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ABSTRACT

ECJ is a mature and widely used evolutionary computation
library with particular strengths in genetic programming,
massive distributed computation, and coevolution. In Fall
of 2016 we received a three-year NSF grant to expand ECJ
into a toolkit with wide-ranging facilities designed to serve
the broader metaheuristics community. This report discusses
ECJ’s history, capabilities, and architecture, then details our
planned extensions and expansions.
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ECJ is an evolutionary computation system begun in the Fall
of 1999, and is one of the oldest major open source toolkits
(EO [17] is one year older). In the eighteen years since then,
ECJ has become widely used in the field, resulting in many
theses, publications, and commercial products. But as ECJ
has stayed close to its evolutionary computation roots, other
metaheuristics methods have since sprouted up, everything
from ant colony optimization to memetic algorithms. With
this has seen the arrival of many custom toolkits which have
strengths in one or another of these new approaches.

I believe that a strong, unified metaheuristics toolkit will
greatly help the field by providing common ground for com-
paring methods, mixing and matching techniques, and doing
research and education with a stable and well-understood
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implementation. This past year GMU received a (USA) Na-
tional Science Foundation grant to develop ECJ into this
unified toolkit to benefit not just to evolutionary computation
but the broader area of black-box stochastic optimization.
In this paper I describe why and how ECJ came to be,
assess what about ECJ made it popular with the EC commu-
nity, describe ECJ’s capabilities (and flaws), and then detail
how we will improve and extend ECJ in the near future.

1 HISTORY
ECJ’s origins are in genetic programming (GP). Prior to ECJ,
early genetic programming tools were limited. GP had been
strongly influenced by John Koza’s Genetic Programming [19]
and subsequent texts, which included Koza’s “Simple Lisp”
(or “LittleLisp”) genetic programming code. Various early
C and C++ reimplementations of Koza’s code arrived soon
thereafter, the most successful probably being lil-gp [32].
Other major tools included SGPC, DGPC and GPQUICK.
In 1997 I used lil-gp to evolve team soccer softbot behav-
iors for RoboCup’s simulator league, using a beowulf cluster
at the University of Maryland [21]. This work required major
modifications to lil-gp: distributed evaluation, typed genetic
programming, coevolution, and various breeding and selec-
tion operators. lil-gp was not designed for this degree of
modification, and so after this project I decided to build
a new toolkit for future work. Many of ECJ’s design deci-
sions can be directly traced to lil-gp, including ECJ’s logging
facility, independent random number generation, serializa-
tion/checkpointing, and heavy use of parameter files.
Though it was meant from the start to be a full-featured
evolutionary computation toolkit, ECJ drew no inspiration
from early GA and ES libraries. Genetic programming toolk-
its were usually more complex, as their representations were
nontrivial and were evaluated in simulation as if they were
software. Such simulations could require multithreaded and
even distributed evaluation. ECJ came from this tradition.
ECJ has always been open source, licensed under AFL 3.0,
a liberal BSD-style license with a patent release [30]. As I
want the code used by as broad an audience as possible, 1
do not permit viral licenses in the code or its dependencies.
Though ECJ has had many extensions and contributions by
others, in truth the core code has always been a cathedral-
style effort, largely produced by myself and my students.
ECJ managed to go a full decade without a manual, offer-
ing only class documentation, tutorials, and some text files.
In 2010 at the request of users, and after writing the first
edition of Essentials of Metaheuristics [22], 1 finally built a
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Figure 1: Generational top-level loop.

287-page manual. In addition to the obvious goal of provid-
ing comprehensive documentation of all of ECJ’s features,
this exercise also resulted in a top-to-bottom reexamination
and revision of ECJ’s code, parameters, and documentation.

2 WHY HAS ECJ BEEN POPULAR?

ECJ has proven popular. Christian Gagné and Mark Parizeau
(authors of OpenBEAGLE [8]) described ECJ as “probably
the most popular public EC system coded in Java” [10]. J.J.
Merelo et al (EO, JEO [1], and Algorithm::Evolutionary [25])
describe ECJ as “probably the most widely-used general-
purpose evolutionary computation library” [25].
Publications using ECJ are not required to cite it, but
a 2012 hand search from Google Scholar yielded 413 pub-
lications which had used, compared against, or otherwise
cited ECJ, beyond those from my institution. A more recent
search revealed an additional 424 publications since 2013.
I think that there are four reasons why ECJ was successful:
e ECJ showed up at the right time, and rode the wave
of Java popularity. As Java progresses from excit-
ing new language to boring enterprise tool, ECJ’s
strength here may wane.

e ECJ has over time acquired many capabilities, most
of which can be used in almost any combination.
ECJ has proven good for large, complex projects.

e ECJ could acquire these capabilities because it was
over-architected from the start, enabling me and
other researchers to easily extend and customize it.
ECJ’s architecture has, I think, proven to be one of
its biggest advantages.
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evolution top-level loop.

e Perhaps more than anything else, ECJ has had good
support. ECJ comes with many tutorials, class doc-
umentation, and a very large manual. It has been
stable and has had few showstopper bugs. We have
supported ECJ via email for two decades.

2.1 Java

ECJ was developed when Java was in its infancy, and it was
far from clear that Java would become efficient, popular,
or well-supported. But I think that the choice of Java for
ECJ proved prescient. Java originally had an undeserved
reputation for being slow: but modern Java VMs can often
approach C/C++ code in speed. Java’s primary bottlenecks
are due to its poor libraries and convenience mechanisms
(iterators, certain generics). By not using them, ECJ has
remained efficient while still providing much of the portability
and consistency that are Java’s hallmarks. ECJ has heavily
emphasized speed over memory efficiency: and so one of
ECJ’s fundamental problems is its large memory footprint.

ECJ is written in an archaic dialect of Java: when it was
being designed, Java was at 1.1. Early versions of Java
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Figure 3: EvolutionState and its “Verb” Singletons.

were missing facilities for logging, good random number
generation, sorting, selection from distributions, and so on,
which explains why ECJ has its own versions of these in its
code. Even now ECJ maintains its own versions of some
elements (such as thread pools and logging) because the
current standard Java versions of these utilities are poor.
ECJ’s Java style is peculiar. Because ECJ is old, and be-
cause it is often used on systems (notably Macs) whose Java
versions are usually behind the cutting edge, ECJ has always
been backward compatible with very old versions of Java;
indeed right now ECJ is intentionally compatible with Java
1.5. This is why ECJ to this day has no Java annotations,
for example. Other modern features are eschewed by ECJ
because they are inefficient: for example, ECJ does not use
generics in many places because they can incur a dramatic
boxing and unboxing penalty. Similarly, ECJ has tradition-
ally used arrays rather than ArrayLists (which until recently
have been 5x slower). But as Java has improved, some of
these justifications have progressed from sound efficiency con-
siderations to pure cargo cult programming: and so will be
jettisoned going forward, as discussed in Section 3.1.

2.2 Capabilities

ECJ was meant to serve my research goals for ten years
from its creation and to grow into a full-fledged evolutionary
computation toolkit. To this end, ECJ is designed first and
foremost to be easily hacked: it is heavily over-architected,
with many hooks where you can greatly modify the system.
As a result, at present, ECJ has many capabilities, including:

FEvolutionary Computation Methods. The genetic algorithm;
elitism; the steady-state genetic algorithm; (1, A) and (u+ A);
particle swarm optimization; differential evolution; NSGA-
II and SPEAZ2; one-population competitive, two-population
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competitive, and N-population cooperative coevolution; spa-
tially distributed evolution; CMA-ES; many genetic program-
ming evolution methods; grammatical evolution; Push; many
selection, breeding, and parsimony pressure techniques; mul-
tithreaded evaluation and breeding; internal and external
distributed island models; generational, opportunistic, and
asynchronous distributed evaluation (tested on hundreds of
thousands of machines); random restarts; and meta-evolution.

Representations. Fixed-length vectors of various boolean,
numerical, and arbitrary data types; strongly-typed tree-style
genetic programming; arbitrary-length lists (also used for
grammatical evolution); rulesets.

Utilities. Job handling, checkpointing, multithreaded eval-
uation and breeding, significant statistics and logging fa-
cilities, good random number generation and replicability
standards, a GUI with charting.

Extensions. ECJ has had many extensions by contributors,
including an ALPS/FSALPS package, Cartesian GP, GEP,
ECJ output parsers, GPU and CUDA extensions, additional
coevolutionary algorithms, and ports to massive distributed
facilities (DR-EA-M and Parabon/Frontier).

2.3 Architecture

ECJ’s most common top-level evolutionary loops are prosaic;
they’re shown in Figures 1 and 2. The loop is contained in a
singleton EvolutionState object as shown in Figure 3. This ob-
ject shepherds ECJ’s primary “noun” (a Population) through
various “verb” stages: population initialization, evaluation,
breeding/resampling, exchange with other ECJ processes,
and destruction. These “verbs” are handled by the Initializer,
FEvaluator, Breeder, Exchanger, and Finisher respectively.
Throughout, the EvolutionState maintains random number
generators and calls hooks on Statistics objects, which output
to Logs managed by an Output facility. Subclasses of these
“verb” singletons implement various metaheuristics.
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ECJ is serializable, and so can save its state to a checkpoint
file, then be moved to a different computer or operating
system, and restarted from there. The EvolutionState is also
entirely self-contained. Multiple ECJ evolutionary runs can
be performed side by side in the same Java Virtual Machine;
or ECJ can be started inside another Java application.

Parameters. ECJ’s parameter files are certainly its most
notorious feature. They dictate the entire structure and
operation of an experiment, except (typically) the Problem
subclass written by the researcher. Their disadvantage is that
parameter constraints cannot be checked by the compiler; pa-
rameters are also verbose. Even so, I think this approach has
proven wise: you don’t need to rebuild the entire system just
to change the architecture, which greatly assists scripting.!

ECJ’s parameters come from a hierarchy of parameter
files, or from the command-line. When ECJ is launched, a
bootstrap class (usually Evolve) loads the parameters into
a ParameterDatabase and then, using this database, builds
the EvolutionState. The EvolutionState then recursively
uses the ParameterDatabase to construct and set up all of
its subsidiary singleton objects, which in turn set up their
subsidiary objects from parameters, and so on.

One important side effect of this process is that ECJ
contains almost no uses of the new keyword! Instead, sin-
gleton objects are loaded from the ParameterDatabase via
Class.newlInstance(), and Prototype instances are loaded
from the same and then later are clone()ed to create large
numbers of Individuals, Fitness objects, and so on.

Dynamic loading like this has big advantages. ECJ’s Meta-
EA facility can easily fire up other ECJ processes within
the same VM, or remotely on other machines, simply by
constructing a new parameter database, all from a single class
(MetaProblem). We used the Meta-EA facility to perform
one of the largest EC experiments in the literature, involving
over 14.2 million separate evolutionary runs [23].

1Indeed, I have found that when metaheuristics toolkits lack runtime
parameterization, researchers inevitably build in their own ad-hoc
version anyway, thus fulfilling a form of Greenspun’s Tenth Rule.
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Populations, Initialization, and Breeding. Populations are
created via a subclass of Initializer, which normally works
by asking a Species to generate an Individual. As shown in
Figure 4, a Population contains a set of Subpopulations, each
of which contains a set of Individuals. Subpopulations are
evolved independently and potentially asynchronously. This
two-level hierarchy makes possible things like coevolution (a
subpopulation of sorting networks versus a subpopulation of
unsorted vectors, say), or internal island models (subpopula-
tions of migrating Individuals). However it can only be used
for one of these at a time, a minor flaw.

An Individual contains a Fitness and has some kind of
representation. ECJ provides subclasses for many represen-
tations ranging from bit-vectors to GP style trees. Fitnesses
may also be customized, enabling single- and multiobjective
fitness measures, among others.

Resampling is handled by a subclass of Breeder. To do (the
default) EC-style generational breeding, the experimenter
specifies one or more Breeding Pipelines— DAGs of selec-
tion methods, mutation procedures, and recombination pro-
cedures — which define how an Individual is to be selected,
copied, modified, and added to the new population. Pipelines
can be cloned and used per-thread in multithreaded breeding.
Figure 5 shows two example pipelines.

Other resampling methods, such as CMA-ES, Differential
Evolution, or Particle Swarm Optimization, ignore Breeding
Pipelines and resample or modify Subpopulations directly.

The Breeding Pipelines, standard initialization procedures,
and various features common to a given type of Individual
are stored in a Species object shared by multiple Individuals
via the Flyweight pattern. Each Subpopulation contains Indi-
viduals sharing the same Species in common. One weakness
in this approach is that while ECJ can have different Species
from Subpopulation to Subpopulation, and thus different
Breeding Pipelines, it cannot have multiple heterogeneous
Initializers, Breeders, or Evaluators in the same process.
Thus for example ECJ cannot simultaneously coevolve two
Subpopulations, one using a Genetic Algorithm and the other
using CMA-ES, without very significant customization.
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FEvaluation and Ezxchange. The Evaluator makes clones
of an experimenter-supplied Problem subclass with which
to test Individuals in a Subpopulation. The Problem takes
an Individual, tests it, and assigns it a fitness. Problem is
typically the one place where an experimenter writes in Java.

Individuals may be tested singly or in groups: for example,
a cooperative coevolutionary Evaluator may gather some
N Individuals from various Subpopulations to be assessed
together in a single test. Individuals may also be evaluated
with some T tests before being assigned a final Fitness; and
Fitnesses can be single or multi-objective.

An Evaluator can also test Individuals in parallel in multi-
ple threads, and can ship Individuals off to remote machines
to be tested. ECJ’s distributed evaluation support is strong:
it has traditional master-slave evaluation, Opportunistic Evo-
lution, and Asynchronous Evolution (a parallel extension of
steady-state evolution) built in. Distributed evaluation is
achieved by communicating with one or more slave processes,
as shown in Figure 6. Each slave is also a full ECJ process, so
an experimenter’s Problem code need not distinguish between
running on a slave and running on the master.

ECJ also supports distributed island models through an
Ezxchanger subclass, which migrates Individuals to and from
other machines at appropriate times in the evolutionary cycle.
Island models may be combined with distributed evaluation.

Genetic Programming and Other Representations. Given
ECJ’s origins is not surprising that GP is one of its strengths.
ECJ implements Koza-style GP using trees of nodes rather
than packing trees into arrays as was done in DGPC and lil-
gp. This approach is less memory efficient but is much easier
to debug and extend. As shown in Figure 7, ECJ’s GPIndi-
viduals contain forests of GPTree objects, each of which holds
a tree of GPNodes. Just as Individuals have a flyweight rela-
tionship with Species, GPNodes share information such as
function sets in a common GPNodeConstraints and likewise
GPTrees share common GPTreeConstraints. ECJ supports
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Automatically Defined Functions and Macros, Ephemeral
Random Constants, per-tree modification constraints, and
many mutation, crossover, and parsimony operations.

ECJ uses set-based Strongly-Typed Genetic Programming.
Each node’s parent slot and child slots are augmented with
a set of types, for example {T,,Ty,T.}. The tree’s root
slot is also augmented with a set of types. Parent slots
may attach to other node’s child slots, or to the tree’s root
slot, if the intersection among their two sets is nonempty.
Figure 8 shows an example of typing in action. This approach
permits constraints such as subtypes and subclasses, is fast,
and is easy to integrate with traditional GP tree generation,
crossover, and mutation operators. However, it does not have
the full power of polymorphic typing. Consider the (if) node
in Figure 8, which represents the typed expression {float} +
if({bool}, {int, float}, {int, float}). ECJ cannot constrain the
second and third arguments such that they are both int or
both float. For this reason, and because its types are finite,
ECJ cannot implement an arbitrary matrix multiplication
operator as a GPNode, for example.

ECJ also provides packages to support friends of the GP
family, such as Grammatical Evolution (GE), and basic forms
of Push. Though it has no package for Linear GP, ECJ’s
variable-length list representation makes it easy to implement
it. Pitt-approach classifier systems may be straightforwardly
implemented with ECJ’s ruleset package.

3 WHERE IS ECJ GOING?

In 2016 we received a 3-year National Science Foundation
grant to extend ECJ into a full-fledged metaheuristics toolkit.
Our goal was to create a popular common benchmark meta-
heuristics facility to serve as a nexus for software development.
Such a library would make it easier to compare methods,
to build on stable and debugged algorithms, and to teach
classes in these areas. We took inspiration from Weka [13], a
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tool popular in the data mining community. Weka has many
general purpose data mining and machine learning methods,
is easy for novices to use, serves as an excellent education
tool, and has dozens of public extensions. Weka was deemed
important enough that in 2005 it received the SIGKDD Data
Mining and Knowledge Discovery Service award.

To achieve such a tool one would need to start with an
existing library that is stable, efficient, and feature-rich, and
which has a strong community behind it. We think that ECJ
is best situated for this; two other obvious contenders being
EO [17] and OpenBEAGLE [8]. To transform ECJ into this
toolkit would require several things:

e Add quality control tests and modern Java usage.
e Add many new metaheuristics approaches.

e Integrate ECJ with Eclipse/NetBeans plugins and
improve its GUI to make it easy to use by beginners.

e Integrate ECJ better with statistical analysis tools
and add more benchmarks.

A few changes will require some re-architecting of ECJ,
but I cannot yet detail plans for a revised architecture, simply
because we haven’t decided on them yet. Refactoring will
occur gradually and on-demand over the next three years as
we consider each module in turn.

The list of changes above, and indeed many of the modifi-
cations to ECJ over the last five years, were inspired in part
by occasional community surveys begin in Summer of 2010.

3.1 Making ECJ More Robust

As discussed earlier, ECJ is written in an old, idiosyncratic
Java style, with no annotations, generics, closures and it-
erators, or many common utility classes. Part of this is
intentional: for example, if we used generics, ECJ’s vector-
representation package could be dramatically simplified, but
at a significant speed penalty due to boxing and unboxing.
Similar efficiency arguments can be made for other recent
Java features, such as iterators. However there are a multiple
areas where ECJ could be improved in this regard: many
classes could be made generic without efficiency concerns, Ar-
rayLists could replace arrays in many places, and so on. One
of our primary goals will be to modernize ECJ’s Java style
as much as possible while keeping an eye towards efficiency.

Architecture. There are weaknesses in ECJ’s architecture
which ought to be remedied. Beyond those already discussed,
one major orthogonality weakness is ECJ’s assumption of a
single Breeder, Evaluator, Initializer, and indeed a single Evo-
lutionState. For example, PSO has its own special Breeder;
so if one wanted to coevolve a PSO subpopulation and a GA
subpopulation, this wouldn’t be possible without significant
modification. Similarly some representations (like GP) have
historically used the Initializer as a source of global storage,
meaning that a CMA-ES subpopulation (which uses its own
Initializer) and a GP subpopulation would be incompatible.

ECJ also has lots of boilerplate. Dynamic loading from
parameter files has advantages, but it also means that ECJ
must do runtime checks for compatibility when there are
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constraints on usage. For example, CMA-ES may only be
used with real-valued vector Individuals: and so it must check
to verify this. This results in a great deal of redundant code
in setup methods which we hope to eliminate or simplify.

Tests. This is a glaring flaw. ECJ was originally built
with few tests or automated quality control checks. ECJ
has exhibited few serious bugs over the years, but this is no
excuse: it badly needs a testing facility. To this end we have
recently built a testing harness for ECJ and are building both
unit and system tests.

Some kinds of unit and system tests are deterministic: ECJ
must produce identical statistics output when refactored, or
else a flag is raised. Except in certain parallel programming
situations, ECJ is fully replicable, and we can use this fact to
help us identify errors in our refactoring of its architecture.

However, what about testing whether a slight change in
the software has introduced an error? When results differ
from expected results, is this because of a bug (or bug-fix)
or is it due to the random number generator? Testing for
nondeterministic cases such as this presents a difficult and
interesting challenge for stochastic optimization software
because of the semi-random nature of the results generated.
The obvious approach in this second case is to build tests
based on distributions and derived statistics: our plan is to
run many combinations of algorithms, representations, and
problems for a large number of random number generator
seeds. If changes in ECJ cause distribution metrics (mean,
variance, etc.) to deviate significantly, this will raise a flag.

3.2 Adding Metaheuristics

ECJ lacks framework support for several major and standard
areas of metaheuristics: particularly single-state optimization,
combinatorial optimization, optimization by model fitting,
and hybrid/memetic architectures. Additionally, ECJ is
missing at least one major representation (NEAT). Building
this support is not just a matter of adding the relevant
algorithms: it may require a some re-architecting of ECJ to
retain its orthogonality while incorporating sufficient support
for these diverse and (in the case of memetic algorithms)
vaguely-defined techniques. Here are some of our plans:

Efficient Single-State Optimization. ECJ has no indepen-
dent framework for doing single-state optimization: at present
such optimization is done by treating the candidate solution
as a population of size 1 or 2. This is inefficient, as it comes
with the statistical baggage associated with population-based
optimization. We have built a new abstract module for
single-state optimization, and have implemented several ba-
sic algorithms in that framework, notably: stochastic and
steepest-ascent Hill-Climbing, and Simulated Annealing [18].
We plan on also including variations on Tabu Search [12].

Combinatorial Optimization. ECJ also has no abstract
framework for combinatorial optimization. The primary
challenge in building one is that combinatorial optimization
tends to require much domain-specific user-customization of
the evaluation and resampling mechanisms (as in AntNet [5],
for example). It is usually not sufficient to describe the
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components of a possible solution: one must also describe
the different ways by which they may be assembled. This
will require revisiting how evaluation is performed in ECJ,
breaking it into separate evaluation and solution-construction
mechanisms, for example. It will also require us to emphasize
low-level representational manipulation much more than ECJ
normally affords. We will add GRASP [9] and at least the
common Ant System [6] and Ant Colony System [7] versions
of ACO, and plan to implement more recent ACO algorithms.
ACO and GRASP both dovetail well with the ECJ framework.

Model Fitting. ECJ has a package for CMA-ES: but it
does not have an abstract framework for generalizing to
other EDAs. We will first implement this framework as an
extension of the lightweight framework originally built for
CMA-ES. We will then implement two basic univariate meth-
ods, PBIL [2] and UMDA [28], and plan to implement at
least one additional well-regarded CMA-ES-like method, such
as BIPOP-CMA-ES [14] or AMaLGaM IDEA [4]. We have
already begun implementing a space-partitioning search meta-
heuristics package for algorithm families such as DOvS [15].

Hybrid Architectures. There are lots of hybrid architec-
tures, ranging from multi-level optimization methods such
as Iterated Local Search (ILS) [3, 20], to techniques which
jump back and forth between resampling methods (such as
the Learnable Evolution Model (LEM) [26]), to performing
sub-optimization within an individual’s assessment proce-
dure (the hallmark of so-called memetic algorithms [27]) The
number of possible hybrid architecture combinations is in-
numerable, and ECJ cannot implement all of them, but we
can provide building blocks with which researchers may as-
semble many common types. In some cases we may be able
to take advantage of ECJ’s ability to recursively launch self-
contained sub-processes within the same Java VM to provide
optimization at different levels; but many other scenarios may
require serious reconsideration about ECJ’s architecture.

Representations. NEAT is the primary major represen-
tation which is not present in ECJ and which has a large,
established community: we are currently adding it to ECJ.

Multiobjective Metaheuristics. ECJ has a stable multiob-
jective optimization framework and two of the most popular
algorithms (NSGA-II and SPEA2), but multiobjective heuris-
tics have expanded considerably since then. For example, the
jMetal multiobjective optimization package sports at least
twenty such algorithms [29]. We plan to extend ECJ to
include a much larger multiobjective optimization collection.

3.3 Making ECJ Easier to Use

ECJ is neither small nor simple. It has extensive documenta-
tion, tutorials, and support, but is still a daunting system.
To make it more useful to the broader community, we need to
make it easier to use, particularly for educational purposes.

IDFEs. We are building programmer support for the Eclipse
and NetBeans IDEs. Of particular interest is the development
of wizards for setting up ECJ: normally Eclipse and NetBeans
employ these to construct class files, and we will do exactly
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that to help walk the experimenter through the process
of building a Problem. However of more interest may be
wizards which walk the experimenter through the (sometimes
laborious) process of setting one or more parameter files and
actually performing a run.

GUI. ECJ has a disused GUI developed around 2005, capa-
ble of generating limited charts and graphs, but desperately
in need of improvement. To date we haven’t done so because
our own research needs have not required it: ECJ runs hap-
pily on the command line. However to make ECJ accessible
to a wider audience requires a serious reconsideration of the
GUI, particularly aimed at teaching. We will require a GUI
which makes it easy to set up parameters, chart statistics,
and launch remote jobs on back-end machines.

3.4 Assisting in Analysis of Results

Statistics Utilities. ECJ has extensive support for adding
probes into the optimization run to dump statistics regarding
the performance of candidate solutions as they are being
tested. However it has no facilities for analyzing these statis-
tics. This is an extremely common need.

To this end we first intend to add options to ECJ to
dump its statistics into files designed to be directly entered
into R [16], either as prepared data or as actual R code
ready to be interpreted. Second, we may directly integrate
some statistical analyses, such as nonparametric, unknown
variance T-tests, Bonferroni adjustment, and computation of
confidence intervals.

We have traditionally rolled our own code for nearly all
of ECJ: but will not do so here. Statistics code is really
easy to get wrong and is best left to experts: and so we
will rely on well-vetted statistical packages to do this work.
There are however certain statistical measures special to
metaheuristics which we will need to implement ourselves.
These include relative quality measures for coevolutionary
techniques; generalization methodologies; and hyper-volume
for multiobjective optimization.

Benchmarks. ECJ has long had significant involvement
in benchmark and standardization efforts: for example, the
Genetic Programming Benchmarks working group chose ECJ
as its “baseline toolkit” [24, 31]. ECJ has many benchmarks
implemented, but we need to implement many more. A lot of
common benchmarks are aimed at numerical vector spaces,
and these are generally trivial to implement (we have in the
past focused on the BBOB Benchmark series [11]). But other
benchmarks, particularly for more peripheral techniques such
as GP, ACO, or NEAT, can be much more complex as they
often involve some sort of simulation. For these, we have to
work carefully with the communities in question to identify
the (hopefully small) set of benchmarks to focus on.

3.5 Development Plan

In the first year we have focused on NEAT, Single-State
Optimization, ACO, certain model-fitting methods, and a
test harness. We plan to begin work on hybrid, multiobjective,
and additional combinatorial optimization and model-fitting
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methods in the second year, along with statistics utilities and
additional tests. We will focus on tools (IDEs, GUIs) and
benchmarks in the final year. Re-architecting of ECJ, and
refactoring it with more modern Java, will be gradual and
will be spread over all three years. We hope to have at least
one major release every six months: but we’re already behind.
The team consists of myself and two PhD students (Ermo
Wei and David Freelan): we would welcome contributions
and testing in the ECJ proper or as external packages.

4 CONCLUSION

ECJ was originally built to last ten years, but it is now almost
twenty years old. I think it has been a very successful open
source toolkit, and now sports a sophisticated architecture
and a wide range of tools. ECJ has primarily focused on
evolutionary computation, but with under new NSF grant we
aim to convert ECJ into a full-scale metaheuristics toolkit of
interest to a broad community. This will include significant
revisions to ECJ’s code and architecture, major new packages
and facilities, and example applications and test facilities.
In this report I discussed ECJ’s background, its capabilities
and architecture (and problems), and our intended future
directions in the next three years. Our goals are ambitious
but I think that if we can achieve them, ECJ stands a chance
at providing a common benchmark tool for the metaheuristics
research, education, and application community as a whole.
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