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ABSTRACT

While support vector machines (SVMs) have shown great
promise in supervised classification problems, researchers
have had to rely on expert domain knowledge when choos-
ing the SVM’s kernel function. This project seeks to re-
place this expert with a genetic programming (GP) system.
Using strongly typed genetic programming and principled
kernel closure properties, we introduce a new algorithm,
called KGP, which finds near-optimal kernels. The algo-
rithm shows wide applicability, but the combined compu-
tational overhead of GP and SVMs remains a major unre-
solved issue.
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1. INTRODUCTION

The Support Vector Machine (SVM) is a kernel-based
classification learning technique which attempts to abstract
out the issue of learning bias. Instead, the user provides a
supervised function called a kernel which imparts a domain-
specific transformation on the data to enable it to be clas-
sified straightforwardly. Finding such a kernel is nontrivial,
and indeed many experimenters simply rely on one of a small
number of predefined kernels from the literature. In this pa-
per, we apply genetic programming (GP) to discover good
kernels for the particular set of data being learned.

In supervised classification, we are given a set of training
examples (z1,y1), (z2,¥2),. .., (Tn,yn) € X X Y and try to
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learn a function y = f(z) that predicts the classification y of
unseen examples x with minimal error. Support vector ma-
chines use a function ® to first map examples into a higher
dimensional space, and then construct a separating hyper-
plane there. The idea is to transform the data into a new
space where the data is linearly separable. Then, using the
hyperplane as a decision function (i.e., f), we can classify
unseen data based on which side of the hyperplane they lie.

Transforming data with ® can be expensive with high di-
mensional spaces. Instead, an SVM employs a kernel func-
tion k which gives the dot product of the two examples in
the higher dimensional space without actually transforming
them into that space. This notion, dubbed the kernel trick,
allows us to perform the ® transformation for purposes of
classification to large dimensional spaces.

One issue with SVMs is finding an appropriate kernel for
the given data. Most research relies on a priori knowledge to
select the correct kernel, and then tweaks the kernel param-
eters via machine learning or trial-and-error. While there
exist rules-of-thumb for choosing appropriate kernel func-
tions and parameters, this limits the usefulness of SVMs
to expert users, especially since different functions and pa-
rameters can have widely varying performance. Depending
on the domain, such predefined functions are also unlikely
to be optimized for the problem. A potential solution is to
use genetic programming to evolve the kernel and associated
parameters.

Not every function can be used as a kernel: kernels typ-
ically satisfy Mercer’s Theorem as discussed later. Our ap-
proach is to take advantage of kernel operations which guar-
antee closure: for example, the sum of two kernels is a ker-
nel. Our genetic representation is a strongly-typed genetic
program [18] whose outer nodes are standard kernels and in-
put vectors, and various kernel parameters, and whose inner
nodes are operations on those kernels to produce a compos-
ite function guaranteed to be a kernel by closure properties.

This paper is organized as follows: Section 2 presents re-
lated work. Sections 3 and 4 give some background infor-
mation on SVMs and genetic programming. The main algo-
rithm is presented in Section 5, and the experimental design
and results are discussed in Section 6. Section 7 discusses
computational complexity. Section 8 offers some conclusions
and suggestions for future work.

2. RELATED WORK

Evolutionary algorithms (EA) have been applied to SVMs
in two ways: using genetic programming to evolve kernel
functions, and using evolutionary algorithms to evolve ker-
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Figure 1: The transformation function @ : (z,y) — (z,y,2> + y?) maps the non-linearly separable 2D data on

the left to the linearly separable 3D data on the right

nel parameters. Recently two research groups have applied
genetic programming to evolve a kernel function for classi-
fication tasks [10, 9]. Both papers use GP to evolve a func-
tion from basic functions. Nether paper guarantees that the
evolved function satisfies Mercer’s Theorem, and so cannot
guarantee that the result is optimal. However, both report
good classification accuracy on several standard datasets.

Other researchers have taken a different approach: using
an EA to evolve parameter values for a known kernel func-
tion. Friedrichs and Igel use evolutionary strategies (ES) to
evolve covariance matrices in a Gaussian kernel [8]. Phien-
thrakul and Kilsirikul [20] used ES to learn the weights
in a weighted linear combination of Gaussian radial basis
functions. Souza et al [6] use Particle Swarm Optimiza-
tion (PSO) to learn optimal parameters in a Gaussian ker-
nel function for multi-class classification, while Huang and
Wang use a GA for the same task [13, 12]. Runarsson and
Sigurdsson [21] use a parallel ES to learn optimal parame-
ters in a Gaussian kernel. Mierswa [17] combines PSO and
ES to solve the constrained optimization problem related to
SVMs.

Using the idea of a weighted linear combination of ker-
nels, machine learning has been used successfully to learn
the appropriate weights [4, 5, 19, 25]. A slightly different
formulation used gradient descent to learn multiple param-
eters in a Gaussian kernel function [3, 14].

3. SUPPORT VECTOR MACHINES

Support Vector Machines are a learning technique which
trades off accuracy for generalization error. SVMs build
a hyperplane which divides examples such that examples of
one class are all on one side of the hyperplane, and examples
of the other class are all on the other side. However, inter-
esting data is rarely linearly separable. Thus, the SVM first
transforms the data to a higher dimensional space where it
1s linearly separable (see Figure 1), and then applies the hy-
perplane. Because the transformation may be to many, even

infinite, dimensions, the SVM does not actually perform the
transformation. Instead, noting that the dot product is all
that is necessary to compute the optimal hyperplane, the
SVM composes the transformation ® and the dot product
in the higher dimensional space into a single kernel function
k, which computes the dot product of two vectors when they
are transformed into the higher space. Note that the kernel
need not actually do any transformation to provide this dot
product! This is called the kernel trick.

First, we discuss building the hyperplane. Consider input
data of the form (z;,y;), where the vectors x; are in a dot
product space H (such as a real-valued multi-dimensional
space), and y; are the class labels. Formally, any hyperplane
in H is defined as

{z € H|{w,z) +b=0}

where w is a vector orthogonal to the hyperplane and (-, -)
represents the dot product. In a SVM, the idea is to find the
hyperplane that maximizes the minimum distance (called
the margin) from any training data point (Figure 2). The
following constraint problem describes the optimal hyper-
plane:

weH,beR

. 1 2
=z 1
L r(w) = Sl 1)
subject to  y; ({xi,w) +b) > 1 (2)
for i = 1,2,...m where m is the number of training ex-

amples. This optimal hyperplane minimizes training error
while maximizing the margin, which is believed to translate
to maximizing generalization ability.

We now apply the kernel trick to “kernalize” the hyper-
plane, (i.e., we use the kernel to transform the dot product
to a higher dimensional space), which results in the following
dual form of the optimization problem:
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Figure 2: The margin is the distance from a ser-
arating hyperplane and each data point. SVMs try
to maximize the minimum distance to increase the
ability to classify unseen data.
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m 1 m
max W(a)= Zai ) Z aio;yiy;k(wi, ;)
i=1 ij=1

subject to  a; >0, (4)

Z ;Y = 0. (5)
=1
Any vector x; which lies on the margin, i.e.,

ai [y ((w,xi) + )] =

is called a support vector. The optimal hyperplane is thus
determined by data examples which form this set of support
vectors.

At this point, we do not know if a separating hyperplane
is the best solution, or even if one exists. Allowing a certain
fraction of outliers can alleviate this problem by making the
formulation less brittle. Called soft margin hyperplanes, the
idea is based on slack variables ¢ which allow the presence
of outliers without influencing the hyperplane:

¢i >0 (6)

which results in a hyperplane

yi ((xi, W) +0) > 1 -G (7)

Thus, a classifier that generalizes well is found by control-
ling the sum of the slack variables. A term is added to the
objective functions to prevent the trivial solution where all
(; take on large values. The simplest solution with slack
variables, called C-SVC (support vector classifier), tries to
determine the tradeoff between minimizing training error
and maximizing the margin. However, there is no intuitive
a priori manner to determine this tradeoff [22]. An alter-
native method, called v-SVC, seeks to control the number
of margin errors and support vectors via the following opti-
mization problem [23]:

separating
hyperplane

1 m
max  W(e) =~ > aagyiyik(zi, ;) (8)

aeR™ =
1,j=1

subject to 0< a; <

(9)

L
m7
=1

S0 (11)
i=1

v is simultaneously an upper bound on the fraction of margin
errors and a lower bound on the fraction of support vectors
[23], and so it provides the tuning parameter for how soft
the hyperplane is.

3.1 Kernel Closure

Kernel functions allow us to compute dot products in
higher dimensional spaces without having to explicitly map
into these spaces. A kernel function must satisfy vari-
ous mathematical properties. The main question is how
to determine if a given function k is a kernel. Given
T1,%2,...Tm € X, the m X m matrix K with elements
Kij = k(zi,x;) is called the Gram matriz (or kernel ma-
triz). If the Gram matrix is positive definite, then by Mer-
cer’s Theorem, k is a kernel [22]. While any function with
a positive definite Gram matrix is a kernel, one of following
functions is typically used [22]:

Polynomial:  K(z;,z;) = (s, 1’j>d (12)
Gaussian:  K(z;, ;) = e vellei—asi® (13)
Sigmoid:  K(x;,x;) = tanh (y(z;, z;) +r) (14)

where d,v,r € R. New kernel functions can be constructed
by combining known kernel functions in an appropriate man-
ner. The proposition below, from [24, Propositions 3.22,
3.24], presents several closure properties, i.e., mathematical
manipulations which form new kernels from old ones.

PROPOSITION 1. Let k1 and ko be kernels over X X
X, X CR, a € R". Then the following functions are

kernels:
(a) k(x,z) = ki(z, z) + ka(z, 2)
(b) k(z,z) =axki(z,z2)
(¢) k(z,2) = ki(z, 2) * ka(z, 2)
(d) k(z,z) = ek1(®2)

4. GENETIC PROGRAMMING

We use a standard GP representation in the form of parse
trees equivalent to Lisp s-expressions. Each node in the tree
is a function, and its child subtrees form arguments to that
function. Genetic programming relies on the principle of
closure, i.e, each node may take any subtree as a child. In
basic form, closure allows any non-terminal node to be a
parent of any other kind of node. Strongly typed genetic
programming (STGP) places additional type constraints on
nodes specifying which nodes may link with which others,
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Figure 3: Inside KGP, individuals are formed start-
ing with the three basic kernel functions, before ap-
plying the closure rules.

and is typically used to allow child nodes to pass data which
their parent is guaranteed to be able to read [18]. This allows
the genetic operators to generate semantically correct trees.

One issue in genetic programming is the unconstrained
growth of individuals without justifying performance im-
provements. Typically this growth, called bloat, may be lim-
ited by special genetic operators that restrict the maximum
depth of an individual. An alternative technique, parsimony
pressure, penalizes the size of individual by making it less fit.
One simple technique is lexicographic tournament selection
which works the same way as normal tournament selection,
but if multiple individuals have the same fitness, then the
one with the shortest length is chosen [16].

5. KERNEL GP

Our algorithm is called Kernel GP (KGP). KGP evolves
a kernel using strongly typed genetic programming and ker-
nel closure properties. Starting with standard kernel func-
tions, individuals are formed through the closure rules in
Proposition 1 and STGP (see Figure 3). Terminal nodes are
the two feature vectors x and z, and the first non-terminal
node is a basic kernel function: polynomial, Gaussian, or
sigmoid, with randomly-chosen parameters (d, r, and 7) em-
bedded within it. Nodes above this first level are compo-
sition rules chosen from Proposition 1. Note that the ker-
nels, K1, K> ... K, shown in Figure 3 are not necessarily the
same, nor do they have the same parameter values. Stan-
dard GP operators perform mutation and crossover to cre-
ate the population for the next generation. Lexicographic
tournament selection is used to prevent growth of the ker-
nel functions without any increase in fitness. STGP ensures
that selection, crossover, and mutation will not generate an
invalid kernel function.

Evaluation uses k-fold cross validation: first, the training
set is split into k equal pieces (called folds). Then, k training
runs are performed, where each time, we leave one piece out
and use it as an independent validation set. An individual’s

fitness is then the average of k validations. In k-fold cross
validation, every data point appears once in the testing set,
and k—1 times in the training set, thus reducing the depen-
dence on how the data is divided. As k increases, the aver-
age performance estimate will be very accurate. However,
computational time increases since the training algorithm is
performed k — 1 times. In pseudocode, KGP is as follows:

Kernel GP
Initial Settings
For each individual ¢
i = generate a random kernel based on closure rules,
basic kernels and STGP
Algorithm
Repeat
For each individual ¢
Assess fitness by performing k-fold cross validation
using individual ¢ and the training dataset
Select individuals for next generation using
lexicographic tournament selection
Apply crossover and mutation to create new population.

6. EXPERIMENTS AND RESULTS

KGP was run with several datasets to test accuracy and
scalability. Table 1 shows the datasets used, all of which
are from the UCI Machine Learning Repository [7]. The
split into training and testing sets for the Vowel dataset
is from the UCI Repository. The size of the training and
testing sets for the Bupa Liver, Pima Indians, Glass2, Heart
Disease, Australian Credit, German Credit, and Ionosphere
datasets is the same as specified in [20]. The splits for the
remaining datasets are 60% to the training set and 40% to
the testing set. All datasets used 10-fold cross-validation
during training.

KGP was implemented using the ECJ library [15] with in-
dividual evaluation performed in LIBSVM [2]. Experiments
consisted of 100 independent random splits of the data into
testing and training sets as described above. For each split,
KGP was trained using a population of 400 individuals for
50 generations. The best individual found was then used
to determine testing accuracy using the testing set. Final
results are the average of the 100 accuracy measurements.
For all experiments, v = 0.05 and the tournament size was
seven.

We compared this technique to runs we performed us-
ing an alternative technique, grid search. Grid search
finds optimal kernel parameters when using a Gaussian ker-
nel [11]. The idea is to try multiple (v,v) pairs (v =
275,273 218 4 =2715 2713 93) and then choose the
pair with the highest cross-validation accuracy (recall that
v is a parameter in the Gaussian kernel). Performance is
then measured as the classification accuracy on the testing
examples.

Table 2 shows the average classification accurcy and 95%
confidence interval for both KGP and SVM-Grid on each
dataset. For the Ionosphere, Iris, and Wine datasets, KGP
performs better than grid search, and on Wisconsin Breast
Cancer, Heart Disease, and Vowel, KGP performs worse
than grid search. All comparisons are statistically signifi-
cant at the 95% confidence level.

Comparison with published results combining SVM and
EAs is difficult due to different experimental methodologies.



Table 1: Datasets used in the experiments.

Dataset Number of Number of Number of Number of
Features Classes Training Examples Testing Examples
Wisconsin Breast cancer 10 2 410 273
Heart Disease 13 2 180 90
Tonosphere 34 2 234 117
Iris Plant 4 3 90 60
Wine Recognition 13 3 107 71
Vowel Recognition 10 11 528 426

Table 2: Mean and 95% confidence intervals for KGP and Grid-SVM

Dataset name KGP

SVM-Grid

Wisconsin Breast cancer
Heart Disease
Tonosphere

Iris Plant

Wine Recognition

Vowel Recognition 0.6645

Several researchers do not test the evolved kernel function on
unseen data, while others do not provide enough information
for independent verification. Comparisons with published
SVM results are also difficult for the same reasons. Still,
some comparisons can be made. Souza et al [6] report a
classification accuracy of 0.9882 using k-fold validation on
the training set for the Vowel dataset. KGP returns an
average accuracy of 0.9981 on the training set.

KGP uses non-obvious kernels to achieve high perfor-
mance. For example, on the Ionosphere dataset, the kernels

2.8472345%¢—0-13789417x| lz—y]|2?

K(z,y) =e

»—0.08027894x| |z —y||2

K(z,y) =e°

produces an accuracy of 0.9829 and 0.9145 respectively, and
on the Iris dataset the kernels

K(z,y) =tanh (38.691612(x;, z;) + 37.45266)

* <1'i7 $j>ll.152326

0.43298903
K(z,y) =¢*=)
both produce an accuracy of 1.0. Note that all the kernels
above satisfy Mercer’s Theorem.

7. COMPUTATIONAL COMPLEXITY

The experiments were conducted on small datasets in
the previous section due to exceptionally high runtimes for
larger datasets. Despite code optimizations and a significant
amount of computational power, the question remains: why
do large datasets take so much longer than smaller datasets?

The discussion in [1] can partially explain these long run-
times. One issue affecting computational complexity is the
number of support vectors. Recently, [26] showed that the
number of support vectors k increases linearly with the num-

ber of training examples n. More specifically,
k/n — 2By (15)

where By, is the smallest classification error achievable with
kernel k.

0.9546 + 7.539 x 10~ *
0.7759 + 7.819 x 104
0.9404 + 4.028 x 104
0.9740 + 5.963 x 1074
0.9747 + 3.599 x 1074

0.9637 £ 2.000 x 10~ %
0.8273 + 7.80 x 104

0.9327 +4.325 x 1074
0.9609 + 5.70 x 10~*

0.9719 + 3.891 x 1074
0.6406

Most SVM training algorithms must store the active por-
tion of the kernel matrix in memory. If the memory require-
ments exceed available memory, then the training time in-
creases since some coefficients are computed multiple times.
Thus, equation 15 suggests memory requirements scale at
least like B2n?, which can be prohibitive for large and/or
noisy problems. Note that computing multiple coefficients
inside KGP can be expensive, especially as the size of the in-
dividual increases. This additional runtime is compounded
by the size of the GP population. These reasons par-
tially explain the exceedingly slow runtimes for KGP on
large datasets such as the USPS Handwriting classification
dataset.

8. CONCLUSIONS

KGP is a combination of SVM and GP designed to reduce
the burden of a priori knowledge on the researcher. KGP
has shown good generalization ability. However, KGP’s
computational overhead is significant, and potentially pre-
vent its application to large datasets.

Avenues for future work include changing the fitness func-
tion to one which tries to maximize the margin, and studying
the relationship between GP parameters and SVM parame-
ters. In addition, increasing the number of closure properties
and using GP to evolve basic kernel functions will increase
the applicability of KGP.
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