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ABSTRACT

Archive-based cooperative coevolutionary algorithms attempt to
retain a set of individuals which act as good collaborators for other
coevolved individuals in the evolutionary system. We introduce
a new archive-based algorithm, called iCCEA, which compares
favorably with other cooperative coevolutionary algorithms. We
explain the current problems with cooperative coevolution which
have given rise to archive methods, detail the iCCEA algorithm,
compare it against other traditional and archive-based methods on
basic problem domains, and discuss the reasons behind the perfor-
mance of various algorithms.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms

Experimentation
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1. INTRODUCTION

Cooperative coevolution [5, 15] tries to simplify the search space
of a problem by breaking the structure of a candidate solution into
subcomponents, each evolved in a separate population. The fitness
of an individual is assessed by testing it in combination with indi-
viduals from the other populations to form complete solutions, and
(typically) taking the maximum result from those combinations.

One notional use of cooperative coevolutionary algorithms
(CCEAy) is to take advantage of decomposable problems to sim-
plify the search space. Though in some cases CCEAs may not
behave in this fashion [6], we believe this heuristic to be the pri-
mary impetus for using a CCEA. To begin, imagine the situation
where each component’s contribution to the joint fitness turns out
to be entirely independent of one another. In this “trivial” case,
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cooperative coevolution can reduce an O(a") search space into n
separate component spaces each O(a) in size, assuming the com-
ponents all have the same length. Of course, in this case one could
just as well perform a separate evolutionary run on each of the sub-
spaces. But in more interesting problems, components will have
dependencies among them, but some — hopefully much — of the
space may consist of relatively independent regions. If the problem
is decomposed into components along these “fissure” lines, cooper-
ative coevolution promises to exploit the decomposition to achieve
much of the aforementioned search space reduction when separate
per-subspace runs are not feasible.

Unfortunately, by projecting the search space into separate com-
ponent search spaces, CCEAs lose a great deal of information. The
fitness of component individuals is sensitive to the components
(collaborators) with which they are teamed. As a result, CCEAs
may not just get caught in but gravitate towards suboptimal solu-
tions represented by Nash equilibria in the joint search space [16].

One way to counter this is to endow the individuals with more
information about which collaborators would show the individuals
at their best. Imagine if one had an oracle function f(i) which,
for a given individual 7, provided that collaborator which helped
i achieve its maximum possible fitness. If we knew f, we could
reduce the problem to the aforementioned “trivial” case. f is of
course theoretical fiction. But a real-world heuristic estimate of f
can be helpful even if noisy and inaccurate: significant performance
improvements have been demonstrated even when f is only partly
available [11].

The obvious approximation of f is to test i with a large number
of collaborators and to take the maximum. Earlier work [2, 3, 17]
has demonstrated the efficacy of taking the maximum of N eval-
uations with random collaborators from the other population, plus
perhaps the best performing collaborator of the previous genera-
tion, rather than the average or minimum of them. The advantages
of using more collaborators were graphically illustrated in [13], and
the benefits of varying the collaboration scheme over time were
demonstrated in [10]. But using large numbers of collaborators
makes for expensive fitness evaluations, and at some point, testing
with more collaborators may start hurting more than it helps.

iCCEA attempts to reduce the number of fitness evaluations by
maintaining an archive of good collaboration choices for each of
the populations. The idea is to intelligently identify which mem-
bers of the collaborating population are likely to be good collab-
orators, and only test individuals against that small set rather than
against the full population itself or against a large number of ran-
dom collaborators. This is similar to maintaining information about
useful past collaborations, as used in [9, 18]. iCCEA selects these
collaborators from among those members of the previous popula-
tion which helped individuals improve themselves the most. iCCEA



further reduces the archive size (and thus the number of evalua-
tions) by taking advantage of the ranked nature of tournament se-
lection: if a collaborator improves an individual, but not enough to
change its rank (and thus its evolutionary viability), it is not con-
sidered for the archive. Further, iCCEA maintains diversity in the
archive by ensuring that it doesn’t contain individuals whose max-
imal collaborations are too close to one another in solution space.

In this paper we will detail the iCCEA archive algorithm, and
we will compare it against a related algorithm, pCCEA [1]. We
will also compare these algorithms against three ordinary CCEAs
(cCCEA, rCCEA and rCCEA-Perm, described later) on several two-
population CCEA test problems. Overall, the results will show
that iCCEA significantly outperforms its competitors in most ex-
periments we performed.

2. COOPERATIVE COEVOLUTION

CCEAs use multiple populations to optimize a final joint solu-
tion. Each population evolves individuals representing a compo-
nent of the final solution: a full candidate solution is formed by
joining together an individual chosen from each population.

In a CCEA, an individual is evaluated by joining it with one or
more individuals (collaborators) from the other population and as-
sessing the performance of each of the results. Generally (and in
all cases in this paper) the fitness of the individual is the maximum
reward over these evaluations. In other respects, the evolutionary
process within a population is typical. In this paper we will restrict
ourselves to two populations, each using a generational EA.

There are three common kinds of CCEAs. In the sequential
CCEA [15], only one population is evaluated and bred per genera-
tion (i.e. the populations take turns). In parallel CCEAs [16], both
populations are simultaneously evaluated and bred. In some par-
allel CCEAs, the individuals are assessed by combining them with
collaborators from the previous generation, while in others, the cur-
rent generations’ collaborators are used. All algorithms presented
in this paper will use this last case.

How should collaborators be chosen for an individual? One way,
which we term the cCCEA algorithm, is to evaluate an individual
against every single collaborator in the other population. cCCEA is
guaranteed to converge to the global optimum if the population size
is sufficiently large [11]. An alternative is to sample from the other
population. In the rCCEA algorithm, an individual’s fitness is the
maximum reward over evaluations with six individuals: five ran-
dom individuals, plus the fittest individual in the collaborator popu-
lation from the previous generation. A variant of rCCEA, which we
will call rCCEA-Perm, chooses random collaborators by shuffling
each population and then pairing individuals in the populations. In
rCCEA-PERM, both the individual and its collaborator count the
evaluation towards their tally, and so the number of evaluations is
almost halved.

Bucci and Pollack [1] applied recent advances from competi-
tive coevolution research to improve CCEAs, resulting in the pC-
CEA algorithm. pCCEA employs an elitist archive in each popu-
lation which maintains those individuals in the population which,
as collaborators, were effective in assisting some individual from
the other population. The algorithm defines a domination relation-
ship among individuals: individual i dominates individual j if, for
all collaborators x, i’s reward joined with x is never worse than
J’s reward joined with x, and there exists at least one collaborator
y for which i’s joint reward is higher than j’s. Each generation,
pCCEA first evaluates every individual with every possible collab-
orator, then assembles the set of individuals dominated by no one
else. This set forms the archive, and is automatically copied to the
next generation. pCCEA then fills the rest of the next generation by

iteratively selecting two random individuals and comparing them.
If neither dominates the other, both are selected for breeding. If
one is dominated by the other, only the dominating individual is
selected.

It is important to note some possible drawbacks of this algo-
rithm. First, pPCCEA does not use the archive to define a small set
of collaborators. Instead, it uses the archive only to promote cer-
tain collaborators to the next generation where they, along with new
population members, will be used to evaluate individuals. Thus it
maintains a set of “informative” collaborators but does not try to
use that set to minimize the number of necessary evaluations. This
is both positive and negative, as it requires many evaluations, but
provides diversity in evaluations by adding newly-generated collab-
orators to the evaluation mix. Second, pCCEA does not use fitness
to select individuals. An individual may be selected if it collabo-
rates better than others with even a single partner from the other
population, even if that collaboration result is very poor. Third, pC-
CEA only compares individuals to other individuals and not to the
group. Thus an individual may be selected for the archive if it beats
each individual in some collaboration scenario even if it is never the
best choice in the population for any collaboration scenario. Both
of these features may tend to slow evaluation as more individuals
are promoted to the next generation. Fourth, and importantly, our
experiments in Section 3 indicate that pCCEA’s archive tends to
converge to the Pareto frontier, which may be unfortunately infinite
in even simple cooperative multiagent domains. In such situations,
the archive will rapidly consume the entire population, and search
will stagnate.

2.1 The iCCEA Algorithm

The iCCEA algorithm also maintains an archive of fruitful indi-
viduals, but it constructs and uses this archive in a manner different
from pCCEA. Notably, rather than testing individuals with the full
population of collaborators, iCCEA tests them only with the mem-
bers of the archive, plus additional randomly-chosen collaborators
if the archive size does not provide enough evaluations. i{CCEA’s ap-
proach to archive construction tends to result in very small archives,
even in pathologically bad situations for pPCCEA.

Like pCCEA, iCCEA promotes this archive to the next generation,
and uses tournament selection to fill in the rest of the new popula-
tion. Tournament selection is based on the fitnesses of the individ-
uals rather than pareto dominance. Because tournament selection
is used, we may consider just the rank ordering among the individ-
uals rather than their actual fitness. iCCEA tries to build a small
archive of collaborators which produce the same rank-ordering of
fitnesses among individuals in the other population as they would
receive were they tested with the full population of collaborators
in the previous generation. Each archive member helped some in-
dividual receive its highest reward, and thus provides information
about an “interesting” part of the collaboration space.

The size of the archive is an important factor. A large archive
is expensive to evaluate against, but it provides more information
about the complexity of the search space. An archive size of 1 re-
duces to a common evaluation approach for CCEAs [15, 17]: using
the best individual (from the previous generation) plus some indi-
viduals chosen at random from the other population.

Evaluation. At the beginning of a run, the archive (Archive)) of
each population p is simply set to the population itself. This means
that in the first generation, each individual of a population will be
evaluated against all the individuals of the other population. This
is expensive but it is intended to provide good initial collaborator
information before the archive adjusts to a more efficient size.



Evaluation is in three parts. First, individuals are evaluated
against the other population’s archive members. Second, if more
evaluations are desired (if the number of evaluations per individ-
ual has not yet reached MaxEvals), individuals in populations are
repeatedly paired off with individuals in the other population and
evaluated together. Third, each individual’s fitness is set to the max-
imum reward it obtained over all its evaluations this generation.
The pseudocode for evaluation process is:

iCCEA-Evaluation
Parameter MaxEvals: maximum evaluations per individual
For each population p
p’ = the other population
For each individual i in p
For each individual j in p’
F = o
For each individual a in Archive,
Ff = Reward,(i,a)
F! = Reward, (i,a)
MaxArchive = max, |Archive,, |
Repeat for max (0, MaxEvals — MaxArchive) times
For each population p
Shuffle p
For i from 1 to PopSize
a; = individual in population p! with index i
by = individual in population p? with index i
Ffl‘ = Reward,, (a1,b)
Fb“ll = Rewgrdpz (ay,by)
For each population p
p’ = the other population
For each individual i in p
Fitness(i) = max jc,y F;

Breeding and Archive Selection. The breeding and popula-
tion reassembly phase of iCCEA proceeds similarly to the one in
pCCEA: the archive members are selected from the old population
and are copied directly into the new population, and the remainder
of the new population is filled with children bred using standard
evolutionary computation algorithms applied to the old population
(including the old archive). The entire previous population (includ-
ing the archive) competes for breeding. The pseudocode is straight-
forward:

iCCEA-Breeding
For each population
Select its new archive with iCCEA-Archive-Selection
Copy the archive into the new population
Fill the rest of the new population using standard EC breeding

Archive selection is intended to select those individuals which
revealed features of the projected joint space useful to the other
population. Specifically, we aim to select a minimal archive of
individuals from population p such that when assessing the fitness
of individuals in the other population p’, testing them against the
full set of individuals in p would not change their rank ordering
beyond just testing them against the individuals in p’s archive. The
hope is that this archive would provide an accurate evaluation and
ranking of the individuals in p’ in the next generation as well.

We want this archive to be minimal because each individual in
p' is being evaluated against every single individual in p’s archive.
Large archives imply an 0(n2) evaluation cost per generation.
Therefore we add individuals to the archive only if they cause indi-
viduals in the other population to improve significantly enough so

as to effect the ranking. Of the various individuals which change
this ranking, we will select the ones which do so by raising fitnesses
to the highest levels.

iCCEA-Archive-Selection
Parameter MinDist: minimum distance requirement
For each population p
p’ = the other population
Archive, =0
Ineligible, =0
Repeat forever
For each individual i in p — Archive),
For each individual x in p’
Firl, = mMax jeArchive, F
Fit2l = max(Fitly, Ff)
For each individual x in p’
For each individual y in p’
i Fit2i. if Fitl, < Fitly and Fir2}, > Fit2},
Fit3, = . :
—oo  otherwise
For each individual i in p — (Archive, | JIneligible,)
MaxFit; = maxy yey Fit3%
a = arg max; MaxFit;
If MaxFit, = —oo
Break from repeat loop
Select y such that MaxFit, = maxyF it3§§y
If minicarchive,distance((a,y), (i, Collaborator;)) < MinDist
Ineligible,, = Ineligible,| J(a)}
Else
Add a to Archive
Collaborator, =y

The archive selection process starts from the empty set and pro-
ceeds iteratively. For each individual i not yet in the archive, and for
each individual x in the other population, we first compute Fitl,,
the fitness of x if evaluated in combination with all individuals cur-
rently in the archive. We then compute Fir2., the fitness of x if i
were part of the archive. Note that F' 1'1:25r > Fitl,. We use three
criteria to determine if i should be added to the archive. First:
does there exist a pair of individuals x and y in the other popula-
tion whose relative ranks change when i is added to the archive?
That is, is it true that 3x,y : Firl, < Firly and Fir2% > Fir2}? Sec-
ond, is the individual “eligible”? An individual i is ineligible if
there already exists an individual in the archive whose joint solu-
tion (with the collaborator whose rank it significantly improved) is
sufficiently “close” in genotype space to the joint solution formed
by i and the collaborator whose rank i improves most (we use eu-
clidian distance). Third, and finally, of all individuals i that meet
the first two criteria, we add to the archive the one that changed
the ranking by raising the fitness of its x to the highest level. Note
that the first individual to be selected for the archive is always the
one with the highest fitness. The naive algorithmic description of
iCCEA-Archive-Selection was chosen for clarity but is O(n?). It is
relatively straightforward to design algorithms that take advantage
of the relatively small archive size in order to significantly reduce
the asymptotic complexity.

3. EXPERIMENTS

In [1], Bucci compared pCCEA against certain traditional coevo-
lutionary algorithms. We continue that study with a further com-
parison of pCCEA, cCCEA, rCCEA, rCCEA-Perm, and iCCEA. For
iCCEA, we set MaxEvals = 5, but we used different settings for
MinDist: 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, and 1.0. We call



each iCCEA-m, where m is the MinDist parameter used.

We tested these algorithms over three different kinds of prob-
lem domains. The MTQ problem family, Rastrigin, and Griewangk
problems are multimodal problems (they have local optima) with a
discrete number of Nash Equilibria. The OneRidge, Rosenbrock,
and Booth problems are unimodal but have an infinite number of
Nash Equilibria. The SMTQ problem family is both multimodal
and has infinite Nash Equilibria. Infinite Nash equilibria often ap-
pear in the form of diagonal ridges or curves in the joint landscape,
where change in a single collaborator — expressed as a horizon-
tal or vertical move in the landscape — heads off the fitness ridge
and drops in fitness. To improve, both collaborators must change
simultaneously, resulting in a diagonal move along the ridge.

Some of the problems were inverted from their original form
to be used as maximization problems. All experiments employed
two populations of 32 individuals each. Individuals encoded real-
valued numbers between 0 and 1. Parents were selected via tour-
nament selection of size 2, and children were created via mutation
by adding to the parent’s value a number generated randomly from
a normal distribution with mean O and standard deviation 0.01, re-
jecting and reselecting the value if it fell outside [0...1]. The fittest
individual was copied automatically to the next population for cC-
CEA, rCCEA, and rCCEA-Perm. The entire archive survived auto-
matically from one generation to the next for iCCEA and pCCEA.

The experiments were performed using the ECJ package [8].
Given that the algorithms required different numbers of evaluations
per generation, we gave each a budget of 51200 evaluations (plus
or minus a few extra to complete the last generation). This led to
50 generations for pPCCEA and pCCEA, 134 generations for rCCEA,
240 generations for rCCEA-Perm, and a variable number of gener-
ations for iCCEA. Each experiment was repeated 250 times for sta-
tistical significance. Given that results often did not have a normal
distribution, we reported the 95% confidence interval for the me-
dian of the results (as recommended in [7]). Statistical significance
was verified via non-parametric pairwise t-tests. Each such test
was performed at a 99.999% confidence level (approximated via
the Bonferroni inequality) to provide an overall confidence level of
95% over all tests.

3.1 Multimodal Domains

Multimodal domains are challenging for cooperative coevolu-
tion because both populations need to coordinate to explore mul-
tiple peaks. We start our exploration in a simple two-peak do-
main used previously in [16] to emphasize the relative overgen-
eralization pathology associated with certain cooperative coevolu-
tionary algorithms. Following this, we analyze the performance of
the methods in two traditional optimization benchmark problems:
Griewangk and Rastrigin. As a summary of our findings, we ob-
serve that iCCEA performs best, especially for relatively small val-
ues of MinDist (usually for MinDist < 0.5). At the other extreme,
pCCEA appears to have the worst performance. The specifics of
these experiments follow.

3.1.1 The Maximum of Two Quadratics Domains

The maximum of two quadratics (MTQ) class of domains in-
cludes a global optimum and a local suboptimum, where the sub-
optimum covers a much wider range of the search space and is thus
difficult to escape. The problems have been used before by [1, 12].

The function for the MTQ class is defined as

Hix(1— 16*(.);7)(1)2 _16x(y—11)?

MTQ(x,y) <+ max {

)2 e
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Table 1: 95% confidence interval for the median performance
of the methods in the MTQ domain instance with H; = 50

Method Lower Bound Median Upper Bound
pCCEA 149.7024 149.79412 149.8466
cCCEA 149.99997 149.99997 149.99998
iCCEA-0.0 150 150 150
iCCEA-0.05 150 150 150
iCCEA-0.1 150 150 150
iCCEA-0.15 150 150 150
iCCEA-0.2 150 150 150
iCCEA-0.25 150 150 150
iCCEA-0.5 150 150 150
iCCEA-0.75 150 150 150
iCCEA-1.0 150 150 150
rCCEA 50 50 149.99998
rCCEA-Perm 50 50 150

where x and y may take values ranging between 0 and 1. Different
settings for Hy, H», X1, Y1, X2, Y2, S1, and S; affect the difficulty
of the problem domain in one of the following aspects. Hj and
H, affect the heights of the two peaks: higher peaks may increase
the chances that the algorithm converges there. S; and S, affect
the area that the two peaks cover: higher values for one of them
result in a wider coverage of the specific peak. This makes it more
probable that the coevolutionary search algorithm will converge to
this peak, even though it may be suboptimal. Different values for
X1, Y1, Xp, and Y, result in changes in the locations of the centers
of the two quadratics, which also affect the relatedness of the two
peaks: similar values of the x or y coordinates for the two centers
imply higher overlaps of the projections along one or both axes (the
projections of the joint space for one or both agents may retain more
information about the globally optimal solution even if the other
agent’s population starts to converge to the suboptimal solution).
In these experiments, we set S| = %, X = %, Y= %, H, =150,
Sy = i, Xo = %, and ¥, = }1. H, was varied across experiments,
but it was always less than 125.

First, we set H; to 50 to have a wide difference between the
heights of the two peaks. In this case, coevolution may have dif-
ficulties finding the global optimum primarily because the opti-
mum’s coverage is significantly smaller than that of the suboptimal
peak. Table 1 presents the performance of the methods in the MTQ
domain. The average run of iCCEA lasted about 262 generations
for each setting of MinDist. We observe that the iCCEA algorithm
converges to the optimal answer in most runs. Non-parametric sta-
tistical tests indicate that iCCEA is better than all other methods for
any setting of MinDist.

Similar to the experiments in [1], we set H| to 125 to create a
more deceiving domain instance: the individuals on the suboptimal
peak have higher fitness and are thus more likely to be selected.
This also reduces the size of the area where the optimal peak is
superior to the suboptimal one, making the problem harder than
when H; = 50.

The results (summarized in Table 2) indicate that iCCEA with
MinDist smaller or equal to 0.5 is the top tier performer, and it
significantly outperforms the other methods. The second tier con-
sists of cCCCEA, pCCEA, and iCCEA with MinDist greater than 0.5.
Last, rCCEA and rCCEA-Perm have significantly worse results than
all other methods. The difference in heights leads to a slight in-
crease in archive size for iCCEA. As a consequence, the average
run of iCCEA lasted around 253 generations, down from an average
of 262 generations when H; = 50 (this decrease is significant at the
99.999% confidence level).



Table 2: 95% confidence interval for the median performance
of the methods in the MTQ domain instance with H; = 125

Method Lower Bound Median Upper Bound
pCCEA 148.97783 149.4233 149.65022
cCCEA 149.99985 149.99991 149.99995
iCCEA-0.0 150 150 150
iCCEA-0.05 150 150 150
iCCEA-0.1 150 150 150
iCCEA-0.15 150 150 150
iCCEA-0.2 150 150 150
iCCEA-0.25 150 150 150
iCCEA-0.5 150 150 150
iCCEA-0.75 125 125 149.99998
iCCEA-1.0 125 125 125
rCCEA 125 125 125
rCCEA-Perm 125 125 125

Table 4: 95% confidence interval for the median performance
of the methods in the Rastrigin domain

Method Lower Bound Median Upper Bound
pCCEA -0.0001342016  -4.20476935e-05 -2.75237e-05
cCCEA -3.373491e-05  -1.92212125e-05  -1.20936875e-05
iCCEA-0.0 -0.99495906 -7.32915735e-07  -3.9109466e-07
iCCEA-0.05 -0.99495906 -1.44978885e-06  -4.859953e-07
iCCEA-0.1  -1.5460682e-06  -6.5733175e-07  -3.8390752e-07
iCCEA-0.15 -0.99495906 -1.46234045e-06  -7.4304603e-07
iCCEA-0.2 -0.99495906 -9.1238677e-07 -4.893715e-07
iCCEA-0.25 -0.99495906 -8.07612e-07 -4.2249255e-07
iCCEA-0.5 -9.465858e-07 -5.692597e-07 -3.5596943e-07
iCCEA-0.75 -0.99495906 -8.1733685e-07 -5.13917e-07
iCCEA-1.0  -2.7152691e-06  -6.213839e-07 -4.274801e-07
rCCEA -0.9949591 -5.13458285e-06  -2.3090972e-06
rCCEA-Perm  -1.700194e-06  -9.64721415e-07  -5.1975854e-07

Table 3: 95% confidence interval for the median performance
of the methods in the Griewangk domain

Table 5: 95% confidence interval for the median performance
of the methods in the OneRidge domain

Method

pCCEA

cCCEA
iCCEA-0.0

Median
1.4772663
1.91416505
1.5517363

Lower Bound
1.47526
1.9103878
1.5467398

Upper Bound
1.4805671
1.9197007
1.5576606

iCCEA-0.05
iCCEA-0.1
iCCEA-0.15
iCCEA-0.2
iCCEA-0.25
iCCEA-0.5
iCCEA-0.75
iCCEA-1.0
rCCEA
rCCEA-Perm
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Method Lower Bound Median Upper Bound
pCCEA -0.009099687 -0.008524607 -0.008080815
cCCEA -2.3027173e-08  -1.6132691e-08  -1.06091615e-08
iCCEA-0.0 -1.2595542e-09  -9.4223985e-10 -7.1052053e-10
iCCEA-0.05 -6.868509e-10  -5.39539185e-10  -4.6161386e-10
iCCEA-0.1 -7.2518436e-10  -5.51555305e-10  -4.5181736e-10
iCCEA-0.15 -7.856029¢-10 -6.1868948¢-10 -4.777243e-10
iCCEA-0.2 -7.931591e-10 -6.166706e-10 -4.8393356e-10
iCCEA-0.25 -8.377967e-10 -6.9733245e-10 -5.179104e-10
iCCEA-0.5 -7.4639095e-10 -5.629196e-10 -4.5529336e-10
iCCEA-0.75  -0.0073960405  -2.74472505e-09  -1.2845356e-09
iCCEA-1.0 -0.0073960405  -2.56566515e-09 -8.832689¢-10
rCCEA -0.007396041 -0.0073960405 -0.0073960405
rCCEA-Perm  -0.0073960423 -0.0073960414 -0.00739604 1
3.1.2 The Griewangk Domain
The Griewangk function is defined as
. 2 5 ]
0, — —]1 — R — A
Griewangk(x,y) 1 2000 2000 + cos(x) cos( \/E)

where X = 10.24x —5.12, y = 10.24y — 5.12, and x and y are en-
coded in individuals as real-valued numbers between 0 and 1. The
function has a maximum value equal to O for x =y = 0, and several
suboptimal peaks surrounding it.

The results are summarized in Table 3. iCCEA performs signif-
icantly better than all other methods when MinDist < 0.5. Of the
iCCEA settings, MinDist = 0.0 appears to be slightly worse (with
confidence around 99%, lower than the desired 99.999%). This
is because iCCEA-0.0 has significantly higher archive sizes, yield-
ing a lower numbers of generations per run (161 generations for
MinDist = 0.0, compared to 233 generations for MinDist = 0.2).
The second tier of performers consists of cCCCEA, rCCEA, rCCEA-
Perm, iCCEA-0.75 and iCCEA-1.0. Finally, pCCEA is significantly
worse than all other methods.

3.1.3 The Rastrigin Domain

The Rastrigin function is defined as
Rastrigin(x,y) «— —20 — & 4 10cos(27%) — 7* + 10cos(275)

where X =10.24x —5.12, j = 10.24y —5.12, and x and y encoded in
individuals as real-valued numbers between 0 and 1. The function
has a maximum value equal to 0 for x = y = 0, and many suboptimal
peaks surrounding it.

The results are summarized in Table 4. The first tier of perform-
ers consists of iCCEA (for any value of MinDist) and rCCEA-Perm,
which are not significantly worse than any other method. rCCEA
is worse then iCCEA for four settings of MinDist. Last, cCCEA
and pCCEA are dominated by ten and eleven other methods respec-
tively. Surprisingly, iCCEA had about 263 generations per run, in-
dicating that the archive size is very low. While this contradicts our
expectations for a highly multimodal peak, we believe this effect
is due to the fact that the Rastrigin function describes essentially a
quadratic curve (1 — %2 — j2), accompanied by a plethora of smaller
peaks. As a consequence, iCCEA appears to exploit the underlying
quadratic function to achieve a small archive at each generation.

3.2 Domains with Infinite Nash Equilibria

Optimal and suboptimal peaks are usually Nash equilibria. Sub-
optimal Nash equilibria can distort the perspective each population
has over the joint search space to the point of completely eliminat-
ing all information about the globally optimal solution [10]. iCCEA
is able to cope better with this issue because its archive stores in-
formation about multiple peaks simultaneously.

What happens in domains where there are just too many Nash
equilibria? While one might believe that such domains would have
a plethora of peaks that could trick most algorithms, that is not
usually the case. Instead, problems containing diagonal up-the-hill
ridges are also characterized by an infinite number of Nash equilib-
ria! One such simple domain is OneRidge, proposed in [14]. The
Rosenbrock and Booth functions create domains with an infinite
number of Nash equilibria as well. The results of experiments (de-



Table 6: 95% confidence interval for the median performance
of the methods in the Rosenbrock domain

Table 7: 95% confidence interval for the median performance
of the methods in the Booth domain

Method Lower Bound Median Upper Bound Method Lower Bound Median Upper Bound
pCCEA -0.1084212 -0.086038075 -0.07215236 pCCEA -2.2757607e-05  -1.78912995e-05  -1.3247128e-05
cCCEA -5.4309703e-06  -3.97336365e-06  -3.095801e-06 cCCEA -4.1714014e-07  -3.2144021e-07 -2.7121857e-07
iCCEA-0.0 -7.0464353e-06  -5.6810313e-06 -4.386692¢-06 iCCEA-0.0  -0.00010195026  -8.06368125e-05 -5.630301e-05
iCCEA-0.05 -2.9603286e-06  -2.0364071e-06 -1.484208e-06 iCCEA-0.05 -5.884756e-07  -4.18359055e-07  -3.5493673e-07
iCCEA-0.1 -1.5654674e-06  -1.05892685e-06  -6.922747e-07 iCCEA-0.1 -3.606497e-07  -2.82521425e-07  -2.2286326e-07
iCCEA-0.15 -9.347807e-07 -7.36914e-07 -5.559006e-07 iCCEA-0.15 -4.869323¢-07 -3.895216e-07 -3.1035532e-07
iCCEA-0.2 -1.9747747e-07 -5.1362627e-07  -4.3587843e-07 iCCEA-0.2 -3.2798286e-07  -2.77684885e-07  -2.2034128e-07
iCCEA-0.25 -1.1045466e-06  -8.6313633e-07 -5.565543e-07 iCCEA-0.25  -4.5106958e-07  -3.7739077e-07 -2.7794223e-07
iCCEA-0.5 -1.5428313e-06  -1.1737227e-06 -7.397234e-07 iCCEA-0.5 -3.0225107e-07  -2.44586035e-07  -2.1388162¢-07
iCCEA-0.75 -9.623004e-07 -6.5651085e-07 -4.610377e-07 iCCEA-0.75  -3.2224608e-07  -2.5254693e-07 -1.9835213e-07

iCCEA-1.0 -9.135398e-07 -6.48494135e-07  -4.043417e-07 iCCEA-1.0 -4.3931948e-07  -3.6072215e-07 -2.66255e-07
rCCEA -1.45301265¢-05  -1.1222902e-05  -8.5360825e-06 rCCEA -1.5708204e-07  -1.31100655e-07  -1.02842776e-07
rCCEA-Perm  -5.950367e-07 -4.9335307e-07  -4.3179807e-07 rCCEA-Perm  -4.172578e-07 -2.9863297e-07 -2.3673356e-07

tailed next) indicate that restricting the diversity of iCCEA’s archive
is crucial for good performance in these three domains; otherwise,
the archive usually becomes too large and interferes with the explo-
ration of the space.

3.2.1 The OneRidge Domain

The OneRidge problem maximizes the function

OneRidge(x,y) < 1 +2min(x,y) — max(x,y)

where x and y range between 0 and 1. OneRidge is particularly dif-
ficult for concurrent learners because it contains a very large num-
ber of Nash equilibria: for any value v between 0 and 1, (v,v) is
a Nash equilibrium. This implies that for almost any Nash equi-
librium (except for the global optimum (1,1)) there are an infinite
number of better Nash equilibria; unfortunately, both populations
must simultaneously change to a new equilibrium in order to im-
prove. To better study the algorithms’ capacity to follow this ridge
to the global optimum, we randomly initialized the populations of
individuals to only values smaller than 0.5.

The results are summarized in Table 5. rCCEA and rCCEA-Perm
find the global optimum in every single run. iCCEA achieves iden-
tical optimal performance when MinDist is greater than 0. Among
the remaining methods, cCCEA is significantly better, followed by
iCCEA-0.0, then pCCEA. Increases in MinDist put additional con-
straints on archive inclusion, resulting in longer runs (from 134
generations for iCCEA-0.0, to 247 generations for iCCEA-0.05, to
264 generations for iCCEA-1.0).

3.2.2 The Rosenbrock Domain

Next, we examined the performance of the methods in the
Rosenbrock domain, which is defined by

Rosenbrock(x,y) — —(100(z> —5)> + (1 —%)?)

where ¥ = 10.24x — 5.12, y = 10.24y — 5.12, and x and y are en-
coded in individuals as real-valued numbers between 0 and 1. Sim-
ilarly to OneRidge, Rosenbrock is particularly difficult for con-
current learners because optimization requires both populations to
simultaneously follow a narrow ridge up-the-hill; in addition, the
ridge in the Rosenbrock domain has a non-linear shape.

The results of the methods are presented in Table 6. The non-
parametric statistical tests indicate that rCCEA-Perm and iCCEA
(with MinDist ranging from 0.1 to 1.0) are the top-tier perform-
ers. The second tier consists of cCCEA, iCCEA-0.0, and iCCEA-

0.05. rCCEA and pCCEA have the worst performance; in particular,
pCCEA is significantly worse than all other methods. The differ-
ence among the iCCEA variations again highlights the importance
of putting some restrictions on minimum distance between mem-
bers of the archive: iCCEA-0.0 evaluates populations with a large
archive, resulting in around 74 generations per run, while iCCEA-
0.2 uses a moderately-sized archive that allows it 254 generations
per run.

3.2.3 The Booth Domain

Similarly to the OneRidge domain, the Booth problem also cre-
ates a narrow ridge that can be pursued only by simultaneous ex-
ploration from both populations. The Booth function is defined as:

Booth(x,y) — —(¥+2y—7)> — (28 +7—5)2

where ¥ = 10.24x —5.12, y = 10.24y — 5.12, and x and y encoded
in individuals as real-valued numbers between 0 and 1. The Booth
function creates a squashed peak along a diagonal axis, usually re-
sulting in penalties for miscoordinated explorations.

The results, summarized in Table 7, indicate that rCCEA signif-
icantly outperforms all other methods. iCCEA falls in the second
tier for MinDist > 0, together with cCCEA and rCCEA-Perm. Last,
pCCEA is worse than every other method but iCCEA-0.0 (which is
significantly worse than everything else). As in the OneRidge and
Rosenbrock domain, iCCEA-0.0 used larger archives and exhausted
its computational budget in fewer generations (around 160), while
even small values of MinDist reduced the archive size significantly
(runs lasted for about 261 generations when MinDist > 0). We are
still exploring the causes for rCCEA’s impressive performance in
this problem domain.

3.3 Multimodal Domains with Infinite Nash
Equilibria

Finally, we created a new class of problem domains that com-
bines the difficulties associated with both multimodal search spaces
and domains with infinite numbers of Nash equilibria along di-
agonal ridges. We started with the MTQ class of problems, and
changed each peak to have an ellipsoid shape aligned diagonally.
This resulted in diagonal ridges towards the optima, and thus infi-
nite numbers of Nash equilibria along those ridges. The new class
of problems, which we termed SMTQ, is defined as

R -x1)* _ 80-n)
Hys(1— 20X S 1)y

SMTQ(X7_)7) < max 32()(5:51)(2)2 8(\'5511/2)2
Hyx(1— 5 - )



Table 8: 95% confidence interval for the median performance
of the methods in the SMTQ domain instance with H; = 50

Method Lower Bound Median Upper Bound
pCCEA 130.5234 135.36403 139.55858
cCCEA 149.99992 149.99994 149.99995
iCCEA-0.0 149.99994 149.99994 149.99995
iCCEA-0.05 149.99998 149.99998 149.99998
iCCEA-0.1 149.99998 149.99998 149.99998
iCCEA-0.15 149.99998 149.99998 150
iCCEA-0.2 149.99998 149.99998 149.99998
iCCEA-0.25 149.99998 149.99998 150
iCCEA-0.5 149.99998 149.99998 150
iCCEA-0.75 149.99998 149.99998 149.99998
iCCEA-1.0 149.99998 149.99998 149.99998
rCCEA 50 149.99981 149.99994
rCCEA-Perm 149.99995 149.999975 149.99998

Table 9: 95% confidence interval for the median performance
of the methods in the SMTQ domain instance with H; = 125

Method Lower Bound Median Upper Bound
pCCEA 133.09122 137.50821 140.33017
cCCEA 149.99974 149.99985 149.9999
iCCEA-0.0 149.9999 149.99991 149.99995
iCCEA-0.05 149.99997 149.99998 149.99998
iCCEA-0.1 149.99997 149.99998 149.99998
iCCEA-0.15 149.99995 149.99997 149.99998
iCCEA-0.2 149.99997 149.99998 149.99998
iCCEA-0.25 149.99997 149.99998 149.99998
iCCEA-0.5 149.99997 149.99998 149.99998
iCCEA-0.75 149.99994 149.99997 149.99997
iCCEA-1.0 125 149.99995 149.99997
rCCEA 125 125 125
rCCEA-Perm 125 125 125

where x{, y], x5, and y5 are the original x and y values (which
ranged between 0 and 1) rotated around the centers of the two peaks
by 7/4:

x] = (x—Xp)cos(mw/4)+ (y—Y1)sin(n/4) + X,
Y] =(x—X))cos(n/4) — (y—Y))sin(n/4)+Y;
xy = (x—Xp)cos(w/4) + (y — Y2) sin (7/4) + X5
yp = (x—Xp)cos(w/4) — (y—Y2)sin(n/4) + 12

We used the same values for H, X1, Y1, X2, Y», S, and S, as for
the MTQ class.

Tables 8-9 present the results of the methods in the SMTQ
domains for Hy = 50 and H; = 125. iCCEA with MinDist €
{0.05,...,0.5} performs significantly better than pCCEA, cCCEA,
rCCEA, and rCCEA-Perm in both domains. This was expected
given the results in the previous domains: no distance restrictions
(MinDist = 0.0) leads to large archives that interfere with following
ridges of equilibria in domains such as in Section 3.2, while large
values of MinDist tamper with iCCEA’s attempts to search multiple
peaks concurrently in multimodal domains (Section 3.1).

4. DISCUSSION AND CONCLUSIONS

In [1], Bucci and Pollack argue that pCCEA generally outper-
forms traditional CCEA methods: but in many of our experiments,
this is not the case. It’s important to understand why this is so.

All of the problem domains we tested against, although simple,
are ones with an infinite number of Pareto-non-dominated points.
This is not unreasonable as many real-world problems have this
attribute. pCCEA must include all such points in its archive as
it finds them. As pCCEA moves the entire archive forward into
the next population, and as more non-dominated points are found,
the archive grows until it consumes the entire population, at which
point evolution stagnates. This happens even in the simple MTQ
domain. There exist a few problem domains (notably OneRidge)
for which the theoretical number of eligible archive members is the
same for both iCCEA and pCCEA. But even in this case, the rank-
ing used in iCCEA tends to result in a much smaller overall archive
(even with no constraints on diversity).

There is another more controversial reason why iCCEA outper-
forms pCCEA in this paper. Our statistical comparison methodol-
ogy used a nonparametric population-difference test. Usually, one
would compare the means of two samples and verify statistical sig-
nificance using a t-test. However, this presumes that the samples

come from normal distributions. Generally, our multimodal prob-
lem domains produce best-of-run samples which are not only non-
normal, but contain multiple peaks. These samples are completely
inappropriate for a t-test. The standard way to deal with such prob-
lems is to use a non-parametric test; in essence, one would combine
the results of the two distributions, rank all of them, and then use
the rank values instead of the raw values as the statistic in a t-test.

This nonparametric comparison will occasionally produce fairly
different (and in our opinion, better) results than a t-test. But such a
nonparametric test does not compare difference in mean: it roughly
compares difference in median. And while pCCEA’s median is of-
ten worse, its mean is occasionally better than others. For exam-
ple, the bulk of iCCEA final solutions were near the optimum peak,
but occasionally iCCEA converged to the suboptimum. This pulled
down the mean, though the median was near-optimum. pCCEA in-
stead would rarely perform as well as iCCEA, but also would rarely
find itself in the suboptimum by accident. This was the case in
the MTQ and SMTQ domains, where pCCEA was not dominated
in terms of mean performance (it actually outperformed all other
methods for H; = 50). When analyzing the mean performance,
there was also no significant difference among the methods in the
Rastrigin domain, and pCCEA was outperformed by only rCCEA
in the Booth domain. However, our analysis in all these cases in-
dicates that the distributions of results were significantly different
from one another and from the normal distribution, which in turn
indicates that nonparametric tests might better reflect the differ-
ences among the methods.

We have two hypotheses as to why iCCEA would find itself
caught in local suboptima more often than pCCEA. First, iCCEA
primarily compares individuals in conjunction with archive mem-
bers, whereas pCCEA compares against the whole population. As
aresult, pPCCEA tends to do more exploration initially. Second, pC-
CEA is much less picky about which individuals are permitted into
the archive, allowing more diverse individuals to be preserved to
the next generation. Reducing the selection pressure in iCCEA may
alleviate these problems. We hope to examine these hypotheses in
future work.

Another area of future work is improving the number of eval-
uations. At present iCCEA (and pCCEA) compare the population
against the entire archive. If the archive is large, this is expensive. It
is plausible to compare instead against a randomly- or intelligently-
selected subset of the archive of some fixed size. The disadvantage
is that we no longer necessarily use the archive to produce the best
collaboration found so far. It is not clear what the trade-off means
in real terms.



Recent literature in the area of competitive coevolution has also
examined the usefulness of informative evaluations, though some
algorithms in this literature tend, quite naturally, to be designed
only for competition. Still, with the two fields reaching common
ground here and in other areas, the time is ripe to better identify
those features the fields hold in common in order to enable further
cross-pollination. pCCEA’s inspiration is a good example of this.

In this paper we presented the iCCEA archive algorithm and
showed that it performed well against other CCEA algorithms in
basic test problems. It is unknown at this time whether or not this
will scale to complex domains. But we believe archive methods
may go a long way towards countering the loss of information in-
herent in cooperative coevolution, and in doing so will, with any
luck, help CCEAs live up to their promise.
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