Finding Interesting Things:
Population-based Adaptive Parameter Sweeping

Sean Luke
sean@cs.gmu.edu

Deepankar Sharma
dsharma2@cs.gmu.edu

Gabriel Catalin Balan
gbalan@cs.gmu.edu

Department of Computer Science
George Mason University
4400 University Dr, MSN 4A5
Fairfax, VA 22030 USA

ABSTRACT

Model- and simulation-designers are often interested not in
the optimum output of their system, but in understanding
how the output is sensitive to different parameters. This can
require an inefficient sweep of a multidimensional parameter
space, with many samples tested in regions of the space
where the output is essentially all the same, or a sparse
sweep which misses crucial “interesting” regions where the
output is strongly sensitive. In this paper we introduce a
novel population-oriented approach to adaptive parameter
sweeping which focuses its samples on these sensitive areas.
The method is easy to implement and model-free, and does
not require any previous knowledge about the space. In a
weakened form the method can operate in non-metric spaces
such as the space of genetic program trees. We demonstrate
the method on three test problems, showing that it identifies
regions of the space where the slope of the output is highest,
and concentrates samples on those regions.

Categories and Subject Descriptors
G.1.6 [Optimization]: Gradient Methods

General Terms

Experimentation

Keywords
Parameter Sweeps, Adaptive Sampling, Bracketing

1. INTRODUCTION

Most population-based stochastic search methods try to
discover, not surprisingly, optima in a search space. But
sometimes that’s not what an experimenter wants. For ex-
ample, model-builders in the sciences are often interested

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

less in the optima over their models’ parameter spaces than
they are in understanding what those spaces look like, so as
to gain insight into the preexisting natural phenomena from
which they have derived their models. Some such models —
“swarm”-style multi-agent systems models for example —
often have complex dynamics not describable with closed-
form mathematical functions, and are poorly understood by
the model designer in the first place.

To examine such a model, the experimenter often per-
forms some kind of sweep over its parameter space, sam-
pling points in the space and computing the model behavior
at those points. This gives the model-builder data from
which he can answer questions such as: what nonlinear re-
lationships exist among the variables; to which variables is
the model particularly sensitive; where do rapid changes in
model behavior occur; and how might dimensionality be re-
duced? These parameter sweeps can be expensive depending
on model complexity and run-time.

In this paper we propose a population-oriented selection
method for performing adaptive parameter sweeps. The
method focuses the majority of its time on areas of the space
where the model behavior changes, and only sparsely sam-
ples those large areas where nothing unusual happens. In
this paper we will simplify model behavior to just a single
output variable, and so the method translates roughly to an
optimization algorithm which finds and emphasizes the sam-
pling of points in those regions of space where the absolute
value of the slope of the output —that is, the magnitude of
the output gradient —is highest.

If the output function was known and differentiable, we
could do this simply by taking the first derivative of the out-
put function and looking for large positive or negative areas.
We could then pick samples under some probability distri-
bution heavily weighted towards areas of steepest slope. For
example, if the output function were f(&), we might com-
pute the magnitude of its gradient ¢g(Z) = ||V f(Z)||, and
then select new points with a probability proportional to
the value of g at each point. This approach has several diffi-
culties. First, it presumes that the function is differentiable.
Second, it presumes that we know the function already: but
the function is likely derived from the vagaries of the model,
and thus we are unlikely to know much about it — hence the
need for parameter sweeping!

Another approach is to generate a number of samples, and
then fit a curve to the model’s collective output values for

A

Figure 1: Four different “bracketing lines” travers-
ing a hilly region in the search space.

those samples (known in statistics as the model’s response
surface). We might develop this curve using a neural net-
work, a regression technique, or a mixture of gaussians, for
example. Assuming the curve was differentiable, we could
then select new points under the magnitude of its gradi-
ent similar to the sampling method from the previous para-
graph. Unfortunately, constructing this curve requires us
to make fairly strong assumptions about the model in order
to pick a response surface technique with the appropriate
learning bias.

We propose instead a novel approach which performs this
adaptive sampling without the need to fit a curve to the
model. Instead, we iteratively pick pairs of samples from a
preexisting sample set such that the samples’ model outputs
are very different from one another, and secondarily, such
that the two samples are fairly close to one another. We then
generate a new sample along the line between the two, using
the heuristic that there is very likely a strong slope transition
somewhere in-between them. We then add this new sample
to the set. We may augment this with a local optimization
procedure, repeating the sample-generation along this line
some N times in a bracketing fashion, each time using the
child to replace the parent closest and most similar in fitness
to the child.

The method is population-oriented and bears important
relationships with evolutionary computation (EC), so we de-
scribe it roughly in EC terms. An evaluated sample in the
search space is an individual and the collective samples pro-
duced so far may be viewed as a population. The output
of the system at a given sample is equivalent to the fitness
of an individual, and the procedure we will use to generate
new individuals applies certain kinds of tournament selection
and crossover to the population. The algorithm is roughly a
steady-state procedure, except that no individuals are ever
deleted from the population: it just continues to grow. We
will use EC terminology in the remainder of the paper.

2. THE ALGORITHM

Let us assume, for the time being, that our search space
is real-valued and multidimensional. Our algorithm repeat-
edly selects pairs of individuals from the population, crosses
them over in a certain fashion to produce a child, and then

adds the child to the population. The objective is to pro-
duce children which are closer to steep-slope transitions in
the search space. The search heuristic is very simple: if two
individuals in the population have wildly different fitnesses,
then some kind of fitness transition exists in the region be-
tween them. Figure 1, line A, shows this situation. Line
B shows a related situation where multiple transitions may
appear between the two individuals. In either case, at least
one transition exists somewhere between the two points. By
contrast, if the individuals’ fitness is similar to one another,
then either there is no transition between them (Figure 1,
line D) or there exists an entire hill or valley between them
(line C). We have no evidence if the hill or valley exists, and
so will ignore this possibility except to include some ran-
dom exploration to allow for its discovery. Our secondary
heuristic is also simple: the closer the individuals are to one
another, the more likely that this transition is steep in slope.

Parents are selected as follows. We select the first parent
at random from the existing population. We then use a dou-
ble tournament selection procedure to select the second par-
ent. Specifically, we perform several tournament-selection
tournaments, preferring individuals near to the first parent.
The winners of these tournaments then compete together in
a final tournament preferring the individual which is most
different from the first parent in fitness. The winner of this
final tournament becomes the second parent.

Once we have selected parents, we then produce a child
lying somewhere on the line segment between them. The
child is then added to the population. We may then per-
form a local optimization procedure in the form of iterated
bracketing to focus more closely on the steep transitions:
given the parents p; and p2 and child ¢, we replace with ¢
the parent p; whose difference in fitness with ¢, divided by
the distance between them, is highest. Along the line seg-
ment between the revised parents p; and p; = ¢ we produce
yet another child, add ¢ to the population, and repeat the
process.

Iterated bracketing is highly exploitative, and our
crossover procedure cannot create children outside the con-
vex hull of the current population. To give some exploration
to the procedure we add random individuals to the popula-
tion in two ways. First, instead of selecting the first parent
from the population, occasionally we generate a parent at
random from the space, evaluate it, insert it into the popu-
lation, and select it. Second, we seed the initial population
with randomly-generated and evaluated individuals.

The algorithm used is described in pseudocode below. It
requires the user to provide several items:

e A CROSSOVER procedure, ideally one which produces
a child along the line between two individuals.

A procedure to CREATE a random individual.

A procedure to ASSESS the fitness of an individual.

A procedure DIST to compute the metric distance be-
tween two individuals.

e The value initializationSize, specifying the initial num-
ber of randomly-generated individuals to seed the pop-
ulation.

e The value exploreProbability, specifying the likelihood
that the first parent will be generated at random rather
than chosen from the population.

e The value numBrackets, specifying the number of it-
erations bracketing crossover is performed.

e The values fitTourn, and distTourn, giving the respec-
tive tournament sizes for the fitness-difference tourna-
ment and metric-distance tournament.

procedure GRADIENTMAGNITUDESEARCH (
initializationSize, exploreProbability, numBrackets,
fitTourn, distTourn)
> Population Initialization

pop =)
for i = 1...initializationSize do

ind = CREATE a random individual

Assgss(ind)

pop = pop U {ind}

loop for some time
> Parent Selection
with probablity exploreProbability
parentl = CREATE a random individual
AsSESs(parentl)
pop = pop U {parentl}
otherwise
parentl = a random individual from pop
parent2 = SELECT(parentl, pop, fitTourn, distTourn)

> Iterated Bracketing
for i = 1...numBrackets do
child = CROSSOVER(parentl, parent2)
AssESs(child)
pop = pop U {child}
parentl = UNLIKEPARENT (parentl, parent2, child)
parent2 = child

return pop

procedure UNLIKEPARENT(parentl, parent2, child)
if |Fitness(parentl)—Fitness(child)| >
1 DiST(parentl,child)
|Fitness(parent2)—Fitness(child)|
DisT(parent2,child) then
return parentl
else

return parent2

procedure SELECT(parentl, pop, fitTourn, distTourn)

best = SELECT2(parentl, pop, distTourn)
for i = 2... fitTourn do

new = SELECT2(parentl, pop, distTourn)

if |Fitness(new) — Fitness(parentl)| >

|Fitness(best) — Fitness(parentl)| then
best = new

return best

procedure SELECT2(parentl, pop, distTourn)
best = a random individual from pop — {parentl}
for i = 2...distTourn do
new = a random individual from pop — {parentl}
if DiST(new, parentl) < DIST(best, parentl) then
best = new
return best

Notes. First, care must be taken to not allow crossover to
be a “traditional” crossover which picks genes from one par-
ent or the other. Such a crossover generates children at a
corner of the hypercube bounding the two parents, and not
along the line “between” them. Hypercube corners are less
likely to lie on the slope transition between the parents.

Second, we believe that this algorithm can be used in a
non-metric space, such as the space of genetic program trees.
To do this, we need a crossover procedure which produces
children which are arguably a “blending” or “averaging” of
their parents. In such a space the DIST procedure is unavail-
able: we simply rely on the (weaker) fitness-difference-only
heuristic, setting Vz,y DisT(z,y) = 1. Of course, if even an
approximate distance metric was available, it might be used
in the stronger heuristic form, albeit less reliably.

Third, notice that the population is static and continues
to grow as new children are added to it. It is important to
understand why. We are not performing just an optimization
procedure —we are doing a sweep of the parameter space.
The end result of this sweep is a set of points to assist the
experimenter in understanding this space. Thus the only
reason we’d ever want to remowve individuals from the pop-
ulation is if they are hindering this goal. Some possible jus-
tifications for removing points include: bounds on physical
memory; and a dense cluster of individuals which constantly
generates new, useless children within that cluster.

3. RELATED METHODS

Bracketing. Bracketing methods have of course long been
used for other purposes. For example, bisection finds the
zeros of a function f by first selecting two points ¢ and 7 on
either side of the zero, such that f(i) and f(j) have opposite
signs. Then the following replacement procedure is iterated:
k is set to %, the point mid-way between ¢ and j. If f(k)
has the same sign as f(i), i is set to k, else j is set to k. This
eventually moves i and j closer to the zero point until they
are within some tolerance e. A related but faster-converging
method, regula falsi, selects a more accurate middle point
k based on the relative distances f(i) and f(j) from zero.
o, = S

Bracketing can also be used to perform optimization. The
Brent-Dekker method, sometimes known as Brent’s method,
finds the minimum of f by first choosing three arbitrary
values < y < z, where z and z are on opposite sides of the
minimum. It then iterates, extracting the quadratic curve
which fits the points (z, f(x)), (y, f(y)), and (z, f(2)), and
computing the minimum a of that curve. If z < a < y, then
z is set to y and y is set to a. Else if y < a < z, then x is
set to y and y is set to a. Eventually the three values z, v,
and z converge to the minimum of f.

These methods are primarily intended for searching in
one-dimensional spaces, and to look for zero crossings or
optima rather than steep slopes. But it is interesting to
note that versions of them could be modified to operate in
a framework similar to the algorithm described here. For
example, we might search for zero crossings in the space
by picking two parents which have opposite signs in the fit-
ness function (and ideally close in fitness), rather than ones
which are merely very different in fitness.

Sampling and Experimental Design. Experimental de-
sign [3, 9] is a well-trodden area of statistics, and sampling is
its central issue. The key assumption in this field is that ex-
periments are extremely time consuming, and so one should
try to minimize the number of samples without overlooking
important features of the parameter space.

Many experimental sampling layouts have been proposed,
both deterministic and stochastic. The most basic layout is
factorial design, where all combinations of parameter values
are explored; this layout is suitable for understanding the in-
teraction among parameters, but can only be applied to situ-
ations where the domains are discrete (or can be reasonably
discretized) and the dimensionality is low. The large num-
ber of required samples can be decreased by using fractional
factorial design, where only a constant fraction (typically %
to i) of the combinations are sampled. Another commonly
used sampling layout is central composite design, which sur-
rounds each of the (fractional) design sample points with ad-
ditional points, so the curvature of the response surface can
be estimated. Common stochastic methods include random
sampling and the latin hypercube [13, 8], where randomly-
generated samples are accepted as long as they do not lie
on the same (discretized) row, column, etc. as any previous
sample point.

The emphasis in such sampling is to sample the entire
space approximately uniformly, rather than finding unusual
regions and concentrating on them: indeed, sparse semi-
uniform sampling may entirely miss steep transitions in the
space which lie “between the cracks” so to speak. In con-
trast, our method will identify those transitions.

Fitting Curves to Response Surfaces. The classic experi-
mental design literature produces approximations of the re-
sponse surface using polynomials of degree one or two [14,
13], selecting polynomial coefficients so as to minimize the
sum of squared errors in the sample points. Optimized
higher degree polynomials have been attempted using ge-
netic programming and local (derivative-based) smoothing
[16]. An extension [15] augmented the work with an approx-
imate model with partial interpolation.

Estimation of Distribution Algorithms. There are other
ways of selecting points under distributions besides fitting
a curve to the existing population. Consider that a point
in space is a tuple of values, one per parameter. We might
generate a new point by picking values for each parame-
ter using a per-parameter distribution based on the fitness
of past individuals with various values for that parameter.
This treats all the parameters as independent of one an-
other, and is the basis for a number of Estimation Distri-
bution Algorithms (EDASs) such as the Univariate Marginal
Distribution Algorithm [10], Population Based Incremental
Learning [2], and the Compact Genetic Algorithm [4]. Ex-
tensions may consider linkages among the parameters: for
example, the Bayesian Optimization Algorithm [11] models
such relationships sparsely using a bayesian network.

We mention EDAs because they are the natural example
in the evolutionary computation world of methods which
generate children by sampling under fitness distributions of
individuals in the population, although generally not under
curves fit to response surfaces. One connection to curve
fitting lies in the use of gaussians to represent individual
parameters for continuous-domain problems. Examples in-

clude Stochastic Hill-Climbing with Learning by Vectors of
Normal Distribution [12], the continous-domain version of
Mutual Information Maximization for Input Clustering [6],
and the Estimation of Multivariate Normal Algorithm [7].
Such curves are only marginal or bivariate, and these EDAs
are, of course, meant for optimization and not slope-finding.
Nonetheless, adaptations taken from EDAs might prove
fruitful in future versions of this algorithm or in compar-
ison to it.

Probabilistic Roadmap Techniques. A common problem
in robotics is finding a route, through the configuration
space of the robot, from its initial configuration to some
goal configuration: for example, charting a path for a mo-
bile robot to a goal location while avoiding obstacles. The
popular probabilistic road map (PRM) methods randomly
sample this configuration space, reject samples from invalid
configuration regions (a robot inside an obstacle, say), and
build a traversal graph from among the remaining samples.

One difficulty with PRM methods is that uniform sam-
pling is unlikely to find those crucial points in the narrow
passages of the configuration space, and so it is desirable to
sample more heavily near obstacle boundaries or other re-
gions likely to be those narrow passages. This leads to brack-
eting approaches related to our technique. One method [1]
identifies points close to boundaries by choosing an invalid
configuration point, then a valid one, and iteratively choos-
ing new points along the line segment between them via
bracketed bisection. Another technique, known as the bridge
method [5], first selects two invalid regions which tend to be
near one another; then if the midpoint on the line segment
between them lies in a valid region, it is selected. Thus the
line segment “bridges” a narrow passage.

These methods use forms of bracketing to favor bound-
ary regions over large open spaces, but they differ from our
technique in that they exist in spaces where every point is of
one of two values (“valid” or “invalid”), and so the “slope”
between them is infinite. Thus they do not consider the
degree of difference between two points; only that they are
different.

4. EXPERIMENTS

Because the technique is new and its problem domain is
relatively novel, the initial experiments in this paper are
aimed towards visual and empirical verification of the tech-
nique, with an emphasis on problem spaces with large “un-
interesting” areas separated by “interesting” border tran-
sitions. We hope to perform a more in-depth analysis in
future work.

We performed the same basic experiment fifty times over
three different test-cases and collected the mean results over
the fifty runs. For each run, we iterated the method 10000
times, then extracted data to compare the density of search
points on patches of the problem landscape, ordered by the
slope of the landscape. To perform this extraction, we com-
puted the slope (the magnitude of the gradient) at each
search point generated by the method. We then discretized
this slope in units of 1/100, and added it to a bucket for
that slope discretization. We then performed one million
uniform random samples over the environment, and placed
them into discretized slope buckets as well. Then, for each
discretization level, we divided the number of run samples
at that discretized slope by the number of uniform random

LAY
&

A

i

S\
[]

LR R

05\ KL ?&%\\\\\\\\\\\\Q‘#
R

0 R

(a) Function Cross(z,y)

(b) Slope: [|[VCross(z,y)l|

0 02 04 06 08 10 12 14 16 1.8

(c) 10000 Iterations,
numBrackets = 1

w

. "_ -~
et
Y
PR L
vt
.JH’

Coverage Score
N

-

/_/v.*

FARC

0 02 04 06 08 10 12 14 16 1.8

Slope (Magnitude of Gradient)

(d) Coverage Score by Slope, 10000 iterations, numBrackets = 1, average of 50 runs

(e) 2000 Iterations,
numBrackets =5

Figure 2: Description of and Experimental Results for the Cross Function.

samples for that slope. This provided us with a coverage
score for each slope, showing whether the technique had in-
deed concentrated its search points on the steeper slopes.

In each case our CROSSOVER procedure simply picked a
random point along the line segment between the two par-
ents, and the CREATE procedure generated a point at ran-
dom uniformly within the space. DIST was simply the dis-
tance between the two points, and ASSESS returned the fit-
ness at that point.

We chose three two-dimensional test cases for this prob-
lem. Each employed the sigmoid function,

1
o(u,B) = Ty e

to create smooth transitions between roughly flat areas. The
regions ran from -5 to 5 in both dimensions. In all cases, 3
was set to 5. The test cases were:

Cross: The Cross Function.
Cross(z,y) = o(z,5) + o(y, 5)

This function is essentially sigmoid in both directions, cre-
ating a cross-like transition centered in the space. The func-
tion is shown in Figure 2(a), and the magnitude of its gra-
dient is shown in Figure 2(b). There is very a small region
in the exact center of the space which has a steeper slope
than all other regions.

Rot: The Rotated, Tilted Cross Function.

Rot(z,y) :%a (% - %5) +

1 (i+i,5> 424D

27\v2 " 2 10

This function rotates the cross function and adds a linear
slope in one direction. Additionally, the magnitude of the
sigmoids is reduced. The rotation is intended to move tran-
sitions off of dimensional boundaries, and the added slope
and reduced magnitude is meant to complicate the task of
finding non-zero slopes. The function is shown in Figure
3(a), and the magnitude of its gradient is shown in Figure
3(b). Again, there is very a small region in the center of
the space which has a steeper slope than all other regions.
Note that due to the tiltedness of the function, there are no
regions with a slope less than 0.2.

Circ: The Two-Circle Function.
Circ(z,y) = 140 (\/ac2 +y2 — 4, 5) —
o (VE+2? +(y+27-1,5)

This function creates two circles, one within the other and
inverted relative to one another. The inner circle is off-center
in order to add some assymetry. The function is shown in
Figure 4(a), and the magnitude of its gradient is shown in
Figure 4(b).

7

e i
O e
e s
2L DL
%

%

Pl

Z 7z

225

s aead
2

2
&

2~

(a) Function Rot(zx,y)

%
ooe.

DREALLEE

AR

S

-~

L

&
A

2]
22
2
2L
%
222
LI
s

(b) Slope: ||V Rot(z,y)||

%7
Rl

(c) 10000 Iterations,
numBrackets = 1

0 0.2 0.4

2.5
)
5 2
(5]
w
18
S L e
2 9
o
o

0.5

0
0 0.2 0.4

Slope (Magnitude of Gradient)

(d) Coverage Score by Slope, 10000 iterations, numBrackets = 1, average of 50 runs

(e) 2000 Iterations,
numBrackets =5

Figure 3: Description of and Experimental Results for the Rotated, Tilted Cross Function (Rot).

4.1 Results

To compute the coverage score, we performed 50 runs
of each test case and plotted the mean coverage score for
each slope value. These runs were performed with 10000
iterations, numBrackets = 1, initializationSize = 500,
explore Probability = 0.1, fitTourn = 10, and distTourn =
15. This is a highly conservative run, with no bracketing at
all; we felt it was best to establish the efficacy of the tech-
nique even at its weakest setting. We performed one addi-
tional run with these parameters to plot the result visually,
and also one run with 2000 iterations but numBrackets = 5
to compare against it. This second run, which has approx-
imately the same number of total samples, shows the effect
of strong iterated bracketing on packing the samples much
more densely along the steepest slopes.

One of the problems with the technique at present is that
it has a difficult time sampling elements along the outer
edges of the environment. The reason for this is that the
probability that a child will be selected from near an edge is
very low, because it requires that both parents be generated
near that edge as well. We found that performing the met-
ric distance tournament before the fitness tournament was
important to counter this at least partially.

Cross: The Cross Function. As shown in Figure 2(c), the
method is able to focus samples on the slopes of the func-
tion quite effectively. Figure 2(d) shows that as the slope
increases, the density of samples increases monotonically.

Slopes steeper than about 1.4 show a significant variance
due to the very small number of patches in the environ-
ment at that steepness, and so are not statistically reliable.
But the trend is very clear. Most of the environment has a
slope of approximately 0, yet those samples had a coverage
score of less than 1/6 that of slopes of 1.2 or so. Figure
2(e) shows the effect of bracketing: samples are much more
closely packed along steep slopes in the environment.

From the visualization in Figures 2(c) and (e), we note two
flaws in the technique. First, the visualization graphically
shows the difficulty the method encounters in extending out
to the edges, due to the reasons discussed earlier. Second, we
note that slopes near (but not on) the center tend to have
fewer samples than we would have expected. We are not
certain why this occurs but believe that it is probably due to
the tournament selection mechanism: after picking a parent
in a “low” region somewhere near the center, it is fairly likely
that its companion parent will be chosen in the “high” region
diagonally opposite it rather than in the “medium” regions
on either side, because the fitness differential is higher. Thus
fewer children may be sampled along the edge transitions
near the center and more will be sampled on the diagonal
transition directly in the center itself.

Rot: The Rotated, Tilted Cross Function. Recall that
in this function, we rotated the cross, reduced its strength,
and tilted it, in order to eliminate zero-slope regions, to
make the “interesting areas” more difficult to discover, and

(a) Function Clirc(z,y)

(c) 10000 Iterations,
numBrackets = 1

14 o

o 1.2 e RS

5 1 st

@ e

3 08 o

o 06 s

> -

304 ~

02"
0
0 0.2 0.4 0.6 0.8 1.0 1.2
Slope (Magnitude of Gradient)

(d) Coverage Score by Slope, 10000 iterations, numBrackets = 1, average of 50 runs (e) 2000 Iterations,

numBrackets =5

Figure 4: Description of and Experimental Results for the Two-Circle Function (Circ).

to move the transitions off-dimension. The results are shown
in Figures 3(c), (d), and (e).

As it turns out, the algorithm had no problem discovering
the revised slope transitions, with very similar results to the
Cross function. Again, beyond slopes of 0.5 the number
of patches is too small and the sample variance cannot be
trusted. As was the case for the Cross function, the Rot
function proved difficult at the edges of the space. Note
that in Figure 3(d) there are no slope patches at all until
0.2, hence no plot points.

Circ: The Two-Circle Function. In the last function
there were no sloped regions in the center of the space, and
an assymetry had been introduced. The results are shown
in Figures 4(c), (d), and (e). Here again, the technique had
little difficulty concentrating on the high-slope regions, pro-
ducing coverage scores which grew with slope. This function
has no small, high-slope patches, and so there are no small-
sample issues at the extreme of the coverage score curve.

Once again, however, the four edges in the space were
sampled poorly, even though there were no strong-slope re-
gions in the center of the space.

5. DISCUSSION

This technique is new and there are a large number of ways
that it could be improved and further analyzed. We discuss
several issues and difficulties with the algorithm here.

We have so far only tested on two-dimensional spaces,

largely to get a visual understanding of the technique. The
obvious future direction is to determine how effective the
method is in higher dimensions. At high dimensions these
spaces get sparse very rapidly, and sampling such spaces
can become difficult, much less sampling them in an adap-
tive fashion. One possible future approach is to perform
dimensionality reduction techniques (Principal Components
Analysis for example) to help reduce the sparsity of the en-
vironment and thus, ideally, the number of points to sample.
Related to this is another problem: the method takes a while
to build up enough samples to effectively adapt the sampling
method. The technique seems to work well, but it does so
more slowly than we’d like.

The algorithm tends to ignore points along the edges of
the space. In our initial experiments we had swapped the
order of the tournament selections (doing fitness first); and
this produced a very strong tendency to avoid edges. Per-
forming tournament selection on distance first helped alle-
viate this, but ultimately we will need a different procedure
to select parent pairs. For example, if the first chosen point
is close to an edge, we might increase the probability that
another point along that edge will also be selected.

If a space has a consistent slope (such as in the Rot func-
tion), we note that the algorithm essentially ignores the mild
constant slope permeating the search space. This is due to
the use of tournament selection, which ignores candidate
pairs’ actual fitness differences and instead focuses on their
relative ordering. But is this appropriate? Such a slope
indicates that something is changing, after all. It appears

that the algorithm focuses samples not proportional to slope
values but instead on those regions which have higher slope
relative to their peers. This may or may not be desirable to
the experimenter.

The algorithm also works well when there are large “un-
interesting” spaces, but not necessarily when there are
large numbers of “interesting” ones. In informal analy-
sis, the algorithm appears to produce unfocused samples
on functions such as two-dimensional sine-waves, f(z,y) =
sin(2mx) + sin(2my), or similar functions such as Rastri-
gin f(z,y) = 2° +3* + a(1 — cos(27mz)) + a(l — cos(27y)).
Of course, these areas have few “uninteresting” areas to
skip. The function complexity is high enough, and spread
so widely throughout the space, that it’s not clear if there
really is an area that should be sampled less than others.

Last, this algorithm has not been compared against oth-
ers: largely because we have failed to find any other algo-
rithms which search for slopes in a multidimensional space.
The only real competitor we have found is our own pro-
posal to perform curve fitting in some fashion to the response
surface of the function, and then sampling proportional to
the slope of the surface. But one of the attractions our
population-based method held was that it was essentially
model-free, requiring no a priori knowledge of the space like
curve-fitting would. Even so, comparing against a curve-
fitting function would be useful in future work.

6. CONCLUSIONS

We introduced a novel solution to a heretofore little-
studied problem: how to adaptively sample the space so
as to focus on places in the space where the function output
is changing. Our approach, a form of population-oriented it-
erated bracketing, is very effective on three initial test prob-
lems. But as discussed in the previous section, it is not yet
clear whether this technique will scale, given the sparsity of
high-dimensional spaces. Also, examining response surface
modeling techniques may be a useful alternative approach.

One of the unusual side benefits of this method is that
it shows how population-oriented methods may be used for
tasks other than simple optimization. We think this work
could be extended to other kinds of “non-optimization”
search problems of interest to simulation designers: for ex-
ample, finding locations where the output function is sen-
sitive to one parameter but not to others; finding locations
where one of several objectives changes but not others; or
finding locations where the frequency of change is high.

7. ACKNOWLEDGMENTS

The authors wish to thank Jyh-Ming Lien for his assis-
tance. The original idea behind this paper was born from a
discussion with Dawn Parker, a multi-agent modeler.

8. REFERENCES

[1] N. M. Amato and Y. Wu. A randomized roadmap
method for path and manipulation planning. In /IEFE
International Conference on Robotics and Automation
(ICRA), 1996.

[2] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegy Mellon University,
Pittsburgh, PA, 1994.

[3] S. Ghosh and C. R. Rao, editors. Design and Analysis
of Experiments, volume 13 of Handbook of Statistics.
Elsevier Science, 1996.

[4] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The
compact genetic algorithm. In Proceedings of the
IEEE Conference on Evolutionary Computation, 1998.

[5] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test
for sampling narrow passages with probabilistic
roadmap planners. In IEEE International Conference
on Robotics and Automation (ICRA), 2003.

[6] P. Larranaga, R. Etxeberria, J. A. Lozano, and J. M.
Pefia. Optimization in continuous domains by learning
and simulation of gaussian networks. In Optimization
By Building and Using Probabilistic, pages 201-204,
Las Vegas, Nevada, USA, 8 July 2000.

[7] P. Larranaga, J. A. Lozano, and E. Bengoetxea.
Estimation of distribution algorithms based on
multivariate normal and gaussian networks. Technical
Report KZZA-1K-1-01, Department of Computer
Science and Artificial Intelligence, University of the
Basque Country, Spain, 2001.

[8] M. McKay, R. Beckman, and W. Conover. A
comparison of three methods for selecting values of
input variables in the analysis of output from a
compuer code. Technometrics, 21(2), 1979.

[9] D. C. Montgomery. Design and Analysis of
Ezperiments. John Wiley, New-York, 2005.

[10] H. Mihlenbein. The equation for response to selection
and its use for prediction. Fvolutionary Computation,
5(3), 1997.

[11] M. Pelikan, D. E. Goldberg, and E. Canti-Paz. BOA:
The Bayesian optimization algorithm. In W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,

M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation
Conference GECCO-99, volume I, pages 525-532,
Orlando, FL, 1999. Morgan Kaufmann Publishers,
San Fransisco, CA.

[12] S. Rudlof and M. Képpen. Stochastic hill climbing by
vectors of normal distributions. In Proceedings of the
First Online Workshop on Soft Computing, WSC1,
1996.

[13] G. G. Wang. Adaptive response surface method using
inherited latin hypercube design points. ASME
Transactions, Journal of Mechanical Design,
125(2):210-220, 2003.

[14] G. G. Wang, Z. Dong, and P. Aitchison. Adaptive
response surface method a global optimization scheme
for computation-intensive design problems. Journal of
Engineering Optimization, 33(6):707-734, 2001.

[15] Y. S. Yeun, B. J. Kim, Y. S. Yang, and W. S. Ruy.
Polynomial genetic programming for response surface
modeling part 2: adaptive approximate models with
probabilistic optimization problems. Structural and
Multidisciplinary Optimization, 29(1):35-49, Jan.
2005.

[16] Y. S. Yeun, Y. S. Yang, W. S. Ruy, and B. J. Kim.
Polynomial genetic programming for response surface
modeling part 1: a methodology. Structural and
Multidisciplinary Optimization, 29(1):19-34, Jan.
2005.

