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Abstract. With the exception of a small body of adaptive-parameterditure,
evolutionary computation has traditionally favored kegpthe population size
constant through the course of the run. Unfortunately, iepeogramming has
an aging problem: for various reasons, late in the run thenigoe become less
effective at optimization. Given a fixed number of evaluasicallocating many of
them late in the run may thus not be a good strategy. In thismpap experiment
with gradually decreasing the population size throughaygrsetic programming
run, in order to reallocate more evaluations to early gdimrs. Our results show
that over four problem domains and three different numbées/aluations, de-
creasing the population size is always as good as, and indgusetter than,
various fixed-sized population strategies.

1 Introduction

In generational EC, the choice of how to allocate evaluatimay be cast as a tradeoff
between exploration and exploitation. A maximally largguplation, run for a single
generation, is an extreme in exploration, approximatimgloen search. On the other
hand, depending on the locality of the modification operataninimal (2 person) pop-
ulation exploits local features to the point of hill-clinmgy.

Choosing a good population size vs. runlength tradeoff israydexplored topic
in evolutionary computation. This choice has traditiop&linged on two factors: the-
oretical justifications for a given population size; andgbical necessity for capping
population size, primarily because of memory capacity.dRéadvances in computer
technology have obviated much of the second factor: gepetigramming has occa-
sionally seen population sizes around a million individudivided among multiple
machines in Beowulf clusters [1, 2]. Contrast this to early 1 evolution strategies
techniques which used a population size of 2!

The most common runlength for a genetic programming proligesnvery short 50
generations, and the standard population sizes have rémged00 to 2000. The rea-
son for these layouts is mostly tradition: they were the lag@opularized by Koza in
[3]. Koza established these layouts through trial and eamad his decisions seem to be
justified for GP problems. As was discussed in [4], it app#zas many of the canoni-
cal test problem domains for GP have a surprisingly shortimam useful runlength.
In the Symbolic Regression domain, for example, beyond 3#igaions it becomes
advantageous to split the run into two or more shorter runs.



1.1 Population Implosion

This paper examines the effects of decreasing the popnlsite towards zero during
the course of a genetic programming run. Early in the runylktes would evolve with
a large population of individuals, but late in the run thetsyswould be effectively
reduced to hill-climbing. This idea was inspired by simethtinnealing, which also ex-
plores early and exploits (hill-climbs) late in the run,itlin a very different fashion.
We imagined that this “population implosion” would be effee because it would real-
locate evaluations away from late generations where thalptipn would have mostly
stagnated anyway.

Decreasing the population size has another unforseen &dj&in genetic program-
ming: it counters the effects of bloating on memory constomptThe total memory
consumed by the system is a function largely of the size ohtleeage individual times
the number of individuals in the population. As the first éaagoes up, a drop in the
other factor may maintain current memory consumption kvidbwever, we do not
consider this issue in the experiments in this paper.

We define dayoutas a choice of population size and runlength in order to atkc
N evaluations for a run. In generational evolutionary corapah, layouts are almost
always rectangular, with the minor exception of theA evolution strategy, which may
have a small initial generation. In this paper we have chtseecrease the population
using adiagonallayout. The diagonal layout starts with a large populatiben linearly
decreases the population size each generation until ihesa@

2 Previous Work

Setting the population size has been a challenging issugeift€ domain for a very
long time. Initial work concentrated on deciding the optimamber of individuals in
fixed-sized populations. Interesting research has rgcsaggested methods for adapt-
ing the size of the population during the search processmitipg on various online
parameters like fithess improvement or size of individuals.

In [5], De Jong investigated the influence of population sireutation, and
crossover rates on the efficiency of the search process. ddesabgested parameter
values that showed good performance in his experimenter@refenstette used a
meta-GA to find good parameters for the search process anchreended a smaller
population size than the one suggested by De Jong [6]. Gaifiéa’s results were later
supported by theoretical investigations [7]. [8] providetheoretical and empirical in-
vestigation on the relation between population size anssteer probability, while [9]
presents a theoretical analysis meant to determine howtioespopulation size in order
to promote the selection of correct building blocks. Moreergly, [10] describes an-
other theoretical investigation of the impact of the pofiatasize on the performance
of the GA algorithms in the OneMax problem domain, and [11§i$istatistical sig-
nificant differences when using different population siaed classifier lengths in an
SCS/LCS system.

Some studies have also raised the possibility of modifyliregtopulation size dur-
ing the search process. [12] introduces the GAVaPS algoritlhich assigns fitness-
dependent lifetimes to individuals in a steady-state E@sysIndividuals are removed



from the population only when their lifetime is exceededo#rer interesting approach
is presented in [13], where an adaptive mechanism adjusisapulation size as a way
to control selective pressure.

Population size has been studied in the GP domain as welk K8} advocated
using large population sizes, but small populations hase been espoused [14]. An
interesting approach is reported in [15], where the numbére nodesnot individ-
uals, in the population is kept constant in order to prevémating. This approach is
reported to give similar results to the standard method,evewit reduces the use of
computational resources.

3 First Experiment

In our first experiment, we compared four layouts againstefdifferent numbers of
evaluations and four different genetic programming probtomains. The problem
domains were Symbolic Regression, Artificial Ant, 5-bit iBarand 11-bit Boolean
Multiplexer. We chose to include three choices of numbewafiations: 26600, 52224,
and 102400 evaluations (hereafter referred to as, inateturasK , 50K, and 100K}.
For each number of evaluations, we picked rectangular Bywith population sizes
of 1024, 1448, and 2048. We compared these against a dialpyaait starting at a
population size of 2048, and decreasing linearly towards.ze

1448 was included because we were concerned that the diagmya outperform
other choices simply because it struck a middle-ground éetwarge population sizes
and long runlengths. Therefore we included our own rectimgmniddle-ground. Note
however that the 1448 rectangular layout cannot lexaetlythe same number of eval-
uations as the others: we chose to err on the side of vengtlslifglwer evaluations. For
the 50K evaluations runs, for example, the 1448 layout h&df&&er evaluations than
the others did.

Figure 1 illustrates the four layouts used.

3.1 Other Parameters

Our evolutionary computation system was ECJ [16]. SymbRBkgression used no
ephemeral constants and a functiorxbfi- x3 + x? 4+ x. Artificial Ant used the Santa
Fe trail. We used 7-tournament selection. All other initiation, modification, and rep-
resentation parameters are the same as those used in [3].

We compared mean best fitness of run among experiments, godped 200 runs
for each experiment setup. Our difference of means test was\BDVA at 95% confi-
dence, plus a Tukey post-hoc comparison.

3.2 Resaults

We show the mean fitness results in Tables 1 through 4. Lagoeitsrdered left-to-right
in worsening fitnesd-orizontal bars above and connecting different layoutgate no
statistically significant difference between them.

1 These slightly odd evaluation sizes are due to our decisionrt for 51 generations.
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Fig. 1. Four layouts for allocating-50K (52224) evaluations: 2048x26; 1448x36; 1024x51; and
Diagonal 2048x51

The four problems vary significantly in problem difficultygree prefer much larger
populations, others prefer longer runlengths. The diagaypaut often outperformed all
the other layouts, though not always by a statistically iicgmt margin. Nonetheless,
what was interesting was that the diagonal layout congigteppeared in the best class
of layouts for every single problem domain and every singleber of evaluations
attempted; and it was the only layout to do so. The diagogalledid particularly well
with smaller numbers of evaluations; for two of the domaisiliplexer and Ant) it
had no peer.

There is an interesting trend among the rectangular laybugdl four problems, for
smaller numbers of evaluations, smaller-population l&yave preferred; and for larger
numbers of evaluations, larger-population layouts artepred. This suggests that there
is a optimal useful runlength for each of the problems. Asrtbhmber of evaluations
increases, the smaller-population layouts are extendgzhiohis runlength and are es-
sentially wasting time. Similarly, for small numbers of kiations, the large population
layouts do not run for enough generations to produce cotiygetesults.

Why did the diagonal perform well? We include Figure 2, shayiesults in the
Artificial Ant domain, to illustrate the general trend dugithe course of evolution. We
think that the diagonal layout is effectively taking adwage of the maximal-runlength
phenomenon by providingoththe runlength of the longer layowtsidthe emphasis on
population size of the larger layouts. We note that in bofesaup until 10,000 evalua-
tions, the diagonal layout closely resembles the 2048-laipu layout in performance,
and then in the 20,000-30,000 range the diagonal layouttpap” and surpasses the
smaller 1024-population layout, which has mostly converge



Problem and Evals Layouts

Regression 25K Diagonal 1024 1448 2048
Mean Best Fitness  0.09131543 0.103177731 0.145182262 9305842

Regression 50K Diagonal 2048 1448 1024
Mean Best Fitness  0.05270353 0.057168302 0.075613984 9@paz47

Regression 100K Diagonal 2048 1024
Mean Best Fithess 0.037023631 0.038560673 0. 03929005&50@9268

Table 1. Statistical significance groupings for mean best fithessfor the Symbolic
Regression domain (First Experiment).

Problem and Evals Layouts

Ant 25K  Diagonal 1024 1448 2048
Mean Best Fitness  22.325 24.63 24.79 25.99

Ant 50K  Diagonal 2048 1024 1448
Mean Best Fitness 7.71 18.505 20.015 21.87

Ant 100K 2048 Diagonal 1024 1448
Mean Best Fitness 15.865 6.18 18.16 18.775

Table 2. Statistical significance groupings for mean best fithessiofor the Artificial
Ant domain (First Experiment).

4 Second Experiment

Our second experiment added additional layouts and repéates0K evaluation runs
for each problem domain, to see if the diagonal was outpmiifay other layouts simply
because it started at 2048K or was able to eke out long nunatbgenerations in its
tail. The additional layouts included ones with both larged smaller population sizes
(and correspondingly shorter and longer runlengths).

Our additional layouts brought the total rectangular lagdo 4096, 2048, 1448,
1024, 501, 251, and 125 population sizes. The diagonal taggain started at 2048
and decreased to 0.

We again compared mean best fithess of run among experinaetperformed
100 runs for each experiment setup. Our difference of mezststas an ANOVA at
95%, plus a Tukey post-hoc comparison.

4.1 Results

In the second experiment we changed the random seeds frofirshexperiment;
hence the means for the original layouts are slightly déifer We show the mean fit-
ness results in Table 5. Layouts are again ordered lefigtd-in worsening fitness, and



Problem and Evals Layouts

5-bit Parity 25K 1024 Diagonal 1448 2048
Mean Best Fitness 6.68 6.885 7.785 8.85

5-bit Parity 50K 1024 Diagonal 1448 2048
Mean Best Fitness 4.77 .835 4.835 5.825

5-bit Parity 100K Diagonal 2048 1448 1024
Mean Best Fitness .35 3.44 3.46 355

Table 3. Statistical significance groupings for mean best fitnessunffor the 5-bit
Parity domain (First Experiment).

Problem and Evals Layouts

11-bit Multiplexer 25K  Diagonal 1024 1448 2048
Mean Best Fitness  197.16 230.475 274.695 352.72

11-bit Multiplexer 50K  Diagonal 1448 2048 1024
Mean Best Fitness 92.38 119.33 122.43 128.32

11-bit Multiplexer 100K 2048 Diagonal 1448 1024
Mean Best Fitness ~ 46.59 3.32 70.43 90.41

Table 4. Statistical significance groupings for mean best fithesainffor the 11-bit
Multiplexer domain (First Experiment).

horizontal bars above and connecting different layoutgcatd no statistically signifi-
cant difference between them.

Keep in mind that due to outlier biases from the worst layestiits, the conserva-
tive Tukey test now cannot discern statistically signiftodifferences among the orig-
inal four layouts. This is as expected: the goal of the se@qmriment was only to
see if the original four layouts were good choices, and itea@pp that they were. The
new rectangular layouts were usually poor performers, hadiiagonal layout usually
outperformed all of them by a statistically significant niarg

5 Third Experiment

We also performed a similar experiment using two well-knd@sv problem domains,
the Rastrigin and Rosenbrock problems. Each GA individuadpresentation was a
vector of 100 floating-point genes each ranging from -5.12.12. We used one-point
GA crossover and a gene-independent mutation probabflif@l, where mutation
consisted of gene randomization. We applied tournameatseh of size 2, plus one-
individual elitism.

Both functions are minimization functions. The Rosenbrpablem [5] computes
fithess over a genome of simausing the function



Problem and Evals L ayouts

Regression 50K Diagonal 2048 1024 1448 4096 251 502 125
Mean Best Fitness  0.051 0.063 0.078 0.084 0.102 0.198 0.232730

Ant 50K Diagonal 2048 1448 4096 1024 251 502 125
Mean Best Fitness  17.7  20.23 21.25 21.31 2249 26.63 28.456829

Parity 50K Diagonal 1448 1024 251 2048 125 502 4096
Mean Best Fitness  4.67 493 495 532 578 6.01 6.16 8.48

Multiplexer 50K Diagonal 2048 1448 1024 251 4096 502 125
Mean Best Fitness 4.68 54.72 69.64 81.38 247.26 296.988480363.03

Table 5. Statistical significance groupings for mean best fithesaoffor the Sym-

bolic Regression, Artificial Ant, 5-bit Parity, and 11-bituMiplexer domains (Second
Experiment).

Problem and Evals L ayouts

Rosenbrock 32 Diagonal 45 64
Mean Best Fitness 2256.585 2415.601 3281.273 5131.429

Rastrigin 32 Diagonal 45 64
Mean Best Fitness 136.0726 142.2995 155.8251 184.689

Table 6. Statistical significance groupings for mean best fithessioffor the Rosen-
brock and Rastrigin domains (Third Experiment).

n
Rosenbrockk, ..., Xn) = Z 100(x% — xi+1)2 +(1—x2)
i=1

Similarly, the difficult Rastrigin problem [17] computesiiss using the function

Rastrigin(x.... Zx. +a(1l—cog2mnx))
i=1

We adjusted the size of layouts to make them more approfdatee GA realm:
32x1024, 45x724, 64x512, and a diagonal layout with initi@pulation size of 64,
running for 1024 generations. We performed 100 indepentdiefg for each problem.
As shown in Table 6, for both problem domains the ordering thassame, namely:
32x1024 outperformed diagonal, which in turn outperforrd&e724, which in turn
outperformed 64x512. However, on the Rastrigin domain tfferdnce between the
32x1024 and the diagonal layout was not statistically $icgmt.
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Fig. 2. Best-So-Far Curves of Four Layouts, Artificial Ant Probleah25K and 50K Evaluations



This is a mixed result. The result is similar to that of theibHarity GP domain,
namely that longer runs are consistently preferred overtshones. But for the first
time in this paper, diagonal has come in second in one of ther@rents (Rastrigin).
We note that the number of evaluations (32K, a typically $§imeGAS) is nonetheless
similar to the smaller GP experiments. Further runs may ssigthat GAs too have
“diminishing returns” late in the run: but this is not yet berout from the evidence
here.

6 Conclusionsand Future Work

In this paper we examined the possibility of imploding th@plation — gradually de-
creasing it towards zero as the run progressed — in the cooftgenetic programming.
Alinear decrease in population size proved effective réigas of the number of evalu-
ations used. A diagonal layout was consistently in the tepiti every GP experiment,
and usually gave the best results in the experiments. ialiG# experiments however,
the results were mixed.

From this we can draw two conclusions: the primary conclussoof course that
non-rectangular layouts may yield better results thararegilar ones in environments
like GP. But the second more troubling conclusion is thateperiments add to ex-
isting evidence that GP may have an aging problem. Whethetapremature con-
vergence, bloat, or other factors, GP does not appear t@atge-population resources
effectively late in the run. While methods like diagonal days may serve to work
around the issue, there is need for a closer examinationwebyt&P has diminishing
returns, and how the representation or breeding methodseahanged to alleviate
the problem.
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