shown that performance improves with more trials,
and with sufficiently large numbers of trials the CCEA reduces
to a kind of an EA (lacking the pathological conditions). Trials
are expensive, however, leading to various approaches which
maintain archives of high-quality collaborators [1], [12], [13]
in order to reduce the number of trials necessary to assess
fitness well. The EDA literature rarely attempts this approach,
but the connection between the two suggests that it might be
a viable alternative to moving to multivariate algorithms.
Most of these results have been with regard to a small
number of subpopulations (usually two). But recent trends in
CCEAs have increased the number of subpopulations to ten
[14], [15], thirty [16], or even one thousand [17]. Our recent
work [18] has recently shown that for complex problems, large
numbers of subpopulations are indeed often preferable.

III. TEST FUNCTIONS

Table I shows the problems used in this paper, chosen for
their different traits:

o Rastrigin, Schwefel, Rosenbrock, Weierstrass and Gal-
lagher’s Gaussian 101-me Peaks (hereafter GG101me)
are standard functions. Weierstrass and Gallagher’s may
be both found in the Black Box Optimization Baseline
2009 (BBOB 09) [19]. Note that Rastrigin is additively
separable.

o Rotated Rastrigin, Rotated Schwefel and Rotated Rosen-
brock are randomly rotated versions of these functions,
in order to increase the linkage between variables. A
single fixed m X m rotation matrix R is used for all
problems. The rotation matrix was generated in a fashion
similar to that described in [20]: first, all entries in R
were produced using random standard-normal Gaussian
noise. Then for ¢ from 1 to m, each row R,; was decreased
by >, (R; R;j)R;, then renormalized.

Target Function | Subpops Trial Performance (Best — Worst)
2 4.11.1212242828444888.1
8 8141211.18242223844488
Rosenbrock
32 8.14.12182421.122844488
128 8.14.18221421.122844488
2 1.1 2.1 4181 428222448488
.. 8 8141211.1824222844488
Rastrigin
32 814121821.14222844.4 8.8
128 8.14.121821.1422284 4.4 8.8
2 1.1 21 4.18122428244848.8
8 1.1 2.1 4181224282 44 84 88
Schwefel
32 1.1 2.1 814122824284 4.4 88
128 1.1 8.1 214142228284 4.4 88
2 2.1 1142228284 4488 4.18.1
.. 8 2.11.14222844482884.18.1
Rotated Rastrigin
32 2111422284 4482884181
128* 4.12.11.1828.14222844488
2 4.2 2284441.188824.18.121
8 221144812142 4.1 88 84 8.2
Rotated Schwefel
32 11224488 21428441828.1
128* 442141112284 88428281

TABLE II
SUMMARY OF CCEA CONVERGENCE EXPERIMENTS.

Trials are indicated with k.d where k is the number of trials, and d is the

divisor of the subpopulation size. Treatments are ordered from best to worst.

Overbars indicate groups with statistically insignificant differences. * Indicates
runs which were doubled in number of generations in order to determine
convergence.

Rastrigin, Schwefel, Rosenbrock, Rotated Rastrigin, and
Rotated Schwefel were used in the CCEA study. We then

expanded on this study to add the Rotated Rosenbrock,

Weierstrass, and Gallagher’s functions to the Univariate EDA
study.

IV. COOPERATIVE COEVOLUTIONARY ALGORITHMS

Our first goal was to determine if, and to what degree,

multiple trials per fitness evaluation really benefited CCEAs
for difficult and high-dimensional problems.

We used a CCEA with parallel update timing (that is, all
subpopulations would be updated each generation). Breeding

used tournament selection (of size 2), then one-point crossover,

then Gaussian mutation (o = 0.01), reselecting mutation until
the new gene was within valid gene boundaries. The CCEA was
tested using five problems, each with floating-point genotypes

of size 128. Those problems were Rosenbrock, Rastrigin,

Rotated Rastrigin, Schwefel, and Rotated Schwefel, as described
in Table I. We gave each problem a fixed budget of N = 10242
trials, except in certain situations where we doubled the trials
to examine convergence properties. We set a base population
size p = 1024 and a base number of generations g = 1024.

rastrigin 128

A/AAI/AAAAAeAAAAAAAAAAAAAAAAAA

;****Q*******************

fo/o/ooooo/oooooooooooooooooooo

0/0006/0000000000000000000000
TTT TT]
0 8 20 32 44 56 68 80 92 104 120
Trials x 4096

-60 -40 -20
|

Fitness

-100

rosenbrock 128

poty by P EEFEFFEIIIFE

xgxﬁgxxxxx Y X x X X X X X X X X X X XX
AA/AfAAAAAHAAAAAAAAAAAAAAAA
/

-10
|

v
*-;*****f******************

<>ofooooo9000000000000000000

Fitness
-20
|

-30
|

-40
|

20 32 44 56 68 80 92 104 120
Trials x 4096

schwefel 128

G A PPN R R

Pars i & ——
iz §5§52!X!!!5555!!;.--...

*Xii%éé%étttsttaaot

00000*""00’

Fitness
48000 50000 52000 54000

I O B O O O
20 32 44 56 68 80 92 104 120
Trials x 4096

Fig. 1. Results for CCEA Experiment, Part I (128-subpopulation results shown).
Legend: — 1.1 (2.1 A22 441 x42 ¢044 v81 K82 x84 ¢88

Cooperative coevolution entails several parameters beyond
standard evolutionary algorithms. In previous work [2] we
examined the performance of these parameters, and our choices
here are partly informed by them.

Update Timing: Should subpopulations be updated and
bred in parallel or sequentially? CCEAs traditionally have been
sequential, but we found that parallel update timing performs
better (echoed by [21]).

Collaboration Scheme: How should collaborators be
chosen? Traditionally CCEAs have used the best-performing
previous individuals as collaborators, but we found that, except
for very simple and linearly separable problems, random col-
laborators via shuffling performed better. We perform shuffling
with parallel update timing as follows. Each generation the
order of individuals in each subpopulation is randomly shuffled.
Then for each ¢, individuals indexed ¢ from each subpopulation

rotated-rastrigin 128

o
o
o _|
N
|
1] -
1%
[l
S o
L 3 -
]
8 —v—v—v—v—v—v*V‘V/
S |
T T T T T T T T T T T T T T T T1
0 8 136 152 168 184 200 216 232 248
Trials X 4096
rotated—schwefel 128
o
o
o
o
o™
o 8
0 o
g g
[ind
o
o
o
o
—

104

120

136 152 168 184 200 216 232 248

Trials X 4096

Fig. 2. Results for CCEA Experiment, Part II (128-subpopulation results only shown). The Rotated Rastrigin and Rotated Schwefel problems were run twice as
long (only necessary for 128 subpopulations) to examine convergence. Legend: — 1.1 (O 2.1 A 22 4+ 41 x42 044 v81 K82 x84 ¢ 88

were tested together in a trial. Shuffling requires fewer trials
per generation than other methods (the exact number is equal
to the subpopulation size s). This permits different ways to
distribute a budget of NV trials. In our previous work, two such
approaches performed particularly well, slightly modified here:

« Fix the subpopulation size s to p for each subpopulation,
regardless of the number of subpopulations (¢), and set
the generations to g to keep the total trials to /V. This had
larger subpopulation sizes and shorter generations. We
called this Parallel Shuffled Pops or PP, and found that it
was favored by Rosenbrock, Rastrigin, Rotated Rastrigin,
and Schwefel.

o Fix the total population size to p x 2: each of ¢ sub-
populations would thus be of size s = 2 x p/q. Set the
generations to g/2 x ¢, for a total of N trials. This had
smaller subpopulation sizes and longer generations. We
called this Parallel Shuffled Gens or PG, and found that
it was favored by Rotated Schwefel.

Note that the two strategies (PP and PG) diverged fairly
radically, in terms of distribution of trials, when the number
of subpopulations was high: PP would produce large total pop-
ulation sizes, while PG would produce very long generations.

Number of Subpopulations: We found that more subpop-
ulations generally results in more variance of performance:
good-performing updating timing and collaboration scheme

collaborations will perform even better, while poor-performing
ones will perform even worse. This trend generally continues
clear to 128 subpopulations (one subpopulation per gene),
essentially in the realm of an EDA. Thus the most important
result would be the 128 subpopulation result.

CCEA Experiments

We asked the following question: what happens when you
set the fitness of an individual not based on a single trial but
on the maximum over some k trials? We examined 1, 2, 4,
and 8 trials per fitness assessment, performing multiple trials
by simply shuffling multiple times.

To retain NN total trials, we had to either reduce the
subpopulation size, the number of generations, or both. This
led to a second question: if you wish to increase evaluations,
which should we reduce? We allocated these reductions using a
subpopulation divisor (d). For two trials, we tried either halving
the subpopulation size (“2.2”, d = 2) or the generations (“2.1”).
For four trials, we quartered the subpopulation size (“4.4”,
d = 4), quartered the generations (“4.1”), or divided each in
half (“4.2”). For eight trials, we cut the subpopulation size to
1/8 (“8.8” d = 8), or the generations (“8.1”), or quartered the
subpopulation size and halved the generations (“8.4”), or the
opposite (“8.2”).

We tested with 2, 8, 32, and 128 subpopulations, and
performed 100 individual runs per treatment. Statistical signifi-

-10000 -8000
-8000

4
—1q000

-12000

-
_I:I]___| o
---[(]--4

function value

-16000 -14000
|__
|__
D]
-16000
|___

00

-14000

-18000
-18000

-1200
-1200

-1250
-1250

SH
=
=

|
<

-1300
-1300

8
8

-1350
-1350

-1400
-1400

-1450
-1450

1 2 4 10 1 2] 10
collaborators collaborators

(a) Rotated Rosenbrock (b) Rosenbrock

1 2 4 10 1 2 4 10
collaborators collaborators

(c) Rotated Rastrigin (d) Rastrigin

14000
14000

3 3 o 8
L O o
ERsE o O S - O
S - — |
5 e o) 1 ‘6’ -
3 O ,
c &8 e
gl o & Bl L ==t
g1 - g1 i
— - -

o

=T T

8000
8000

-38
-23.t

-24.0
s

-40

-245
s

o
8

-42
L

@)
o
—_
|
|
|
I
|
|

-25.0
N

-44
-25.5
N

-46

(@]
@ o
1 (@]

T 1
| | o .
- |] £ © 4
N ‘T‘ o
2
T— 2 % T ¢ % © ' — T 3 % D I 2 & D
collaborators collaborators collaborators collaborators
(e) Rotated Schwefel (f) Schwefel (g) Weierstrass (h) GG101me

Fig. 3. EDA Experimental Results at 100,000 Evaluations

cance was tested using ANOVAs with a Bonferroni correction
of p =1/400 to guarantee a p-value of 1/20 for the CCEA
experiments as a whole.

Some techniques take longer to converge, but ultimately
produce a better result. We were interested in both situations
though the second is the only one easily quantifiable. We began
by performing the runs until the runs had largely converged.
For the Rotated Schwefel and Rotated Rastrigin, this required
doubling the generations as shown in Figure 2.

We had predicted that multiple trials would be of benefit
particularly for problems with high degree of linkage (such as

the rotated problems). But our results were somewhat otherwise.

Convergence Results: Table II shows the convergence
results of these runs: the crucial lines are those with 128
subpopulations. As can be seen, for Rosenbrock and Rastrigin,
it was clearly advantageous to perform more trials and to
distribute those trials such that subpopulation sizes were kept
as high as possible (that is, 2.1, 4.1, and 8.1). Schwefel was
similar, but in all cases a single trial (1.1) was as good as any
other.

The rotated problems, where we had expected more trials
to be helpful, didn’t show this as much as expected. Rotated

Rastrigin preferred multiple trials with large subpopulation
sizes (4.1, 2.1), but a single trial (1.1) was not far behind.
Interestingly, the results for < 128 subpopulations placed 4.1
and 8.1 dead last; 128 resulted in a big jump for them.

Rotated Schwefel preferred a different technique (PG versus
PP). As expected, methods preserving generation lengths (4.2,
2.2, 4.4, etc.) often tended to perform better than they had in
the past. However, 1.1 was crucially often just as good as any
other.

Time to Convergence: Convergence is one thing: but what
if your budget is less than a million trials? We wondered what
techniques took longer to converge.

Figures 1 and 2 show the results for 128 subpopulations:
other figures are similar. These figures made it very clear:
methods with more trials per evaluation took longer, often much
longer, to converge, if they maintained larger subpopulation
sizes. Specifically, the slowest converging methods were
(starting with the slowest) 8.1, 4.1, 8.2, and usually 2.1 and
4.2. In contrast, 1.1 was almost always one of the very fastest
converging methods. The only methods which were generally
as fast as 1.1 (or in a few cases faster) were 8.8, 4.4, and 2.2.
These methods maintained long generation lengths.

Many such techniques simply have a slower C-like curve:
but Rotated Rastrigin consistently produced S-like curves
which were essentially shifted in time, making the convergence
differences very clear.

In short: methods with more evaluations and which main-
tained large subpopulation sizes often performed best. But they
took a long time, sometimes a very long time, to converge
to those best-performing results. Surprisingly, in the rotated
problems multiple evaluations were less helpful.

V. UNIVARIATE ESTIMATION OF DISTRIBUTION
ALGORITHMS

Following the lines of our CCEA experiments, we wanted to
determine what happens when the univariate EDA distributions
are updated based on multiple samples rather than a single
sample.

Our EDA of choice was PBIL [5], modified to operate on
real-valued functions. We used a mixture of three Guassians
(described below) to initialize each marginal distribution, per
[22]. In addition, we added shuffling in a manner similar to
the CCEA experiments, as described later.

The basic PBIL operates as follows:

for each of g generations do
for each of p candidate solutions do
for each variable do
Sample from the distribution

Evaluate the candidate solution
Select highest valued candidate solutions

1:

2

3

4

5: Assemble candidate solution
6

7

8 Update variable distributions

In each generation, PBIL generates a total of p individuals as
follows: First, it generates p samples from the distribution for
each variable. For each ¢ from 1 to p, it then groups together the
sample indexed ¢ from each variable and forms an individual.
All p individuals are then assigned a fitness value. The least fit
individuals are discarded via truncation selection (we discarded
2/3 of them). We updated the distribution for each variable
using the variable value from each of the remaining individuals.

Real-valued Extensions via Mixture of Gaussians: The
basic form of PBIL was originally designed for discrete
functions. The extension to real-valued functions alters the
nature of the variable used, and the distribution used to model
the variable. In this implementation, we used initialized the
distribution for each variable using a mixture of three Gaussians
providing coverage across the full range of the variable .
At each generation, each variable’s distribution was updated
following [22].

Shuffling: PBIL is amenable to shuffling in a fashion
reminiscent of our approach to CCEAs. Ordinarily each of the
p samples of each variable would be used in a single trial. But
we can provide multiple trials per sample, reducing the number
of samples accordingly. To implement shuffling, we modified

'For a range (a, b), our initial distribution was N (a+(b—a)/¢p, (b—a)/4),
NOb—-(b—a)/p,(b—a)/4), and N(a + (a+b)/2,(b— a)/3), where ¢
is the golden mean ~ 1.61803.

Target Function Number of Trials
Rotated Rosenbrock 1 2 4 10
Rosenbrock 1 2 4 10
Rotated Rastrigin 1 2 4 10
Rastrigin 1 2 4 10
Rotated Schwefel 10 4 2 1
Schwefel 10 2 4 1
Weierstrass 4 2 10 1
Gallagher’s Gaussian 101-me Peaks 1 2 4 10
TABLE III

SUMMARY OF EDA EXPERIMENTS.

The treatments are ordered in decreasing performance. Overbars indicate
statistically insignificant differences.

the basic PBIL algorithm so that it reduces the number of
samples generated per variable by a factor d.

This was done as follows. Each generation PBIL must
generate a total of p individuals. To do so, we generated s
samples from each variable. Then d = p/s times we performed
the following two steps. First, for each variable, we randomly
shuffled the order of its s samples. Second for each i from
1 to s, we grouped together the sample indexed ¢ from each
variable to form an individual. All told we generated p = d X s
individuals.

PBIL would then test all p individuals. Each sample would
be tested in d trials as a member of some individual. PBIL
would then proceed as usual.

Because each sample could appear in d candidate solutions,
a sample represented in multiple highly fit candidate solutions
might be included in the update sample set as many as d times.
If a sample was represented in multiple candidate solutions of
poor fitness, it might not be represented in the update sample
set at all.

EDA Experiments

We tested our estimation of distribution algorithms using
all the non-trial problems in Table I with floating-point
representation. Each problem had g = 1000 generations and a
PBIL population size p = 100. To generate 100 individuals per
generation, the modified PBIL would perform shuffling 1, 2,
4, or 10 times: this would result in generating either 100, 50,
25, or 10 samples per marginal distribution. Thus the tradeoff
here was number of samples (essentially “individuals”) per
generation versus the number of trials per sample.

We performed 100 runs per treatment, and computed
statistics using a Wilcoxon rank-sum test at a 95% confidence
level. We expanded on the CCEA set of target functions, adding
Rotated Rastrigin, Weierstrass, and Gallagher’s Gaussian 101-
me Peaks.

Similar to CCEAs, we expected that increasing the number
of trials would improve performance in some situations (or
at least not hurt it). However this was only the case for a
few problems. As summarized in Figure 3, and elaborated in
Figure 4, Schwefel and Rotated Schwefel were the only two
problems to improve performance with increased number of
trials. Statistical significance results are shown in Table III.
Other than Weierstrass, increasing the number of trials changed
performance: but only occasionally in a positive direction.

We note that Schwefel and Rotated Schwefel were the
primary methods in the study in which optima were far from
one another, in the corners of the space rather than near the
center. Were more evaluations helping reduce miscoordination
among the variables in these problems?

Note that the absolute performance is significantly different
than our CCEA results. This is largely due to the order of
magnitude fewer trials in this study.

VI. CONCLUSIONS

CCEAs have often used multiple trials to compensate for the
reduced information resulting from projection of the joint space
into individual marginal subspaces. Most work in this area has
been in small numbers of subpopulations and relatively simple
problems. We performed a study which expanded this to large
numbers of subpopulations and complex problems, using a
shuffling technique which we have found in the past to be best
performing. We found that increasing the numbers of trials per
fitness evaluation, at the expense of shorter generations, will
improve converged results to some degree: but will also slow
convergence, and so may not be worthwhile.

Because they too rely on marginal subspaces, Univariate
EDAs can be shuffled in a manner similar to CCEAs. We
modified a real-valued version of PBIL accordingly to see if it
would have similar results. But it it did not. In two problems
(Schwefel and Rotated Schwefel) multiple evaluations helped:
but in the others multiple evaluations did nothing or, more
often than not, hurt matters.

Because the number of samples changes with shuffling,
in many ways the PBIL approach taken here is roughly
equivalent to the CCEA 2.2, 4.4, and 8.8 methods; likewise
except for Schwefel it performed very similarly to them. As
future work we wish to further modify the PBIL approach to
reduce generations but retain sample counts, to more closely
approximate the CCEA 2.1, 4.1, and 8.1 approaches which
seem to have performed better.

VII. ACKNOWLEDGEMENTS

We thank Marc Shoenauer at the Institut National Recherche
en Informatique et en Automatique (INRIA) for supporting
insight into the implementation of rotations in BBOB.

This research was supported by NFS Grant 0916870.

REFERENCES

[1] L. Panait, “The analysis and design of concurrent learning algorithms
for cooperative multiagent systems,” Ph.D. dissertation, George Mason
University, Fairfax, Virginia, 2006.

[2] S. Luke, K. Sullivan, and F. Abidi, “Large scale empirical analysis of
cooperative coevolution,” in Proceedings of Genetic and Evolutionary
Computation Conference, 2011.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Muehlenbein and G. Paass, “From recombination of genes to the
estimation of distributions: 1. binary parameters,” in Parallel Problem
Solving form Nature (PPSN VI), 1996.

G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” IEEE-EC, vol. 3, no. 4, p. 287, Nov. 1999.

S. Baluja, “Population-Based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning,” Carnegie Mellon University, School of Computer Science,
Tech. Rep. CS-94-163, Jun. 1994.

G. Harik, “Linkage learning via probabilistic modeling in the ECGA,”
Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign, Tech. Rep. 99010, 1999.

P. A. N. Bosman and D. Thierens, “Expanding from discrete to continuous
estimation of distribution algorithms: The IDEA,” in Parallel Problem
Solving form Nature (PPSN VI), 2000, pp. 767-776.

M. Pelikan, D. E. Goldberg, and E. Canti-Paz, “Linkage problem, distri-
bution estimation, and bayesian networks,” Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, Tech. Rep.
98013, 1998.

M. Pelikan and D. E. Goldberg, “Hierarchical bayesian optimization
algorithm = bayesian optimization algorithm + niching + local structures,”
in Optimization by Building and Using Probabilistic Models (OBUPM),
2001, pp. 217-221.

C. Vo, L. Panait, and S. Luke, “Cooperative coevolution and univariate
estimation of distribution algorithms,” in Proceedings of the Tenth ACM
SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA), 2009,
p. 141.

R. P. Wiegand, “An analysis of cooperative coevolutionary algorithms,”
Ph.D. dissertation, George Mason University, 2004.

A. Bucci and J. B. Pollack, “On identifying global optima in cooperative
coevolution,” in Proceedings of Genetic and Evolutionary Computation
Conference, 2005.

E. D. de Jong, “Towards a bounded pareto-coevolution archive,” in
Proceedings of IEEE Congress on Evolutionary Computation, 2004.

T. Ray and X. Yao, “A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning,” in Proceedings of IEEE
Congress on Evolutionary Computation, 2009, pp. 983-989.

Z. Yang, J. Zhang, K. Tang, X. Yao, and A. C. Sanderson, “An adaptive
coevolutionary differential evolution algorithm for large-scale optimiza-
tion,” in Proceedings of IEEE Congress on Evolutionary Computation,
2009, pp. 102-109.

C. H. Yong and R. Miikkulainen, “Cooperative coevolution of multi-agent
systems,” Department of Computer Sciences, The University of Texas at
Austin, Tech. Rep. AI07-338, 2001.

W. Chen, T. Weise, , Z. Yang, and K. Tang, “Large-scale global
optimization using cooperative coevolution with variable interaction
learning,” in Proceedings of Parallel Problem Solving from Nature, 2011.
S. Luke, K. Sullivan, and F. Abidi, “Large scale empirical analysis
of cooperative coevolution,” Department of Computer Science, George
Mason University, Tech. Rep. GMU-CS-TR-2011-2, 2011.

N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
INRIA, Tech. Rep. RR-6829, 2009.

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation
in evolution strategies,” Evolutionary Computation, vol. 9, no. 2, pp.
159-195, 2001.

E. Popovici and K. D. Jong, “Sequential versus parallel cooperative
coevolutionary algorithms for optimization,” in Proceedings of IEEE
Congress on Evolutionary Computation, 2006, pp. 1610-1617.

M. Gallagher, M. Frean, and T. Downs, ‘“Real-valued evolutionary opti-
mization using a flexible probability density estimator,” in Proceedings of
the 1999 Genetic and Evolutionary Computation Conference (GECCO).
Morgan Kaufmann, 1999, pp. 840-846.

function value

function value

function value

function value

-14000

-18000

-1300

-1400 -1350

-1450

12000

4000 6000 8000

-49 -47 -45

-51

f ° Unrotated, 1 Collaborator

» Unrotated, 2 Collaborators
[+ Unrotated, 4 Collaborators
| = Unrotated, 10 Collaborators

I T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 le+05

evaluations

(a) Rosenbrock

Unrotated, 1 Collaborator
_ » Unrotated, 2 Collaborators
+ Unrotated, 4 Collaborators
x Unrotated, 10 Collaborators

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 le+05

evaluations

(c) Rastrigin

= Unrotated, 1 Collaborator
» Unrotated, 2 Collaborators
+ Unrotated, 4 Collaborators
] xUnrotated, 10 Collaborators

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 le+05

evaluations

(e) Schwefel

1 Collaborator

2 Collaborators
4 Collaborators
10 Collaborators

x + b o

T T T T T T
2e+04 4e+04 6e+04 8e+04 le+05

evaluations

(g) Weierstrass
Fig. 4. EDA Experimental Results

function value

function value

function value

function value

-14000

o
o
o
@
—
I
. [o Rotated, 1 Collaborator
| » Rotated, 2 Collaborators
s | + Rotated, 4 Collaborators
=1 (= Rotated, 10 Collaborators
S
N T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05
evaluations
(b) Rotated Rosenbrock
o | eee000®
o
S 4 60000000000 o AAALALS
—
I
o
n
o
-
I
o
o
Sa
—
I
o
Q| Rotated, 1 Collaborator
il » Rotated, 2 Collaborators
(+ Rotated, 4 Collaborators
o | x Rotated, 10 Collaborators
3 L
o 1 T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 le+05
evaluations
(d) Rotated Rastrigin
o
o
S
N
-
o
o |
o
[=9)
8
3] ° Rotated, 1 Collaborator
» Rotated, 2 Collaborators
= + Rotated, 4 Collaborators
S - x Rotated, 10 Collaborators
N T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
evaluations
(f) Rotated Schwefel
©
v
N
I
o
o
b
1 Collaborator
u 2 2 Collaborators
+ 4 Collaborators
< =10 Collaborators
©
CI\I 1 T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
evaluations

(h) GG101me

