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Abstract. With the exception of a small body of adaptive-parameter literature,
evolutionary computation has traditionally favored keeping the population size
constant through the course of the run. Unfortunately, genetic programming has
an aging problem: for various reasons, late in the run the technique become less
effective at optimization. Given a fixed number of evaluations, allocating many of
them late in the run may thus not be a good strategy. In this paper we experiment
with gradually decreasing the population size throughout agenetic programming
run, in order to reallocate more evaluations to early generations. Our results show
that over four problem domains and three different numbers of evaluations, de-
creasing the population size is always as good as, and frequently better than,
various fixed-sized population strategies.

1 Introduction

In generational EC, the choice of how to allocate evaluations may be cast as a tradeoff
between exploration and exploitation. A maximally large population, run for a single
generation, is an extreme in exploration, approximating random search. On the other
hand, depending on the locality of the modification operator, a minimal (2 person) pop-
ulation exploits local features to the point of hill-climbing.

Choosing a good population size vs. runlength tradeoff is a long-explored topic
in evolutionary computation. This choice has traditionally hinged on two factors: the-
oretical justifications for a given population size; and practical necessity for capping
population size, primarily because of memory capacity. Recent advances in computer
technology have obviated much of the second factor: geneticprogramming has occa-
sionally seen population sizes around a million individuals divided among multiple
machines in Beowulf clusters [1, 2]. Contrast this to early 1+ 1 evolution strategies
techniques which used a population size of 2!

The most common runlength for a genetic programming problemis a very short 50
generations, and the standard population sizes have rangedfrom 500 to 2000. The rea-
son for these layouts is mostly tradition: they were the layouts popularized by Koza in
[3]. Koza established these layouts through trial and error, and his decisions seem to be
justified for GP problems. As was discussed in [4], it appearsthat many of the canoni-
cal test problem domains for GP have a surprisingly short maximum useful runlength.
In the Symbolic Regression domain, for example, beyond 32 generations it becomes
advantageous to split the run into two or more shorter runs.



1.1 Population Implosion

This paper examines the effects of decreasing the population size towards zero during
the course of a genetic programming run. Early in the run the system would evolve with
a large population of individuals, but late in the run the system would be effectively
reduced to hill-climbing. This idea was inspired by simulated annealing, which also ex-
plores early and exploits (hill-climbs) late in the run, albeit in a very different fashion.
We imagined that this “population implosion” would be effective because it would real-
locate evaluations away from late generations where the population would have mostly
stagnated anyway.

Decreasing the population size has another unforseen advantage in genetic program-
ming: it counters the effects of bloating on memory consumption. The total memory
consumed by the system is a function largely of the size of theaverage individual times
the number of individuals in the population. As the first factor goes up, a drop in the
other factor may maintain current memory consumption levels. However, we do not
consider this issue in the experiments in this paper.

We define alayoutas a choice of population size and runlength in order to allocate
N evaluations for a run. In generational evolutionary computation, layouts are almost
always rectangular, with the minor exception of theµ+λ evolution strategy, which may
have a small initial generation. In this paper we have chosento decrease the population
using adiagonallayout. The diagonal layout starts with a large population,then linearly
decreases the population size each generation until it reaches 0.

2 Previous Work

Setting the population size has been a challenging issue in the EC domain for a very
long time. Initial work concentrated on deciding the optimal number of individuals in
fixed-sized populations. Interesting research has recently suggested methods for adapt-
ing the size of the population during the search process, depending on various online
parameters like fitness improvement or size of individuals.

In [5], De Jong investigated the influence of population size, mutation, and
crossover rates on the efficiency of the search process. He also suggested parameter
values that showed good performance in his experiments. Later, Grefenstette used a
meta-GA to find good parameters for the search process and recommended a smaller
population size than the one suggested by De Jong [6]. Grefenstette’s results were later
supported by theoretical investigations [7]. [8] providesa theoretical and empirical in-
vestigation on the relation between population size and crossover probability, while [9]
presents a theoretical analysis meant to determine how to set the population size in order
to promote the selection of correct building blocks. More recently, [10] describes an-
other theoretical investigation of the impact of the population size on the performance
of the GA algorithms in the OneMax problem domain, and [11] finds statistical sig-
nificant differences when using different population sizesand classifier lengths in an
SCS/LCS system.

Some studies have also raised the possibility of modifying the population size dur-
ing the search process. [12] introduces the GAVaPS algorithm, which assigns fitness-
dependent lifetimes to individuals in a steady-state EC system. Individuals are removed



from the population only when their lifetime is exceeded. Another interesting approach
is presented in [13], where an adaptive mechanism adjusts the population size as a way
to control selective pressure.

Population size has been studied in the GP domain as well. Koza ([3]) advocated
using large population sizes, but small populations have also been espoused [14]. An
interesting approach is reported in [15], where the number of tree nodes, not individ-
uals, in the population is kept constant in order to prevent bloating. This approach is
reported to give similar results to the standard method, however it reduces the use of
computational resources.

3 First Experiment

In our first experiment, we compared four layouts against three different numbers of
evaluations and four different genetic programming problem domains. The problem
domains were Symbolic Regression, Artificial Ant, 5-bit Parity, and 11-bit Boolean
Multiplexer. We chose to include three choices of number of evaluations: 26600, 52224,
and 102400 evaluations (hereafter referred to as, inaccurately, 25K , 50K, and 100K).1

For each number of evaluations, we picked rectangular layouts with population sizes
of 1024, 1448, and 2048. We compared these against a diagonallayout starting at a
population size of 2048, and decreasing linearly towards zero.

1448 was included because we were concerned that the diagonal might outperform
other choices simply because it struck a middle-ground between large population sizes
and long runlengths. Therefore we included our own rectangular middle-ground. Note
however that the 1448 rectangular layout cannot haveexactlythe same number of eval-
uations as the others: we chose to err on the side of very slightly fewer evaluations. For
the 50K evaluations runs, for example, the 1448 layout had 520 fewer evaluations than
the others did.

Figure 1 illustrates the four layouts used.

3.1 Other Parameters

Our evolutionary computation system was ECJ [16]. SymbolicRegression used no
ephemeral constants and a function ofx4 + x3 + x2 + x. Artificial Ant used the Santa
Fe trail. We used 7-tournament selection. All other initialization, modification, and rep-
resentation parameters are the same as those used in [3].

We compared mean best fitness of run among experiments, and performed 200 runs
for each experiment setup. Our difference of means test was an ANOVA at 95% confi-
dence, plus a Tukey post-hoc comparison.

3.2 Results

We show the mean fitness results in Tables 1 through 4. Layoutsare ordered left-to-right
in worsening fitness.Horizontal bars above and connecting different layouts indicate no
statistically significant difference between them.

1 These slightly odd evaluation sizes are due to our decision to run for 51 generations.
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Fig. 1. Four layouts for allocating∼50K (52224) evaluations: 2048x26; 1448x36; 1024x51; and
Diagonal 2048x51

The four problems vary significantly in problem difficulty; some prefer much larger
populations, others prefer longer runlengths. The diagonal layout often outperformed all
the other layouts, though not always by a statistically significant margin. Nonetheless,
what was interesting was that the diagonal layout consistently appeared in the best class
of layouts for every single problem domain and every single number of evaluations
attempted; and it was the only layout to do so. The diagonal layout did particularly well
with smaller numbers of evaluations; for two of the domains (Multiplexer and Ant) it
had no peer.

There is an interesting trend among the rectangular layouts. In all four problems, for
smaller numbers of evaluations, smaller-population layouts are preferred; and for larger
numbers of evaluations, larger-population layouts are preferred. This suggests that there
is a optimal useful runlength for each of the problems. As thenumber of evaluations
increases, the smaller-population layouts are extended beyond this runlength and are es-
sentially wasting time. Similarly, for small numbers of evaluations, the large population
layouts do not run for enough generations to produce competitive results.

Why did the diagonal perform well? We include Figure 2, showing results in the
Artificial Ant domain, to illustrate the general trend during the course of evolution. We
think that the diagonal layout is effectively taking advantage of the maximal-runlength
phenomenon by providingboththe runlength of the longer layoutsandthe emphasis on
population size of the larger layouts. We note that in both cases, up until 10,000 evalua-
tions, the diagonal layout closely resembles the 2048-population layout in performance,
and then in the 20,000-30,000 range the diagonal layout “speeds up” and surpasses the
smaller 1024-population layout, which has mostly converged.



Problem and Evals Layouts

Regression 25K Diagonal 1024 1448 2048
Mean Best Fitness 0.09131543 0.103177731 0.145182262 0.169305242

Regression 50K Diagonal 2048 1448 1024
Mean Best Fitness 0.05270353 0.057168302 0.075613984 0.079054647

Regression 100K Diagonal 2048 1448 1024
Mean Best Fitness 0.037023631 0.038560673 0.039290056 0.060902268

Table 1. Statistical significance groupings for mean best fitness of run for the Symbolic
Regression domain (First Experiment).

Problem and Evals Layouts

Ant 25K Diagonal 1024 1448 2048
Mean Best Fitness 22.325 24.63 24.79 25.99

Ant 50K Diagonal 2048 1024 1448
Mean Best Fitness 17.71 18.505 20.015 21.87

Ant 100K 2048 Diagonal 1024 1448
Mean Best Fitness 15.865 16.18 18.16 18.775

Table 2. Statistical significance groupings for mean best fitness of run for the Artificial
Ant domain (First Experiment).

4 Second Experiment

Our second experiment added additional layouts and repeated the 50K evaluation runs
for each problem domain, to see if the diagonal was outperforming other layouts simply
because it started at 2048K or was able to eke out long numbersof generations in its
tail. The additional layouts included ones with both largerand smaller population sizes
(and correspondingly shorter and longer runlengths).

Our additional layouts brought the total rectangular layouts to 4096, 2048, 1448,
1024, 501, 251, and 125 population sizes. The diagonal layout again started at 2048
and decreased to 0.

We again compared mean best fitness of run among experiments,and performed
100 runs for each experiment setup. Our difference of means test was an ANOVA at
95%, plus a Tukey post-hoc comparison.

4.1 Results

In the second experiment we changed the random seeds from thefirst experiment;
hence the means for the original layouts are slightly different. We show the mean fit-
ness results in Table 5. Layouts are again ordered left-to-right in worsening fitness, and



Problem and Evals Layouts

5-bit Parity 25K 1024 Diagonal 1448 2048
Mean Best Fitness 6.68 6.885 7.785 8.85

5-bit Parity 50K 1024 Diagonal 1448 2048
Mean Best Fitness 4.77 4.835 4.835 5.825

5-bit Parity 100K Diagonal 2048 1448 1024
Mean Best Fitness 3.35 3.44 3.46 3.55

Table 3. Statistical significance groupings for mean best fitness of run for the 5-bit
Parity domain (First Experiment).

Problem and Evals Layouts

11-bit Multiplexer 25K Diagonal 1024 1448 2048
Mean Best Fitness 197.16 230.475 274.695 352.72

11-bit Multiplexer 50K Diagonal 1448 2048 1024
Mean Best Fitness 92.38 119.33 122.43 128.32

11-bit Multiplexer 100K 2048 Diagonal 1448 1024
Mean Best Fitness 46.59 53.32 70.43 90.41

Table 4. Statistical significance groupings for mean best fitness of run for the 11-bit
Multiplexer domain (First Experiment).

horizontal bars above and connecting different layouts indicate no statistically signifi-
cant difference between them.

Keep in mind that due to outlier biases from the worst layout results, the conserva-
tive Tukey test now cannot discern statistically significant differences among the orig-
inal four layouts. This is as expected: the goal of the secondexperiment was only to
see if the original four layouts were good choices, and it appears that they were. The
new rectangular layouts were usually poor performers, and the diagonal layout usually
outperformed all of them by a statistically significant margin.

5 Third Experiment

We also performed a similar experiment using two well-knownGA problem domains,
the Rastrigin and Rosenbrock problems. Each GA individual’s representation was a
vector of 100 floating-point genes each ranging from -5.12 to5.12. We used one-point
GA crossover and a gene-independent mutation probability of 0.01, where mutation
consisted of gene randomization. We applied tournament selection of size 2, plus one-
individual elitism.

Both functions are minimization functions. The Rosenbrockproblem [5] computes
fitness over a genome of sizen using the function



Problem and Evals Layouts

Regression 50K Diagonal 2048 1024 1448 4096 251 502 125
Mean Best Fitness 0.051 0.063 0.078 0.084 0.102 0.198 0.232 0.373

Ant 50K Diagonal 2048 1448 4096 1024 251 502 125
Mean Best Fitness 17.7 20.23 21.25 21.31 22.49 26.63 28.45 29.68

Parity 50K Diagonal 1448 1024 251 2048 125 502 4096
Mean Best Fitness 4.67 4.93 4.95 5.32 5.78 6.01 6.16 8.48

Multiplexer 50K Diagonal 2048 1448 1024 251 4096 502 125
Mean Best Fitness 54.68 54.72 69.64 81.38 247.26 296.98 301.84 363.03

Table 5. Statistical significance groupings for mean best fitness of run for the Sym-
bolic Regression, Artificial Ant, 5-bit Parity, and 11-bit Multiplexer domains (Second
Experiment).

Problem and Evals Layouts

Rosenbrock 32 Diagonal 45 64
Mean Best Fitness 2256.585 2415.601 3281.273 5131.429

Rastrigin 32 Diagonal 45 64
Mean Best Fitness 136.0726 142.2995 155.8251 184.689

Table 6. Statistical significance groupings for mean best fitness of run for the Rosen-
brock and Rastrigin domains (Third Experiment).

Rosenbrock(x1, ...,xn) =

n∑

i=1

100(xi
2
−xi+1)

2
+(1−xi

2)

Similarly, the difficult Rastrigin problem [17] computes fitness using the function

Rastrigin(x1....xn) =

n∑

i=1

xi
2 +a(1−cos(2πxi))

We adjusted the size of layouts to make them more appropriateto the GA realm:
32x1024, 45x724, 64x512, and a diagonal layout with initialpopulation size of 64,
running for 1024 generations. We performed 100 independenttrials for each problem.
As shown in Table 6, for both problem domains the ordering wasthe same, namely:
32x1024 outperformed diagonal, which in turn outperformed45x724, which in turn
outperformed 64x512. However, on the Rastrigin domain the difference between the
32x1024 and the diagonal layout was not statistically significant.
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Fig. 2. Best-So-Far Curves of Four Layouts, Artificial Ant Problem,at 25K and 50K Evaluations



This is a mixed result. The result is similar to that of the 5-bit Parity GP domain,
namely that longer runs are consistently preferred over shorter ones. But for the first
time in this paper, diagonal has come in second in one of the experiments (Rastrigin).
We note that the number of evaluations (32K, a typically sizefor GAs) is nonetheless
similar to the smaller GP experiments. Further runs may suggest that GAs too have
“diminishing returns” late in the run: but this is not yet borne out from the evidence
here.

6 Conclusions and Future Work

In this paper we examined the possibility of imploding the population — gradually de-
creasing it towards zero as the run progressed — in the context of genetic programming.
A linear decrease in population size proved effective regardless of the number of evalu-
ations used. A diagonal layout was consistently in the top tier in every GP experiment,
and usually gave the best results in the experiments. In initial GA experiments however,
the results were mixed.

From this we can draw two conclusions: the primary conclusion is of course that
non-rectangular layouts may yield better results than rectangular ones in environments
like GP. But the second more troubling conclusion is that ourexperiments add to ex-
isting evidence that GP may have an aging problem. Whether due to premature con-
vergence, bloat, or other factors, GP does not appear to use large-population resources
effectively late in the run. While methods like diagonal layouts may serve to work
around the issue, there is need for a closer examination as towhyGP has diminishing
returns, and how the representation or breeding methods maybe changed to alleviate
the problem.
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