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Abstract—This paper describes Distributed MASON, a dis-
tributed version of the MASON agent-based simulation tool.
Distributed MASON is architected to take advantage of well
known principles from Parallel and Discrete Event Simulation,
such as the use of Logical Processes (LP) as a method for
obtaining scalable and high performing simulation systems. We
first explain data management and sharing between LPs and
describe our approach to load balancing. We then present both a
local greedy approach and a global hierarchical approach. Finally,
we present the results of our implementation of Distributed
MASON on an instance in the Amazon Cloud, using several
standard multi-agent models. The results indicate that our design
is highly scalable and achieves our expected levels of speed-up.

I. INTRODUCTION

MASON is an open source agent-based modeling (or ABM)
simulation toolkit written in Java, and has enjoyed significant
popularity in the agent-based modeling community. Though it
has extensions for certain areas (such as geographic information
systems, social networks, or rigid body kinematics), MASON
is meant to be very general and domain-inspecific: it has been
used significantly in agent-based models ranging from the
social sciences to swarm robotics to population biology.

MASON was designed with efficiency in mind, and works
well with large models. For example MASON was recently
used in a 10-million-agent model of permafrost thawing and
its consequences on Canadian communities [1]. MASON is
also designed to be highly flexible and capable of being used
in unusual circumstances. Along these lines, we have used
MASON running in real time on-board cooperative soccer-
playing robots during the RoboCup soccer competition [2].

Introduced in 2003, MASON introduced many then-unique
features (for the ABM community). These included multi-
threaded models, total separation of model and visualization,
fully self-contained models, model serialization, 3D visual-
ization, limited guarantees of replicability, and a small, clean
model core which was orthogonal and consistent. Such capabil-
ities are prosaic by the standards of the general simulation field,
but in the ABM community they were entirely novel. MASON
has since had a significant impact on the ABM modeling
community going forward.
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In 2013 the National Science Foundation sponsored a
workshop bringing together MASON’s developers and the
user community. This resulted in nine recommendations to
improve MASON and to take it in important future directions.
Foremost among these was the recommendation to add parallel
and distributed capabilities for performance and scalability. This
paper describes our efforts to achieve this specific objective.

Our approach builds upon well-known principles of Parallel
Discrete Event Simulation (PDES) for distributed multi-agent
systems [3]. We aim to produce a high performing and easy to
use version of MASON, running in an enterprise or cloud envi-
ronment, that can be used by researchers across a broad section
of the scientific, engineering, GIS, and computational social
science communities. Our working name for the distributed
extensions to MASON is simply Distributed MASON.

The paper proceeds as follows: Section II provides some
background and discusses related work in Agent Based Model-
ing applications and issues in scaling up multi-agent simulation
systems. Section III describes how we are designing Distributed
MASON and gives an example of an implementation of a GIS
within the Distributed MASON framework. Section IV details
our approach to data management, followed by our approach
to load balancing in Section V. Section VI shows the results
of performance evaluation running on Amazon Web Services
(AWS), and Section VII offers some final observations.

II. BACKGROUND AND RELATED WORK

A. Agent-based Modeling Toolkits

In an agent-based simulation, multiple agents manipulate
the world in response to information received about the world.
To do this, agents or agent events are repeatedly placed on a
schedule, then stepped either in parallel or in randomly shuffled
order. It is not required for an agent to be embodied in the
world, but this is often the case: for example swarms of robot
agents collaborating to build a house, or agents as migrating
spice caravans eventually forming the historic silk road. These
concepts are not special to ABMs: indeed video games had been
doing similar things for decades prior; and robotics simulation
toolkits have often employed the same general approach, as
have simulations hosted on cellular automata.



Many of the traditions and conventions of agent-based
modeling can be traced to the seminal system SWARM [4].
SWARM emphasized simple single-process, single-thread
models, often with agents embedded in a 2D array physical
environment (a “gridworld”). There have been many SWARM-
like toolkits since then, the most well known being StarLogo [5],
NetLogo [6], Ascape [7], and early versions of Repast [8].
These toolkits tied the model to visualization and emphasized
ease of model development over efficiency.

MASON was among the first ABM toolkits aimed at
more significant model development efforts, emphasizing
large, complex simulations that might be run many times.
MASON emphasized efficiency, multithreading, replicable
results, model/visualization separation and serialization, a wide
variety of visualization facilities, and ease of customization and
extension. Later toolkits (such as newer versions of Repast)
have since continued in this vein. However these toolkits
(including MASON) have largely been confined to a single
process and memory space.

As hardware has gotten cheaper, ABM models have been able
to become progressively larger and more complex, giving rise to
a new trend in ABM toolkits which provide high performance
distributed simulation, such as FLAME [9], Repast HPC [10],
and D-MASON [11]. One ABM direction of note has been
the creation of models embedded in geographic information
systems (or GIS). GIS models are often complex and very
large, and so provide both challenges and good motivation
for distributed simulation. MASON has a full-featured GIS
simulation facility called GeoMASON [12].

B. Load Balancing and Data Partitioning in Distributed
Simulation Systems

Our focus in this project is to speed up the execution of a
MASON simulation by employing techniques from Parallel
and Distributed Simulation that were first proposed in the
1970s. The basic idea is to partition the simulation model to
be able to run concurrently on multiple processors. Within
this context load balancing has long been recognized as a
critical technique for improving the performance of distributed
simulation systems [13], [14].

Other work involves developing algorithms for finely tuning
process migration strategies. For instance, a load balancing
scheme aimed at a High Level Archeture (HLA) uses estimates
of time delay and time gain factors to more precisely re-
distribute load [15]. The work in [16] describes a method to
parallelize a large-scale epidemiologic ABM developed using
the Repast HPC toolkit. The authors show that by using a 128
node cluster they can achieve speedups over around 1300%.

In terms of distributed MAS simulation, a variety of
approaches have been proposed, such as a combination of
both an agent-based and a discrete-event simulation model
[17]. There has been a growing interest in the integration of
GIS and MAS (e.g. [18]-[20] and now several open source
MAS toolkits now offer support the integration of geographical
information into their simulations (e.g. NetLogo [6], GAMA
[21], Repast [8], and MASON (see [22] for a review). This

allows researchers not only to link their models to actual
geographical locations but also to simulate various processes
of a diverse group of objects that are impacted by space
and observe the resulting spatial patterns over time. Such
applications range from the studying past civilizations; to the
spread of diseases; to analysis of crime, riots and conflict
[23]-[27].

III. DISTRIBUTED MASON ARCHITECTURE

The primary motivation to parallelize and distribute MASON
is to provide simulation support for massively scaled simulation
systems involving upwards of tens or even hundreds of millions
of agents. One of the goals is to take advantage of relatively
inexpensive compute clusters now commonly available to
researchers through cloud services such as AWS and Azure,
or at the University or Laboratory level. Here we provide a
description of the MASON architecture and the challenges of
transforming it to a PDES environment.

A. MASON Design

The single threaded version of MASON was developed
using a Model-View-Controller (MVC) architecture. MASON
is actually divided into two parts, a visualization portion and
a model portion, and the MVC architecture allows complete
separation between these two portions. The model portion is
entirely encapsulated in a single top-level object which has no
back-pointers to the visualization.

The heart of the MASON model portion is a real-valued time
schedule. The schedule allows agents to register themselves to
be called at some time in the future. Models also typically hold
one of more fields to represent some form of space. Each field is
a data structure that logically relates objects and values required
by the modeler. MASON provides built-in field structures in
the form of square or hex grids, continuous space, graphs, and
multigraphs. Fields can be 2D or 3D, bounded, unbounded, or
toroidal, or entirely user-defined. Finally, MASON models are
fully serializable and self-contained, and can be run side-by-
side in multiple threads or in the same thread.

The visualization portion typically contains a console which
enables the user to control the simulation schedule and various
global parameters, plus one or more windows (called displays)
which allow the user to view and manipulate data field
representations. To do this, displays call upon one or more field
portrayals which can visualize, inspect, and manipulate each
field representation in a wide variety of ways: these in turn
call upon simple portrayals which do the same for individual
objects or data stored in the fields.

B. From MASON to Distributed MASON

We are presently testing Distributed MASON on three mod-
els drawn from MASON’s standard model archive: HeatBugs,
Flockers, and CampusWorld. These three models are spatially
organized and so are good targets for distribution, and they
vary significantly from one another in important and useful
aspects. We describe them here.



Fig. 1. MASON’s HeatBugs, Flockers, and CampusWorld models.

a) HeatBugs: Introduced in the SWARM toolkit, this
model is effectively the “Hello World” model of agent-based
modeling. In HeatBugs, an NxN toroidal grid environment is
populated by some M bugs. Each grid square can hold zero or
more bugs and has a current heat value. Bugs heat up the grid
square they are on, and this heat both evaporates and diffuses
to neighboring squares. The bugs do not like it to be too cold
or too hot, and wander to neighboring squares to hill-climb to
their preferred temperature.

MASON’s non-distributed HeatBugs model is implemented
using a 2D array of doubles (the heat) and an overlaid 2D
toroidal sparse grid of objects (the bugs). A sparse grid uses a
hash table to relate objects to locations rather than storing them
in a 2D array. The bugs are also agents on the schedule, and
an additional agent on the schedule (the diffuser) is responsible
for globally evaporating and diffusing heat. Each bug must be
able to read the heat values of neighboring cells.

b) Flockers: This is an implementation of the classic
Boids flocking model [28]. Here, some B flocking robots (the
“boids”) move about on a continuous 2D toroidal space CxC
in size. An additional D < B randomly distributed boids stay
“dead” (immobile) and serve as obstacles for the others. Each
boid maintains statistics on nearby boids (such as their locations
and headings) and uses these statistics to build five directional
vectors which represent behaviors such as avoidance of others,
flock cohesion, and so on, then moves along the a weighted
sum of the vectors.

MASON’s non-distributed Flockers model is done in a 2D
continuous space. MASON’s continuous field places each
object into a sparse grid (discretizing the continuous space) and
additionally associates them with a floating-valued location.
The boids are stored in this space and are also placed on the
schedule. Each boid must be able to perform neighborhood
lookups for nearby boids some fixed distance from him.

c¢) CampusWorld: This model uses MASON’s GeoMA-
SON toolkit to define an (effectively) 2D continuous space
populated by buildings, roads, sidewalks, and students. Build-
ings and roads are arbitrary 2D shapes, the sidewalk network

Fig. 2. Illustration of a field and its partition.

consists of paths in the form of sequences of straight lines
(called linestrings in GIS parlance), and students are point
objects. The students move randomly but are constrained to
move along pathways only. Students do not collide with one
another. MASON’s CampusWorld map is a GIS representation
of the George Mason University campus.

GeoMASON uses a combination of MASON data structures
(such as 2D continuous space) and special geometric data
structures provided by the JTS Topology Suite toolkit [29].
Unlike the Flockers and HeatBugs model, many objects in the
CampusWorld model (notably sidewalks and roads) may span
the entire environment. Students must be able to identify the
sidewalk nearest to them so as to follow along it.

IV. DISTRIBUTED DATA MANAGEMENT

In Distributed MASON, the field is partitioned into several
axis-aligned (hyper)rectangular regions, as shown in Figure 2.
Following standard PDES practice we partition the network in
a set of concurrently executing Logical Processes (LPs). Each
LP holds one region and processes all the agents located in
that region.
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Fig. 3. Illustration of the Halo and Shared Area of a partition.

Message exchange between LPs can be implemented either

with a centralized message broker or in a peer-to-peer fashion.

In our preliminary experiments with D-MASON, which uses
the former approach, the centralized message broker quickly
becomes a performance bottleneck as the number LPs or
messages increases. Hence in Distributed MASON we use
the peer-to-peer approach and try to use the communication
between neighbors whenever possible for better scalability. We
use the OpenMPI toolkit [30] to support many of the distributed
features and algorithms in our implementation.

For most of the time, an agent is assumed to read only
nearby data (defined as its Area of Interest (AOI)), and modify
only data at its location. The system supports the rare cases
when an agent needs to access and modify data in a remote
location, but with a significant performance penalty.

The simulation and synchronization between LPs is done
in a time-stepped fashion. For each time step, each LP will
process the agents in its corresponding region that are scheduled
for that time step. All the message exchanges, including
agent migration, halo exchange, and remote access, will
performed once the processing of the agents is complete. The
synchronization between LPs is achieved at the end of each
time step through OpenMPI API calls. Usually synchronization
is achieved implicitly by the OpenMPI neighbor collectives in a
decentralized way, but in certain cases a global synchronization

using OpenMPI global collectives or barrier calls is also used.

A. Halo Exchange

To support rapid access of data stored within an AOI, each
LP not only stores the data in its own region, but also maintains
a cache of the data in its surrounding neighbors. The cached
area is called the Halo Area. Part of the LP’s own data will
also be cached by its neighbor LPs, and that part is called the

Shared Area. The sizes of these two areas are defined by AOIL

Figure 3 provides an example of the Halo and Shared Area
of a partition. Algorithm 1 shows the overall Halo Exchange
algorithm.

After each simulation step, each LP will pull the data from
its neighbors into its Halo Area and at the same time send the

Fig. 4. Tllustration of Halo Exchange.

data in the shared area to its corresponding neighbors. This
process is called Halo Exchange and is shown in Figure 4.

Our implementation supports both grids and continuous fields
and both primitive value and object types. Primitive type data
can be transferred between LPs directly. For objects, serial-
izations and de-serializations are required for communication
between LPs. Serialization is supported in our system with
either the default Java serialization routines or with (faster)
custom user-defined routines which potentially do not require
building an object graph.

Algorithm 1 Halo Exchange

> Each LP initializes first
1: if not initialized then
2 myPart < getPartition(self)
3 myHalo < expand(myPart, aoi)
4 for each nid € findNeighbors(self) do
5: neighborPart <— getPartition(nid)
6 neighborHalo < expand(neighborPart, aoi)
7 sendRegions[nid] <— myPart N neighborHalo
8 recvRegions[nid] <— myHalo N neighborPart
9 initialized < true

> Halo exchange
10: sendBuf, recvBuf < initBuffers()
11: for each nid € findNeighbors(self) do
12: sendBuf[nid] < packRegions(sendRegions[nid])
3: MPINeighborAllToAll(sendBuf, recvBuf)
14: for each nid € findNeighbors(self) do
15: unpackRegions(recvBuf[nid], sendRegions[nid])

B. Remote Access

Access to data outside an agent’s AOI is supported in our
system via Remote Procedure Calls (RPCs) between LPs. Read
access to the field data is provided in a synchronous fashion,
meaning that the caller will get the value once the RPC call
returns. One pitfall here is that the order of the read access
from other LPs and modifications from its own LP is undefined,
which may potentially cause a inconsistent view of the field.



Fig. 5. Options for local load balancing.

To avoid such an inconsistency, each LP caches the state of
the field in the previous step to serve the read access from
other LPs so that the modifications at the current step will not
interfere with that access. On the other hand, write access to the
field and access to agent states is supported in a asynchronous
way. Essentially each LP has a mailbox. When an agent tries
to modify the state of the field or another agent stored on a
remote LP, such modification request will be encapsulated into
a message and sent to the target LP. All the messages will get
delivered by the end of the current round and will be processed
at the start of next round by designated agent on each LP.

C. GIS Data

As one of major areas where MASON is being used (social
and geographical simulations) often involves a large number
of geometric objects in the model. In most cases, these objects
are static and read-only, but may span many LPs, e.g., rivers,
country boundaries, roads. In Distributed MASON, instead of
partitioning static and immutable objects into different LPs,
each LP will have a complete copy of all the static geometric
objects in the space so that the extra communication can be
eliminated at the cost of slightly more memory usage. For
mutable GIS data, if the object can be abstracted into a point-
object, it can be easily handled in the same way as other
regular point-objects (agents, field cells, etc.) in MASON. For
mutable volumetric GIS data, e.g., a polygon with some mutable
attributes, such object will be stored in one master LP while
other LPs covered by it only store a reference to the object.
All the read and write requests to the object will be handled in
the same way as the aforementioned remote access mechanism,
despite that the object may be in the neighborhood.

V. LOAD BALANCING

A balanced workload among all processors is critical to
simulation performance. In this section, we will introduce the
load balancing strategies used in Distributed MASON.

Our goal for load balancing is to distribute the workload
among LPs such that the runtime of each step for all LPs
is roughly the same, so that faster LPs do not waste time
waiting for slower LPs to complete. Determining an optimal
load-balancing is a well-known NP-Complete problem. In
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Distributed MASON we have implemented several heuristics
that work at different levels and with different effectiveness and
overhead. The goal at the lower levels is to balance the load
frequently with minimum overhead, while the goal at higher
levels is to distribute the workload as evenly as possible.

A. Local

In local load-balancing, each node tries to balance the
workload locally with its neighbors. To do this, each node first
measures its runtime for every step. When a node performs
load-balancing, it collects the runtimes from its neighbors, and
based on the runtimes, it chooses the neighbor and action
(either expand or shrink its region) such that the variance of
runtimes among the node and all its neighbors is minimized.
When making load-balancing decisions, we assume the runtime
is linear in the size of the region, i.e., if we shrink the region
by 30%, its runtime is expected to become 30% lower as well.
The overall procedure is shown in Algorithm 2.

Each partition adjustment can only shift the border by at
most the AOI to avoid additional data exchange between nodes
since each node already has part of its neighbors’ data in
its halo area. This restriction may seem to slow down the
load balancing but we argue that this is actually preferable
because, by limiting the adjustment and avoiding additional data
exchange, the overhead is minimized and therefore the local
load balancing can be done more frequently, better adapting
to the change of workload.

Despite its simplicity and low overhead, there are limitations
to local load-balancing. First, to avoid expensive coordination,
we must constrain things such that a LP and its neighbors
may not perform load-balancing at the same time. To do this,
we implemented a graph coloring algorithm in the system so
that at each step, only nodes with a designated color may
balance their loads with neighbors. Second, since each region
is (hyper)rectangular and each LP can only hold one region,
the boundary shift can only be done when both the source
and the destination are aligned. This is shown in Figure IV-C,
where the blue regions correspond to viable load-balancing
actions while the red region is not viable. This can result in a
local optimum where loads are poorly balanced.



Algorithm 2 Local Load Balancing

Algorithm 3 Hierarchical Load Balancing

1: runtimes < exchangeNeighborRuntime()

2: myPart < getPartition(self)
3: myAction < None
4: if isMyTurn() then
> For each dimension, among the neighbors
that are aligned with me, find the one
whose runtime differs from mine the most
5 target <— 0
6: maxDiff < 0
7: for d < 0 to getNumDimensions() do
8 neighbors < findNeighborsInDimension(self, d)
9: for each nid € neighbors do
10: if isAligned(myPart, getPartition(nid), d) then
11: delta < aoi[d] / getSize(myPart, d) x
12: (get(runtimes, self) — ger(runtimes, nid))
13: if |delta]> maxDiff then
14: target <— nid
15: maxDiff «+ |delta]
> Generate load balancing action between self and target
16: myAction < generateAction(target)

> Exchange the actions with all other
nodes and apply all the actions
17: actions <— MPIAllGather(myAction)
18: for each action € actions do
19: apply(action)
> Synchronize the data in the Halo area
20: HaloExchange()

B. Global

As mentioned before, local load-balancing approach can get
stuck in local optima and so we need to periodically redistribute
the workload globally. Currently global load-balancing is
implemented in the centralized fashion. One LP collects the
runtime information and regional data from all the LPs. Various
load-balancing heuristics can then be executed by that LP to
calculate a new near-optimal partitioning scheme. Finally the
new scheme and the corresponding data will be distributed
back to all other LPs and the simulation will continue.

The large amount of data transfer in this process may seem
to incur a high overhead, but this can work well in practice for
two reasons. First, most simulations using MASON come with
a GUI and associated visualizations, which already require
constant collection of data to one node. Second, many effective
load-balancing algorithms, if implemented in a distributed way,
may require significant coordinations and many small message
exchanges among all the nodes, which is far less efficient than
the few bulk transmissions in our approach.

C. Hierarchical

The local and global load balancing algorithms discussed so
far are at two ends of the overhead vs. effectiveness spectrum. In
practice, it is preferable to have a tunable algorithm capable of

Input: level
1: group < getGroup(level)
2: myNode < getNode()

> Every node in the group sends its
runtime and data to the group master
3: runtimes <— collectRuntimesTo(getMaster(group))
4: data <— collectDataTo(getMaster(group))

> The group master calculates the new centroid
. if isGroupMaster(myNode, group) then
centroid <— initEmptyCentroid()
for each node € getLeaves(myNode) do
centroid < centroid + center(node) x
get(runtimes, node) / sum(runtimes)

R A

> Every node updates its
partition based on the new center
10: newCentroids < MPIAllGather(centroid)
11: for each newCentroid € newCentroids do
12: moveCenter(newCentroid)

> Distribute the data to all nodes
based on the new partition
13: distributeFrom(getMaster(group, data))

> Synchronize
14: HaloExchange()

balancing the two. So far we have assumed the entire field can
be arbitrarily partitioned into axis-aligned (hyper)rectangular
regions. We can constrain the unlimited partitioning flexibility
by making use of a tree structure. By using data structures
such as such as K-D trees or quadtrees, load balancing can be
done quite effectively in a hierarchical fashion.

Consider quadtree-based partitioning as shown in Fig-
ure IV-C. Every node in a quadtree is responsible for a
rectangular region. Nonleaf nodes have four children, and
partition their region into four subregions, each assigned to
one child. For load balancing, each region is only in charge of
adjusting the partition between its four subregions.

We have implemented a quadtree-based scheme by assuming
that the tree will always be full. Therefore we only need to
balance the load within the a given ply, instead of between two
plies. Since one region corresponds to one LP in our system,
the assumption of a full tree imposes restrictions on the number
of LPs that can be used by our system. For example, in case
of a quadtree, the number of LPs must be a power of four. To
alleviate this issue, we allow nodes at the second last level
to either have four leaves (like an ordinary quadtree) or two
leaves (like a K-D tree) so that the system can fully use powers
of 2 LPs.

Like the local load balancing algorithm, the hierarchical
algorithm performs load balancing based on the runtime of the
LP. The node will first collect the runtime of its children. Then
it will calculate the centroid of the children’s centers using
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the DHeatBugs model.

their runtimes as weights. The result will be used as the new
origin for the node’s partitions. The runtime of this node will
be set to the maximum of its children’s runtimes. To apply
the changes, the node will first collect all the data from its
children and redistribute the data based on the new partition
scheme.

Balancing higher-level (that is, more global) plies in the
tree will be much more expensive, so they are performed at a
correspondingly lower frequency than lower levels. The exact
frequencies of load balancing at different levels is determined
dynamically by comparing the estimated performance gain after
balancing and the overhead it may incur. The entire procedure,
shown in Algorithm 3, describes the process of hierarchical
load balancing.

VI. EVALUATION

In this section, we evaluate the performance of Distributed
MASON using Amazon Web Services. Since our system uses
time-stepped synchronization and therefore is more tightly
coupled, here we focus evaluation on a more parallelized
scenario where all the EC2 instances used are the same type and
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for the DFlockers model.
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model in D-MASON and Distributed MASON.

in the same network. The EC2 instance used in our experiments
is the c5.large type (2 vCPUs and 4GB RAM) running 64-bit
Ubuntu 16.04 LTS. OpenJDK 1.8.0 and GCC 5.4.0 are used
to compile the system, OpenMPI 3.1.0, and its Java bindings.
Each EC2 instance holds only one MPI slot and corresponds
to one logical processor. All the results are obtained through
10 repeated experiments with different random seeds and 95%
confidence intervals are provided in all applicable figures, even
though some of them are too small to be visible. The metric of
interest is the average simulation rate, defined as the number of
steps executed per second. Unless specified otherwise, the field
in partitioned uniformly and we calculate the average simulation
rate using the time consumed by running the simulation for
2000 steps.

The test problems are distributed versions of the three previ-
ously described demo applications implemented in Distributed
MASON, called DHeatBugs, DFlockers, and DCampusWorld
respectively. We first provide the scalability result for these
problems under different workload configurations, and then
show the effectiveness of two load balancer implementations:
Greedy and Hierarchical, when running in DHeatBugs.



— N = 40000 N = 30000 —— N = 20000 —— N = 10000
2 200
S
g
5
& 1507
'y
[}
R
2 1001
[y
o
[0}
=
E 501
£
0 8 6 24 32 40 48 56 64

Number of Logical Processors

Fig. 11. Simulation rate with various number of processors for the DCampus-

World model.

A. Scalability

We first evaluate the scalability of the DHeatBugs application
implemented in Distributed MASON under different numbers
of agents and field sizes, and the results are shown in Figures 7
and 8, respectively. In both Figures the X-axis represents the
number of logical processors used for the simulation and the
Y-axis represents the resulting simulation rate.

In Figure 7, we fix the field size to 6400x 6400 and vary the
number of agents from 3200 to 128000. We can see from the
Figure that the simulation rate increases nearly linearly with
the number of processors in all three settings. In Figure 8, we
fix the number of agents to be 3200 while using various field
sizes from 1600x 1600 to 6400x6400. Under relatively heavy
workload (6400x 6400 field size), the simulation rate scales
almost linearly. As the workload intensity becomes lighter,
the synchronization and network communication overhead
introduced by the distributed facilities becomes more and more
dominant, counterweighting the performance advantage brought
by more processors. Therefore the simulation rate increases

sub-linearly in cases of 3200x3200 and 1600x 1600 field sizes.

We now evaluate the scalability of the DFlockers application.
In this experiment, we choose a fixed field size (1000x 1000)
and various numbers of agents (5000 to 20000) to obtain the
result for various agent densities D from 0.005 to 0.02 agents
per unit square. The result is shown in Figure 9. Similar to the
result of DHeatBugs and as would be expected, Distributed
MASON exhibits sublinear scalability when the workload
intensity is quite low (e.g., D =0.005 and D = 0.01). As the
workload intensity increases, the simulation rate of DFlockers
scales more and more linearly as the the number of logical
processors increases.

Since the DFlockers application is also implemented in D-
MASON, we compare the simulation rate for the DFlockers
application in both D-MASON and Distributed MASON. In
this experiment, we use a 10000 x 10000 field and 10000 agents.
The Perfectly Scalable line is obtained by multiplying the sim-
ulation rate of the single-node Flockers application in MASON
by the number of the logical processors used. As shown in

—— QT-None —-— QT-Hierarchical — - SP-Greedy
QT-Greedy - SP-None
141
!
|
12+ i
!
o 107 1
3 |
c |
k] i
5 81 ,
S |
g 6] <
£ B
c ‘\
g 4 i
LA
21 \
~ .
C— - — - — -~ — — —
0, o o ¢ ¢ ¢ 1 & & ¢ ¢ — —— —— ——

1000 1250 1500 1750
Simulation Steps

Fig. 12. Variance among nodes’ runtimes as the simulation progresses with
various load balancers and initial partition schemes, in the DHeatBugs model.

Figure 10, the MPI-based Distributed MASON outperforms D-
MASON significantly. As the number of processors increases,
the centralized message broker used in D-MASON becomes
a bottleneck while the MPI-based Distributed MASON uses
point-to-point communications and provides better simulation
rate. In fact, with our specific configuration, the ActiveMQ
message broker used by D-MASON fails to process all the
messages in time when there are 20 or more processors. The
simulation then becomes extremely slow and often crashes.
Hence only the result with 2-16 processors are shown for
D-MASON in Figure 10.

Finally, we evaluate the scalability of Distributed MASON in
a more complex application: DCampusWorld. We set the field
size to be 3000x3000 and the number of agents to be from
10000 to 40000. The result is shown in Figure 11. Similar to the
results obtained for DHeatBugs and DFlockers, the scalability
of the system improves as the intensity of the workload
increases. For the lightest workload (N = 10000), the distributed
performance gain becomes saturated with 32 processors and,
with 64 processors, the synchronization overhead overcomes
the performance advantages, yielding a slight lower simulation
rate even with more processors. However for the highest
workload (N = 40000), the performance scales well with the
number of processors, where with 32 processors we can get
an approximately 13 times the acceleration of the single-node
result.

B. Load Balancing

Here we evaluate two load balancers: greedy and hierarchical.
As discussed before, the greedy balancer running on each node
attempts to shift the partition boundaries with its local neighbors
with the goal being to minimize the runtime variance between
neighbors. The hierarchical balancer works only on top of
a quad-tree partitioned field. Each node in the tree structure
will be in charge of balancing the runtime of its four children
through moving the center that divides its region. The balancer
can be triggered when the estimated performance gain after the
balancing exceeds its overhead. In our experiments, however,



HEE None
Greedy

B Hierarchical
—— Greedy Overhead

---- Hierarchical Overhead

Simulate Rate (steps per second)
Balancing Overhead (

16
Number of Logical Processors

Fig. 13. Simulation Rate with various number of processors and load balancers
for the DHeatBugs model.

the greedy balancer runs every 100 steps for simplicity. For
the hierarchical balancer, the workload will be balanced every
100 steps at the lowest level, every 400 steps at the second
lowest level, and every 1600 steps at the third lowest level, etc.

We test with the DHeatBugs application using a 6400x
6400 field and 3200 agents. To show the effectiveness of the
load balancer, we start the simulation with the field manually
partitioned in a very unbalanced way. Since the agents are
uniformly and randomly placed in the field, with unbalanced
partition, we expect a very unbalanced workload at each node.

Since the hierarchical load-balancer only works in a tree-
like partition scheme while the greedy balancer works in
any rectangularly partitioned field, we evaluate both partition
schemes, one hierarchically partitioned with a quad tree, the
other partitioned in a striped fashion, denoted as QT and
SP, respectively. To demostrate the load balancers in action,
we take a snapshot of a single run of the DHeatBugs with
16 processors and the two aforementioned initial partitions.
Figure 12 shows the variance of the nodes’ per-step runtimes
as the simulation progresses. As we discovered from the
experiments, with the striped partition the greedy balancer
(SP-Greedy) works well in bringing down the variance of the
runtime. With the hierarchical partition, the greedy balancer
(QT-Greedy) is gradually stuck with a local optima and only
moderately reduces the variance while the hierarchical balancer
(QT-Hierarchical) is very effective in balancing the workload.
As shown in the Figure, after two levels of load balancing, the
variance of the nodes’ runtime becomes nearly zero, indicating
a well-balanced workload.

Next we evaluate the simulation rate and the balancing
overhead of the two balancers with different number of logical
processors. Figure 13 shows the simulation rate (bar plots using
the left Y-axis) and the overhead of the balancer (lines using
the right Y-axis) in DHeatBugs with a hierarchically partitioned
field. Similar to the previous result, the hierarchical balancer can
keep a balanced workload among nodes, resulting in the highest
average simulation rate. Even though the greedy balancer
performs poorly in balancing the workload, its overhead is

much lower compared to the overhead of the hierarchical
balancer. The overhead of both balancers decreases as the the
number of processors increases. This is because with the same
field size, the more processors the system uses, the smaller the
region on each processor is and therefore less expensive for
the balancer to rearrange the data between the processors.

VII. CONCLUSION

This paper described the design and implementation of
Distributed MASON, a distributed version of the MASON
multi-agent simulation toolkit. We first described Distributed
MASON’s local agent-based data management scheme using
Halo Exchanges along with global data sharing via RPC
calls. We then described our approach for achieving scalability
and high performance using multiple types of load balancing
algorithms. At the local level LPs manipulate their Areas-of-
Interest in response to changes in workload distribution. At a
global level Distributed MASON can use a centralized approach
where runtime information is collected by a single LP. We
considered several heuristics for load balancing, including a
greedy approach and a tree-based hierarchical method. We
then evaluated our system using an implemented running on an
AWS C5 instance. We found that Distributed MASON achieved
highly scalable performance, in terms of linear performance
increases as the size of the simulation grew. We also found
that its load balancing scheme was effective and was, not
surprisingly, sensitive to the size and density of the workload.
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