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ABSTRACT
Meta-evolutionary algorithms have long been proposed as an
approach to automatically discover good parameter settings
to use in later optimization runs. In this paper we instead
ask whether a meta-evolutionary algorithm makes sense as
an optimizer in its own right. That is, we’re not interested
in the resulting parameter settings, but only in the final
result. As it so happens, this use of meta-EAs make sense
in the context of large numbers of parallel runs, particularly
in massive distributed scenarios. A primary issue facing
meta-EAs is the stochastic nature of the meta-level fitness
function. We consider whether this poses a challenge to
establishing a gradient in the meta-level search space, and
to what degree multiple tests are helpful in smoothing the
noise. We discuss the nature of the meta-level search space
and its impact on local optima, then examine the degree to
which exploitation can be applied. We find that meta-EAs
perform well as optimizers, and very surprisingly that they
do best with only a single test. More exploitation appears
to reduce performance, but only slightly.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous—Evolution-
ary Computation
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Meta-Evolutionary Algorithms; Parallel Algorithms

1. INTRODUCTION
A meta-optimization algorithm iteratively improves the

parameter settings of a second optimization algorithm, assess-
esing their quality or fitness by using them to run the second
algorithm and examining its performance. The method is
related to the general family of hyperheuristics [31]. Since
the 1970s [8, 27] this idea has been proposed as a mechanism
for automating the tuning process of evolutionary algorithms
and other metaheuristics.
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The traditional reasoning behind meta-optimization goes
like this: an experimenter typically performs up-front pa-
rameter tuning of an optimization algorithm, and this is
essentially a crude form of hill-climbing. Why not take him
out of the loop? If one were going to do a large number of
optimization runs with the same parameters, it might be
helpful to automatically find good parameter settings first.

This philosophy leads to the notion of meta-optimization
with the goal of finding an optimal set of parameter set-
tings to put to use at some point in the future. We think
this is the primary impetus behind much meta-optimization
research. But there is an alternative reason to perform meta-
optimization: as an optimization algorithm in its own right.
Here, the goal would be to directly find an optimal solution.
At first glance one might be bewildered by this: after all,
meta-optimization is extraordinarily expensive. Surely all
those cycles could be put to better use? But we think this
second use of meta-optimization in fact has a definite niche
in massively parallel optimization.

In this paper we study meta-optimization with the goal of
an optimal solution. In our study, both levels of optimization
are EAs (hence a meta-EA), and we use them in the context
of optimizing thousands of runs on a supercomputer cluster.

Scenario. Imagine that an experimenter has a difficult-to-
optimize function and has decided to tackle it by doing some
(very large) N runs and returning the best result. This is
hardly an uncommon scenario: depending on the problem it
is often a preferred approach over other forms of parallelism,
such as island models or distributed evaluation.

In fact, there are some parallel architectures for which
the maximum of N runs is the most attractive option. One
example: Parabon Computing produces a variant of the ECJ
evolutionary toolkit [26] called Origin, which runs on their
Frontier massively parallel platform.1 Parabon contracts with
organizations to install software on their PCs which makes
them available as computational units to Frontier when not
being used otherwise. This makes up to millions of PCs avail-
able as computational units. But because of security concerns
inherent in contracting for PCs, jobs running on Frontier
PCs are sandboxed and are not permitted to communicate
with other PCs. This lack of intercommunication means that
island models do communication through the master server,
which is unattractive because communication to the master
is slow. Furthermore, this slow communication with the
master server means that distributed evaluation is infeasible
unless the evaluation time is very high per-individual, or we
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are doing opportunistic evolution [34]. But Frontier is an
excellent target for massively parallel runs.

If the experimenter has settled on doing N runs, he must
decide two things. First, he must determine how many
evaluations each of these runs will perform. Second, he must
decide on the details of his optimization procedure: he may
have to choose an optimization procedure among many; or
just select parameter settings for a procedure if he has already
decided on which one to use.

The first decision (number of evaluations) is something that
the experimenter must make himself: he cannot delegate it
to an optimizer. But the second decision (algorithmic details)
can be delegated. If he is fortunate, the experimenter may
already have a general idea of the good range for parameter
settings through previous experience or the suggestions of the
research literature. But he is unlikely to know the precise best
parameter settings for this particular problem. He can take
a stab at some parameter setting for all N runs, or perhaps
try random settings within the range. In any case, it would
be helpful if the algorithm optimized to good-performing
settings mid-run, given the high cost of the run itself.

Let us consider using a meta-EA to optimize these run
settings. We divide the N total runs into G generations of P
runs each. We create a population of P individuals consisting
of parameter settings, and test them on parallel machines.
We set the fitness of an individual to the best-so-far fitness
from a run using its parameters. We use an evolutionary
algorithm to produce a second generation of P individuals,
and repeat up to G times.

The primary challenge this approach faces is the stochas-
ticity of the fitness assessment. Parameter settings are not
assigned a deterministic fitness, but rather a fitness based
on the vagaries of the underlying evolutionary algorithm
which used that parameter setting. The high stochasticity
of evolutionary algorithms leads to a high degree of noise in
the meta-EA’s fitness function, which in turn can make it
difficult for the meta-EA to establish a gradient to optimize.
The obvious way to deal with this is to assess each parameter
setting using some T number of tests and taking the mean or
median best-of-run performance as its fitness. As T increases,
the noise ideally reduces, but at the high cost of eating into
the optimization: after all, the total budget is N = T ×G×P .
Either G or P , or both, must be reduced if T > 1. If T is
prohibitively high, more intelligent statistical methods may
be used to reduce the total number of tests [33].

It is also not clear whether, ignoring noise, the meta-level
parameter-setting fitness landscape is complex. Will a hill-
climber suffice? Is the space complex enough to require a
nontrivial global optimization algorithm, and if so, what
should be the parameters for that algorithm? Is it, so to
speak, “turtles all the way down”?

2. PREVIOUS WORK
The history of parameter-setting in evolutionary algo-

rithms is a very long one and has garnered a large amount
of literature [15]. Because of its importance, the question of
whether a parameter setting could be automated has been
provoking the research community for several decades, at
least since the study of adaptive or self-adaptive parameter
tuning in the first evolution strategies.

The earliest investigations into meta-level parameter op-
timization were probably [8, 27]. However, these methods
didn’t use an evolutionary algorithm per se at the meta level,

but rather a kind of pattern-learning technique similar to
that of [4]. Later this general idea of meta-level control of
optimization was extended to the notion of the meta-EA:
an evolutionary algorithm to optimize one or more other
evolutionary algorithms [16, 18].

Meta-evolutionary algorithms are related to the family of
hyperheuristics [10, 13, 31] The difference between the two is
soft. While meta-EAs focus on optimizing parameters to an
evolutionary algorithm, hyperheuristics instead usually try
to select from a set of prespecified algorithms, along with
optimizing their parameters.

The existing meta-optimization literature is largely con-
centrated on finding the optimal parameter settings for the
underlying optimization algorithm, for example [25, 29, 32].
There is debate as to whether this is an effective method. In
[9], it was reported that the parameters discovered can be
unimpressive. However [22] reported substantial and consis-
tent performance improvements in parameter settings for a
variety of (non-EA) algorithms.

An obvious choice to test a meta-optimization algorithm is
a massively parallel model, as the problem’s inherent proper-
ties demand it. Early examples of parallel meta-EAs include
[1, 2, 23], which essentially describe a master-slave model
with asynchronous evolution where the primary goal of the
investigation is to discover optimal parameter settings to
achieve “maximum convergence velocity”. There are also a
number of implementations of parallel models focusing on
different aspects of meta-optimization. For example, in [7]
the main goal was to find the optimal parameter settings
for the One-Max problem to compare with expected theo-
retical results. In [3], the authors investigated how parallel
hyperheuristics (rather than meta-EAs) could be utilized to
find an algorithm along with its optimal parameters to solve
difficult numerical optimization problems. Similar analyses
may be found in [28]. In our work we presume a fixed budget,
but [5] has examined how to perform meta-optimization with
a flexible budget.

The parameter-level fitness landscape of a meta-EA is noisy.
However inferring the shape of the parameter landscape is
critical to successful meta-optimization. Investigations into
the stochastic parameter landscapes may be found in [17].
In [21], the authors build a gaussian process model to deal
with stochasticity. In this paper we examine using multiple
tests to filter noise, a notion further examined in [33].

3. METHOD
Our basic approach is a straightforward meta-EA applied in

a parallel setting. A meta-EA has two levels of evolutionary
algorithms. At the meta level, individuals are parameter
settings. To test a meta-individual, we run some T lower
level evolutionary runs using that individual’s parameter
settings. We then extract the T best-fitness-of-run results
from each run and set the fitness of the meta-individual to
their mean. Though we use the mean of the best-fitness-of-
run results as fitness values at the meta level, this is not how
we track the performance of the meta-level algorithm. For
that, we are interested in the best result discovered so far by
any lower-level evolutionary run.

The meta-EA is parallelized on a computer cluster using
S = 128 slave processors and one master processor. The
master runs the meta-level evolutionary algorithm. To test a
meta-individual a single time, we assign a slave processor to
run a lower-level evolutionary algorithm using its parameters.



Thus to assess the fitness of a meta-level individual, slave
processors are employed T times in total. The evolutionary
computation system we used was ECJ [26].

Though we applied various evolutionary methods at the
lower-level, we always used a variant of the (µ + λ) evolu-
tionary strategy at the meta-level, as follows. After fitness
assessment, the fittest µ individuals were directly copied to
the next generation. The remainder of the population was
then filled with P − µ children, each produced by uniformly
randomly selecting among the µ elites, then applying mu-
tation. Though the population size varied in size (due to
T ), we kept the fraction of µ roughly constant by setting
µ = max(⌊P /8⌋,1), except in Experiment 3. Since the meta-
level fitness function was noisy, elites were always re-assessed
for fitness at each generation.

Much of the complexity of a meta-EA lies in how it rep-
resents meta-individuals. In our experiments, meta-level
genomes were fixed-length vectors of parameter settings,
where each parameter was of one of the following types:

● Floating-point values. For example, the parameter
“mutation probability”might have values from 0.0 to 1.0.
Values were initialized randomly within legal bounds.
Mutation occurred with a per-gene probability of 0.25,
using Gaussian convolution with σ = 0.25 except where
indicated. The algorithm repeatedly tried to find a con-
volution which would result in a value within bounds.

● Ordered integer values. For example, the parameter
“number of generations” might have values from 1 to 64.
Values were initialized randomly within legal bounds.
Mutation occurred with a per-gene probability of 0.25,
using an integer random walk of probability w. The
random walk was a loop: each iteration either 1 or -1
was added to the gene value, and then with probability
1 −w the loop was exited.

● Ordered set values. These were strings with a specific
order among them. For example, the parameter “popu-
lation size” might have values of “32”, “64”, “128”, “256”,
or “512”. These values were treated as ordered integer
values, namely 0, 1, 2, 3, and 4 respectively.

● Unordered set values. These were strings with no order
among them. For example, the parameter “crossover
type”might have values of“one-point”, “two-point”, and
“uniform”. These values were treated as integers (in this
example, 0, 1, 2), and were initialized randomly within
legal bounds (0–2). Mutation occurred with a per-gene
probability of 0.25, and simply randomized the gene
value. Boolean values were considered unordered sets
consisting of the strings “true” and “false”.

4. BENCHMARK PROBLEMS
To examine the generality of the technique across various

optimization methods, we tested it on three different kinds of
evolutionary algorithms (GA, ES, and DE) at the lower-level,
each using a different objective function.

The objective functions were chosen for three qualities.
First, they are fairly difficult, so as to make multiple parallel
runs reasonable. In no case would we expect the optimum to
be discovered. Second, like many objective functions, they
are sensitive to different evolutionary parameter settings,
making them amenable to meta-evolution. And third but

far from least, they are fast. This third characteristic was
crucial given the 14.2 million evolutionary runs performed.
The three benchmark problems were:

A Genetic Algorithm (GA) applied to the Leading-Ones
Blocks Problem. Leading-Ones Blocks is a stairstep vari-
ation of the Leading-Ones problem with tunable difficulty.
Leading-Ones Blocks takes a boolean vector, and a tuning
parameter b, then counts the number of successive strings
of 1s of length b in the vector, starting from the beginning,
until the first 0 is encountered. If b is small the problem
is trivial, but if b is large the problem can be prohibitively
difficult. We may formally define Leading-Ones Blocks as:

f(x1, ..., xn) =
⎢⎢⎢⎢⎣

1

b

n

∑
i=1

i

∏
j=1

xj
⎥⎥⎥⎥⎦

We set the genome size to 400, and b to 20, meaning that
the optimal fitness was 50 (higher is better).

The genetic algorithm worked as follows. Initial individuals
were generated randomly, rejecting duplicate individuals.
After fitness evaluation, given a population size P and a
proportion 0.0 ≤ e ≤ 1.0 of elites, some number ⌊e × P ⌋
of elites were directly copied to the next generation. The
remainder of the next generation population was filled by
iteratively selecting parents in pairs, crossing them over, and
mutating them. An evolutionary run lasted for 65,536 fitness
evaluations.

At the meta-level, we optimized the following parameters:

● Population Size (P): 32, 64, 128, 256, 512, 1024, 2048
Since the evaluations were fixed, this in turn would
affect the generation size (2048, 1024, 512, 256, 128,
64, or 32 respectively). At the meta-level, these values
were treated as ordered set values.

● Elitism Proportion (e): [0.0...1.0]

● Tournament Size (t): [1.0...20.0] Note that this is a
floating-point number. With probability t−⌊t⌋ we select
with tournament size ⌈t⌉, else with tournament size ⌊t⌋.

● Per-gene Mutation Probability: [0.0...1.0] Mutation
was done by flipping the gene’s bit.

● Crossover Type: one-point, two-point, uniform One-
point crossover, two-point crossover, or uniform
crossover with a per-gene probability c. At the meta-
level, these were unordered set values.

● Per-gene Crossover Probability: [0.0...0.5] This was
only relevant to uniform crossover.

A (µ,λ) Evolution Strategy (ES) applied to the Rotated
Griewank Problem. The non-rotated Griewank problem is
floating-point and ranges with xi ∈ [−600,600]:

f(x1, ..., xn) = 1 + 1

4000
(

n

∑
i=1

x2i) +
n

∏
i=1

cos( xi√
i
)

Let x⃗ = ⟨x1, ..., xn⟩. We rotated Griewank with a rota-
tion matrix M, generated randomly once per lower-level
evolutionary run, which defined a revised fitness function
r(x⃗) = f(Mx⃗). M was produced using Gram-Schmidt or-
thonormalization, following the procedure described in [19].
The genome size was 100. Lower fitness values were better.



The (µ,λ) ES worked as follows. We defined a popu-
lation size λ and a specified proportion 0.0 ≤ m ≤ 1.0 of
parents, where µ was then set to max(⌊mλ⌋,1). Initial in-
dividuals were created by randomizing each gene uniformly
from [0.0...1.0], not permitting duplicate individuals. After
fitness evaluation, we gathered the µ best members of the
population as parents. Each parent generated λ/µ children
via mutation, which were then added to the next-generation
population. An evolutionary run would last for no more than
16,384 fitness evaluations.

At the meta-level, we optimized the following parameters:

● Population Size (λ): 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, 2048 Since the evaluations were fixed, this in
turn would affect the generation size (8192, 4096, 2048,
1024, 512, 256, 128, 64, 32, 16, or 8 respectively). At
the meta-level, these were ordered set values.

● m (µ as a Proportion of λ): [0.0...0.5]

● Per-gene Mutation Probability: [0.0...1.0]

● Mutation Type: Reset, Gaussian, Polynomial At the
meta-level, these were unordered set values. Reset mu-
tation simply randomized the gene. Gaussian mutation
added random gaussian noise of standard deviation σ to
the gene until the result. Polynomial mutation applied
random noise to the gene under the polynomial distri-
bution of index value i. Two variants of polynomial
mutation were used as described next.

● Alternative Polynomial Version: true, false We know
of at least four different versions of polynomial mutation
in the literature. ECJ provides two of these variants,
which it calls the “standard” variant, as defined in [11],
and the “alternative” variant, as defined in [12]. At the
meta-level, these were unordered set values.

● Polynomial Distribution Index (i): [0...40] (integers)
This was only relevant to polynomial mutation.

● Gaussian Standard Deviation (σ): [0.0...1.0] This
was only relevant to gaussian mutation.

Both Gaussian and Polynomial Mutation can produce
results outside of valid gene bounds. In both cases we would
retry up to 100 times to find a valid in-bounds mutation,
after which the gene would remain un-mutated.

Differential Evolution (DE) applied to the Lennard-
Jones Problem. Here the goal is to find the global min-
imum of a potential energy function over a cluster of atoms
which depends on their relative positions [36]. The potential
energy E of a Lennard-Jones cluster is calculated as:

E = 4ε∑
i

∑
j>i

⎡⎢⎢⎢⎣
( σ

rij
)
12

− ( σ

rij
)
6⎤⎥⎥⎥⎦

rij is the Euclidian distance between atoms i and j
respectively. We define atom positions in three dimen-

sions, and so rij =
√

(ix − jx)2 + (iy − jy)2 + (iz − jz)2. The
genome has three numbers (x, y, z) for each atom, hence
ix, iy, iz, jx, jy, jz, kx, ky, kz, ... etc. Like much of the litera-
ture [6], we set the ε and σ constants to 1. We used ten
atoms, hence a vector of size 30. We also converted the
problem to maximization by negating the fitness function.

We performed standard Differential Evolution (DE) with
three common DE breeding operators: DE/rand/1/bin,
DE/best/1/bin, and DE/rand/1/either-or. Differential Evo-
lution is too complex a technique to describe fully here:
instead, consult [30]. We deviated from DE tradition in one
respect: we guaranteed that the operators produced children
within valid gene bounds. We did this by trying up to 5
times to generate a valid child; otherwise we simply copied
its primary parent instead. An evolutionary run would last
for no more than 65,536 fitness evaluations.

At the meta-level, we optimized the following parameters:

● Population Size (P): 32, 64, 128, 256, 512, 1024, 2048
Since the evaluations were fixed, this in turn would
affect the generation size (2048, 1024, 512, 256, 128,
64, or 32 respectively). At the meta-level, these were
ordered set values.

● Breeding Operator: DE/rand/1/bin, DE/best/1/bin,
DE/rand/1/either-or At the meta-level, these were
unordered set values.

● Per-gene DE Crossover Probability (Cr): [0.0...1.0] A
standard DE parameter.

● DE Mutation Scale Factor (FNOISE): [0.0...0.05]
A standard DE parameter used only by the
DE/best/1/bin operator. FNOISE’s range is so small
that we modified its meta-level standard deviation,
setting σ = 0.001.

● DE Either-Or Probability (PF): [0.0...1.0] This
is a standard DE parameter used only by the
DE/rand/1/either-or operator.

5. FIRST EXPERIMENT
We began by asking: how many tests per meta-level fitness

evaluation are worthwhile? Let us assume that we had S
processors at our disposal and were permitted to run each for
some E evolutionary runs, for a total budget ofN = E×S runs.
In this arrangement, if we applied a single test per meta-level
fitness evaluation, our population size P would be constrained
to be ≥ S. We chose the obvious setting (P = S = 128).

To examine the effect of tests, we must decide how in-
creasing tests will impact on the budget. Tests could re-
duce the population size, or the number of generations, or
both. For this experiment we chose to reduce the population
size. Thus given T tests per meta-level fitness evaluation,
P × T = S (= 128). This also determines the number of gen-
erations G in our meta-level algorithm, specifically, G = E.

We tried 1, 2, 4, 8, and 16 tests, with corresponding
meta-level population sizes of 128, 64, 32, 16, and 8, and
µ values of 16, 8, 4, 2, and 1 respectively. We performed
50 independent runs of each test size, and also performed
50 runs of entirely random search at the meta-level, where
the parameter settings tried were randomly chosen from
among their legal gene values. Random search provided
our lower bound for comparison. Finally, we identified the
single most successful parameter setting discovered from all
meta-level runs, and performed 50 meta-level runs using
just that parameter setting. This setting provided us with
an approximate upper-bound. In all cases, meta-level runs
lasted 64 generations, totaling 8192 fitness evaluations (hence
lower-level evolutionary runs) per meta-level run.
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Figure 1: Meta-level mean best-fitness-so-far for the
Leading-Ones-Blocks problem (GA, maximization).
⧫ 1 Test ☀ 2 Tests + 4 Tests ▲ 8 Tests
× 16 Tests ∎ Random Search — Best Discovered
Setting

1 Test 2 Tests 4 Tests 8 Tests 16 Tests
> Random ∼1.0 ∼1.0 ∼1.0 0.9999 0.9999
< Best 0.9996(>) 0.9399(>) 0.6979(>) 0.9993 ∼1.0
< 1 Test —— 0.8271 0.9524 0.9999 ∼1.0

Table 1: P-values of differences between methods on
the GA Leading Ones Blocks problem. Bold values
indicate statistically significant results. > means “is
better than” and < means “is worse than”. (<) means
that the result is not better (the default) but in fact
worse. Likewise (>) means that the result is not
worse (the default) but in fact better.

Results. We verified statistical significance using a nonpara-
metric ranked two-tailed T-test. Experiments in the paper
total to 67 comparisons, so we used a Bonferroni correction,
adjusting the p value from 0.95 to 0.99925.

The results are shown in Figures 1 through 3. Addition-
ally, Tables 1 through 3 show the p-values for comparison
between various numbers of tests and three different runs:
“Random” (random search), “Best” (the fittest parameter
settings discovered in any run), and “1 Test” (since 1-Test
was the best performing). As can be seen from the tables,
comparisons generally produced quite high p-values. In many
cases the p-value was “∼1.0”, meaning that the two compared
distributions were disjoint when their samples were ranked.

Conclusions. How many tests was a good trade-off between
noisy fitness and population size? The answer was very
surprising: 1 test! More tests yielded worse performance.

With a few exceptions, the multi-test runs were bounded
between random runs and the best-of-all-runs parameter
setting. In all cases, 1-, 2-, and 4-test arrangements proved
statistically significantly superior to doing random runs. This
confirmed our hypothesis that if you didn’t really know
what settings to use for a difficult problem, a meta-EA
would probably be a better option to simply trying arbitrary
settings within reasonable ranges.

In fact in several cases 1- and 2-test arrangements were
statistically superior to the best-of-all-runs setting! This
seemingly impossible event is easily explained: the best-of-
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Figure 2: Meta-level mean best-fitness-so-far for
the Rotated Griewank problem (ES, minimization).
Log10 scale shown. ⧫ 1 Test ☀ 2 Tests
+ 4 Tests ▲ 8 Tests × 16 Tests ∎ Ran-
dom Search — Best Discovered Setting

1 Test 2 Tests 4 Tests 8 Tests 16 Tests
> Random ∼1.0 ∼1.0 0.9999 0.9999(<) 0.5774(<)
< Best ∼1.0 ∼1.0 ∼1.0 ∼1.0 ∼1.0
< 1 Test —— 0.9979 0.9999 0.9999 ∼1.0

Table 2: P-values of differences between methods
on the ES Rotated Griewank problem. Bold values
indicate statistically significant results. > means “is
better than” and < means “is worse than”. (<) means
that the result is not better (the default) but in fact
worse. Likewise (>) means that the result is not
worse (the default) but in fact better.

all-runs setting is strongly susceptible to being a random
outlier, and in practice it may actually underperform other
top-ranked settings in the average. We believe that this
provides more evidence for the claim made in [9]: that doing
meta-evolution to produce an optimal parameter setting (as
opposed to a final result) may not produce particularly good
results due to such lucky outliers.

6. SECOND EXPERIMENT
In the first experiment, we examined trading off tests

for population size. Another approach is to trade off tests
for generations. However, if the meta-level evolutionary
algorithm is slow to converge to a decent set of parameters,
we imagined that cutting generations short could have a
detrimental impact on the meta-evolutionary algorithm.

To test this, we once again used S = 128 processors, and
fixed the population size P = S = 128. We varied the number
of meta-level tests T per fitness assessment to 1, 2, 4, 8, and
16. To maintain a constant number of evaluations, we also
varied the meta-level number of generations G to 64, 32, 16,
8, and 4 respectively. Thus more tests per individual resulted
in fewer generations at the meta-level.

We restricted ourselves to the DE Lennard-Jones prob-
lem. While we included random search as a lower bound for
reference, we did not include an upper bound, as we had
already compared with it: we were more interested in how
fewer generations impacted on performance. Besides P , T ,
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Figure 3: Meta-level mean best-fitness-so-far for
the Lennard-Jones problem (DE, maximization).
⧫ 1 Test ☀ 2 Tests + 4 Tests ▲ 8 Tests
× 16 Tests ∎ Random Search — Best Discov-
ered Setting

1 Test 2 Tests 4 Tests 8 Tests 16 Tests
> Random ∼1.0 ∼1.0 0.9999 0.9999(<) 0.9544(<)
< Best 0.9999(>) 0.9990(>) 0.275 0.9006 ∼1.0
< 1 Test —— 0.9997 0.9999 0.9999 ∼1.0

Table 3: P-values of differences between methods
on the DE Lennard-Jones problem. Bold values in-
dicate statistically significant results. > means “is
better than” and < means “is worse than”. (<) means
that the result is not better (the default) but in fact
worse. Likewise (>) means that the result is not
worse (the default) but in fact better.

and G, we used the same meta-level parameters and number
of runs as in the first experiment.

Results. We again verified statistical significance using a
nonparametric ranked two-tailed T-test with a Bonferroni
correction, adjusting the p value to 0.99925. The results are
shown in Figure 4 and summarized in Table 4.

Conclusions. Once again, results worsened monotonically
with increasing tests. In all cases, T tests was statistically
significantly better than > 2T tests, and to random search.2

Again we have no reason to suggest using anything other
than a single test!

7. A DIGRESSION
At this point it’s worth discussing the nature of the space

of parameters in an evolutionary algorithm and its impact on
local optima. In the parameter optimization literature, the
classical presentation of parameters has been as a vector of
values. But in fact these parameters may be better thought
of as a tree. The reason for this is because the presence of a
certain parameter A will demand the existence of another

2
We informally let this experiment run to twice as many generations

to see if this effect diminished. It does. The results were still mono-
tonic, but the p-values dropped below significance except for 1 > 4
and all > Random Search. We think this suggests that the benefits of
the meta-EA might lie largely in the first 32 or so generations.
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Figure 4: Meta-level mean best-fitness-so-far for
the Lennard-Jones problem (DE, maximization)
with generations traded for tests. ⧫ 1 Test
☀ 2 Tests + 4 Tests ▲ 8 Tests × 16 Tests
∎ Random Search

2 Tests 4 Tests 8 Tests 16 Tests Random Search
< 1 Test 0.9157 0.9999 0.9999 0.9999 ∼1.0
< 2 Tests —— 0.9775 0.9999 0.9999 ∼1.0
< 4 Tests —— —— 0.9430 0.9999 ∼1.0
< 8 Tests —— —— —— 0.9807 ∼1.0
< 16 Tests —— —— —— —— 0.9999

Table 4: P-values of differences between different
numbers of tests on the DE Lennard-Jones problem.
Bold values indicate statistically significant results.
< means “is worse than”.

parameter B; or the absence of A will make B moot. For
example, there’s no reason to have a “per-gene crossover
probability” parameter unless the “crossover type” parameter
has been set to “uniform”. Additionally, the same parameter
may have different values in different contexts in the same
evolutionary algorithm. This is particularly common when
parameters define the breeding pipeline for the algorithm.
For example, consider a pipeline where tournament selection
feeds into polynomial mutation, which provides one child
for uniform crossover, the other child being provided by
another tournament selection (with a different tournament
size). Such a parameter tree might look like:

uniform
crossover

polynomial
mutation

polynomial
mutation

index

tournament
selection

tournament
size #1

per-gene
crossover

probability

tournament
selection

tournament
size #2

This tree structure is, we believe, a major reason why
many evolutionary computation implementations define their
parameters using a hierarchical rather than flat namespace.

We will not here attempt the daunting task of evolving
tree-structured parameters, but we bring this up to point
out that, when flattened into vectors, the naturally tree-
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Figure 5: Meta-level mean best-fitness-so-far for the
Leading Ones Blocks Problem (GA, maximization),
with various levels of µ. ⧫ µ = 16 ☀ µ = 8 + µ = 4
▲ µ = 2 × µ = 1 Note that “⧫ µ = 16” is the same as
“⧫ 1 Test” from Figure 1.

µ = 8 µ = 4 µ = 2 µ = 1
< µ = 16 0.7424(>) 0.9799 0.9998 0.9993
< µ = 8 —— 0.7085 0.9925 0.9708
< µ = 4 —— —— 0.9490 0.8135
< µ = 2 —— —— —— 0.4470

Table 5: P-values of differences between different
levels of meta-level µ on the GA Leading Ones
Blocks problem. Bold values indicate statistically
significant results. < means “is worse than”. (>)
means that the result is not worse (the default) but
is in fact better. Note that “µ = 16” is the same as
“1 Test” from Table 1.

structured parameter space produces genes with a very high
degree of epistasis, as some parameters are only active if
other parameter are set to the right values.3

Our benchmark problems exhibited this several times: the
GA’s per-gene mutation probability; ES’s alternative poly-
nomial version, polynomial distribution index, and gaussian
standard deviation; and DE’s FNOISE and PF parameters.
Such epistasis is one source of “weak” local optima in the
parameter space. For example, uniform mutation with the
right probability setting might be globally optimal, but if the
genome is saddled with a poor per-gene probability setting,
one- or two-point crossover will perform better. We have
observed the meta-EA getting trapped in such local optima.

8. THIRD EXPERIMENT
We know that each of the parameter spaces has at least

a few local optima due to the high epistasis among the
parameters. Further, the space is quite noisy. However we
still supposed that the underlying space was fundamentally
simpler in nature than the complex test functions we chose. If
so, it might be susceptible to a more exploitative hill-climber
than the 1-Test result, which had used a population size of
128 and µ = 16. We could adjust exploitation by changing the
selection pressure, or the mutation rate, or both. Because the

3
Genetic programming is the obvious way to evolve tree-structured

parameters. But we are not aware of an attempt to tackle entire
parameter sets with GP, though there is work in using GP to adapt
new breeding operators [14, 35, 20], usually through co-evolution.

parameter genes are heterogeneous it is not simple to vary
their mutation rates in a principled fashion, but we can easily
change the selection pressure, in the form of µ. We compared
1-Test at µ = 16 against the same approach at µ = 8,4,2,
clear down to 1, the most exploitative. We selected the GA
Leading Ones Blocks benchmark as our target problem as it
had the fewest parameters (1) in epistasis.

Results. We again verified statistical significance using a
nonparametric ranked two-tailed T-test with a Bonferroni
correction, adjusting the p value from 0.95 to 0.99925.

The results are shown in Figure 5, and Table 5 shows the
p-values for comparison between various sizes of µ.

Conclusions. We had supposed that, assuming the space
was relatively simple, a more exploitative technique would
perform better. But the trend seems to be the opposite: as
µ decreases, so does performance. This could be either due
to a more complex space than we had expected, or (we think
more likely) the high noise in the function. Even so, the
difference is surprisingly small, and only µ = 16 is statistically
significantly different from µ = 2 and µ = 1.

9. CONCLUSIONS AND FUTURE WORK
The goal of much meta-evolutionary algorithm research

has been to find optimal parameters: but we have identified
a common situation, in massively parallel computing, where
a meta-evolutionary algorithm is helpful to find an optimal
solution directly.

One commonly assumed problem with meta-EAs is their
noisy fitness functions. We tested the approach on three
benchmark problems and varying numbers of tests to reduce
the noise, and found that in fact no noise reduction works
best. We also noted that meta-EAs have high epistasis
between certain genes because of the nature of the parameter
search space in modern evolutionary algorithms. This will
produce certain known local optima, but despite this we
presumed that the meta-EA search space is generally simpler
than the underlying lower-level EA search space. Under this
assumption, we tested whether a more exploitative approach
might perform better, but found that in fact the opposite
was true, thus suggesting that the search space may hold
more surprises yet.

As future work, we hope to perform a full sweep of the
meta-level search space, though we have so far found our-
selves stymied by the noise and sheer number of evaluations
involved. Additionally, we would like to extend our analy-
sis of the search space to ask whether meta-meta-EAs and
meta-meta-metaEAs etc. continue to face complex spaces
(a question also asked, but not answered, in [24]). That is,
whether the meta-EA scenario really is, to use the famous
phrase, “turtles all the way down”.
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