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Abstract—Cooperative coevolutionary algorithms offer great
potential for concurrent multiagent learning domains and are
of special utility to domains involving teams of multiple agents.
Unfortunately, they also exhibit pathologies resulting from their
game-theoretic nature, and these pathologies interfere with find-
ing solutions that correspond to optimal collaborations of inter-
acting agents. We address this problem by biasing a cooperative
coevolutionary algorithm in such a way that the fitness of an
individual is based partly on the result of interactions with other
individuals (as is usual), and partly on an estimate of the best
possible reward for that individual if partnered with its optimal
collaborator. We justify this idea using existing theoretical models
of a relevant subclass of coevolutionary algorithms, demonstrate
how to apply biasing in a way that is robust with respect to
parameterization, and provide some experimental evidence to
validate the biasing approach. We show that it is possible to bias
coevolutionary methods to better search for optimal multiagent
behaviors.

Index Terms—Coevolution, cooperative coevolution, biased
coevolution, multiagent learning, optimal collaboration, multi-
population symmetric coevolution.

I. INTRODUCTION

C
OEVOLUTIONARY ALGORITHMS (CEAs) are popu-

lar augmentations of traditional evolutionary algorithms

(EAs). The basic elements of these augmentations lay in the

adaptive nature of fitness evaluation in coevolutionary systems:

individuals are assigned fitness values based on interactions

with other individuals. Of particular interest are CEAs that

have a kind of compositional nature that lend themselves

toward learning behaviors for multiple, interacting agents.

The most obvious CEAs for such problems are so-called

cooperative1 coevolutionary algorithms, which are typically

formulated such that multiple interacting individuals succeed

or fail together as a team.

One would imagine that cooperative coevolutionary algo-

rithms may be effective for problems with certain structural

properties among interacting components such as those prob-

lems that can be decomposed appropriately to limit particular

types of nonlinear relationships [2], [3]. The intuition behind

this advantage is that the algorithm searches only projections

of the space at any time (one projection per population),

thus reducing the search in a given generation from one

exponentially large joint space to multiple simpler subspaces.

Each decomposed subproblem may be cast as a projection

1The term ’cooperative’ is problematic for reasons we discuss later in the
paper. A better general term might be ’compositional’ [1].

of the (joint) problem space. Unfortunately, a great deal of

information is discarded when basing an individual’s fitness

only on a projection of the joint space. One consequence of

this is that a population’s estimate of this projection is strongly

influenced by the particular makeup of other populations, and

this makeup is largely out of the original population’s control.

The result is that it is easy for a poor sample set to mislead the

algorithm about the search space as a whole. This often leads

to a preference for the kind of individual that partners well

with a broad range of individuals from the other populations,

whether or not that individual can form a globally optimal

partnership.

The obvious countermeasure would be to bias the algorithm

to seek optimal collaborations. In this paper we explore this

option. We justify this idea by using existing theoretical

models of certain cooperative coevolutionary algorithms, show

how to apply biasing in a way that is robust with respect to

parameterization, and provide some experimental evidence to

validate the biasing approach. We show that it is possible to

improve coevolutionary search for optimal multiagent behav-

iors using a biasing method.

Section 2 provides a brief background in multiagent learning

and compositional approaches to multipopulation coevolution,

as well as a dynamical systems approach for analyzing these

types of algorithms. Here we describe precisely the subset of

cooperative coevolutionary algorithms of interest to us, which

we term multipopulation symmetric coevolutionary algorithms

(or MPS-CEAs). Section 3 then proposes our approach to

explicitly incorporating bias into MPS-CEAs, and provides a

limited theoretical justification for our approach. In Section 4,

we introduce a novel visualization method for observing basins

of attraction in a multi-dimensional space, which allows us to

demonstrate the efficacy of this biasing. In Section 5, we show

that our biasing method is highly sensitive to a key parameter,

and propose a modification of the method to mitigate this

sensitivity. In Section 6, we provide experimental results

for the application of our biased cooperative coevolutionary

algorithm using a simple rote learning method for developing

the bias over the run of the algorithm. We show that biasing

enhances both a traditional MPS-CEA algorithm, as well as

spatially-embedded MPS-CEAs. We complete the paper with

a discussion of our conclusions and future work.
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II. BACKGROUND

A. Concurrent Multiagent Learning

A large portion of multiagent research may be divided

neatly according to whether or not it involves multiple learners

[4]. Some research applies a single learner to improve the

performance of an entire team of agents (for example, [5],

[6], [7]). Other research applies separate learning processes

to individual agents, while still assessing the quality of the

agents as a team. The material in this paper concerns these

latter approaches, which we will term concurrent multiagent

learning.

The primary advantage of concurrent multiagent learning

is that it projects the large joint team search space onto

separate, smaller, component search spaces. If the problem

can be decomposed such that individual agent behaviors are

relatively disjoint, then this can result in a dramatic reduction

in search space. A second, related advantage is that breaking

the learning process into smaller chunks permits more flexibil-

ity in the use of computational resources because these chunks

may, at least partly, be learned independently of one another.

Coordination games are standard problem domains for con-

current multiagent learning. A coordination game consists of

a series of stages. At each stage, each agent is asked to choose

an action without knowing which actions the other agents will

choose. After each agent has decided on an action, they all

perform their actions concurrently. A reward is then given to

all agents, its value depending on their joint action. In some

games, the agents may observe the other agents’ actions upon

receiving the reward.

Claus and Boutilier [8] introduced two simple benchmark

coordination games, Climb and Penalty. The domains are dif-

ficult because of the penalties associated with miscoordinated

actions and the presence of suboptimal collaborations that

avoid such penalties. The joint payoff matrices for the two

3× 3 coordination games are presented in Table I. If Agent

1 performs action 1 and Agent 2 performs action 2, we will

refer to the joint action with the form (1,2)..

Agents in the Climb domain receive maximum payoff

when they both choose action 1. However, the joint reward

matrix has a second equilibrium: when both agents choose

action 2. This is a suboptimal equilibrium, because the team

reward is lower than at (1,1). The Penalty domain has two
optimal equilibria, at (1,1) and (3,3). However, there are
significant penalties associated with agents choosing (1,3) and
(3,1). Additionally, (2,2) is a third equilibrium. This point is
suboptimal, but there is no penalty for miscoordination if only

one agent chooses action 2.

Claus and Boutilier [8] showed that a concurrent rein-

forcement learning algorithm is not guaranteed to find the

optimal team behaviors for these games, even in the case when

agents are able to observe other agents’ actions. The authors

then suggested that the search could be improved by using

more optimistic exploration actions; this direction was further

explored in [9], [10]. We will use the Climb and Penalty games

later in this paper as two of our multiagent learning testbeds.

TABLE I

EXAMPLES OF COORDINATION GAME PAYOFF MATRICES: (A) THE 3X3

CLIMB GAME; (B) THE 3X3 PENALTY GAME. BOTH AGENTS RECEIVE THE

SAME PAYOFF FOR A GIVEN JOINT ACTION, AS SHOWN IN THE MATRIX.

PAYOFFS MARKED ’PENALTY’ ARE FILLED WITH SOME NEGATIVE

NUMBER DEPENDING ON THE EXPERIMENT.

A
g
en
t
1

Agent 2
1 2 3

1 11 penalty 0
2 penalty 7 6
3 0 0 5 A

g
en
t
1

Agent 2
1 2 3

1 10 0 penalty
2 0 2 0
3 penalty 0 10

(A) (B)

B. Cooperative Coevolution

Cooperative coevolutionary systems are often a good fit

for concurrent multiagent learning problems. When agents

are working together as a team to perform some joint task,

it is often very natural to represent individual behaviors

separately and evolve multiple populations of such agents

working in collaboration with one another. For examples of

such cooperative coevolutionary algorithms, see Husbands and

Mill [11] and Potter and De Jong [12].

Here we assume the use of the architecture defined by Potter

[13]. The cooperative coevolutionary algorithm works as fol-

lows. Each population is assigned to search for a component

of the solution (e.g., an agent in a multiagent team), and

individuals represent candidate solutions for such components.

One member from each population is needed in order to

assemble a complete solution (e.g., the team). Evaluation

of an individual from a particular population is performed

by assembling that individual with collaborating individuals

from other populations and testing the resultant full solution.

To combat noise in the evaluation process due to choice of

collaborators, multiple evaluations are usually performed, each

with different collaborator sets. An individual’s fitness could

be the maximum (or the minimum or the average) over such

evaluations, among other approaches. The effects of different

evaluation schemes on performance are studied in [3], [14],

[15], [16]. Aside from evaluation, the populations are evolved

independently. Applications of this method include optimiza-

tion of inventory control systems [17], learning constructive

neural networks [18], multiagent systems [19], [20], [21], and

rule learning [22], [23].

An example may serve to clarify this process. Suppose we

are optimizing a three-argument function f (x,y,z). Here, x, y
and z represent possible strategies for three agents, and f is

a function that indicates the performance of the team. One

might assign individuals in the first population to represent

the x argument, the second to represent y, and the third to

represent z. Each population is evolved separately, except that

when evaluating an individual in some population (e.g., x),

collaborating individuals are chosen from the other populations

(y and z) in order to obtain an objective function value

with a complete solution, f (x,y,z). This function value is the
payoff that the evaluated individual (in this case x) receives.

An individual’s fitness is computed from the combination of

payoffs from one or more evaluations with various sets of

collaborators.
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One simple method is to choose collaborators by using

the most-fit individual from each of those populations as

determined by the previous round of evaluations. Another

approach is to pick collaborators at random from the other

populations. Once a complete solution is formed, it can be

evaluated and the resulting score can be assigned to the

individual. We also assume that learning in the populations

is performed concurrently. That is, all populations advance to

the next generation at the same time.

Though historically the term “cooperative” has been applied

to such algorithms, “cooperative coevolution” is a confus-

ing and ambiguous term, and as noted in [24], it is used

inconsistently in the literature. The term has been variously

applied to describe the emergent dynamics of systems [25],

properties of the underlying payoff of the problem [26], and

the compositional approach of the design engineer [13]. All

these cases lack a clear definition for the term.

For this reason, for the rest of this paper we focus on a

specific, well-defined subclass of cooperative coevolutionary

algorithms that we call a multipopulation symmetric coevolu-

tionary algorithm (MPS-CEA). Such algorithms are symmetric

in a sense similar to “symmetric games” in game theory.

When a particular individual is being evaluated as part of

a particular collaboration (a set of components, a team, a

solution, etc.), the individual will receive some payoff. In a

symmetric cooperative coevolutionary algorithm, if that same

collaboration is used to evaluate one of the other component

individuals in the set, the same payoff will be awarded. That

is, a given f (x,y,z) is the same value regardless of whether x,
y, or z is the payoff recipient.

In a traditional EA, when solutions have a genetic basis for

their expressed behavior, increasing the explorative powers of

the genetic operators in order to expand the search of some

part of the space comes at the cost of increased destruction

of the existing learned genetic material. In the MPS-CEAs,

the decomposition of the solution in a sense protects some

components of the solution while the search is being per-

formed on a given component, thus allowing the operator

to focus its search on each component separately [27]. This

kind of a priori partitioning may have severe consequences

if the true problem decomposition is poorly matched with

the representational decomposition [3], [28], [29]. However,

a well-matched decomposition may still perform admirably

even with significant non-linear interaction among components

[2]. Consequently, MPS-CEAs may well benefit multiagent

learning even when dependencies exist among agents [2], [3].

C. Modeling Multipopulation Symmetric Coevolution

An appealing abstract mathematical model for multipopula-

tion symmetric coevolution comes from the biology literature:

evolutionary game theory (EGT) [30], [31]. EGT provides

a formalism based on traditional game theory and dynami-

cal systems techniques to analyze the limiting behaviors of

interacting populations under long-term evolution. EGT has

been previously applied to the analysis of single population

competitive coevolution [32], [33], [34] and multipopulation

symmetric coevolutionary algorithms [26], [35]. To a certain

degree, the EGT model bears some similarity to Markov

models for coevolutionary systems [36], [37], [15], [38].

In this paper, we consider only two-population models. In

such models, a common way of expressing the rewards from

individual interactions is through a pair of payoff matrices.

Since we are concentrating solely on symmetric CEAs, we

may assume that when individuals from the first population

interact with individuals from the second, one payoff matrix

A is used, while individuals from the second population receive

rewards defined by the transpose of this matrix (AT ). In our

theoretical exploration of EGT in this paper, we will use an

infinite population: thus a population can be thought of not as

a set of individuals, but rather as a finite-length vector !x of
proportions, where each element in the vector is the proportion

of a given individual configuration (popularly known as a

genotype or, as we will term it, a strategy) in the population.

As the proportions in a valid vector must sum to one, all legal

vectors make up what is commonly known as the unit simplex,

denoted !n, where n here is the number of distinct genotypes

possible, !x ∈ !n : xi ∈ [0,1],
∑n

i=1 xi = 1. In a two-population

model, the domain space of the system is a Cartesian product

of two such simplexes, !n×!m.

Formally we can model the effects of evaluation and propor-

tional selection over time using a pair of difference equations,

one for each population. The proportion vectors for the two

populations are !x and !y respectively. Neglecting the issue of
mutation and breeding and concentrating only on the effects

of selection, we can define the dynamical system of a two-

population symmetric coevolutionary algorithm as:

!u = A!y (1)

!w = AT!x (2)

x′i =

(

ui

!x ·A!y

)

xi (3)

y′i =

(

wi

!y ·AT!x

)

yi (4)

where !x ′ and !y ′ represent the new population distributions for
the next generation. Here it is assumed that an individual’s

fitness is the mean payoff over pairwise collaborations with

every member of the cooperating population. We call this

complete mixing. The equations above describe a two-step

process. First, the vectors !u and !w are derived; these represent
the fitness assessments of individuals in the generations!x and
!y respectively. Then selection is performed by computing the
proportion of the fitness of a specific individual over the sum

fitness of the entire population.

Using such a model, one may begin to answer questions

about where long-term system trajectories will go. In dynam-

ical systems parlance, this translates to questions about the

existence of fixed points in the system, the stability of those

points, and the basins of attraction that map to them. A fair

amount is known formally about the fixed points and their

stability [26]. For example, in the absence of variation, all

basis vector points are fixed points, though most are unstable.

Pure Nash equilibria are stable, attracting fixed points in the

system. Since a Nash equilibrium does not necessarily imply

global optimality, there may exist stable fixed points at basis
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vectors associated with suboptimal payoff values. This means

that the number of stable attracting points is linearly bounded

by the number of strategies available to one of the populations.

The semantic interpretation of these facts becomes clearer in

the context of performance questions about the algorithm when

something is known about the basins of attraction of relevant

fixed points. Unfortunately, such knowledge is difficult to

come by analytically, and most research on the properties of

the basins of attraction have been empirical in nature. The

visualization of trajectories in our formal model (Section IV)

falls in this empirical vein.

D. The Relative Overgeneralization Pathology

Coevolution can exhibit a number of pathologies such as

loss of gradient [39] and focusing [40]. The focus of our paper

is another prominent pathology called relative overgeneral-

ization [24]. In this pathology, an MPS-CEA can prefer not

optimal individuals but rather “jack-of-all-trades” individuals

that dovetail nicely with most of the current individuals

from the other population. While relative overgeneralization

could suggest that MPS-CEAs might inherently favor robust

solutions, it also means that MPS-CEAs are not necessarily

optimizers in the sense that one might intuitively expect them

to be. This is grim news for practitioners wanting to coevolve

“optimal” (or perhaps, even “good”) cooperative strategies

using a coevolutionary algorithm—what might be referred to

as the optimal collaborations.

The dynamics of relative overgeneralization may be de-

scribed in this way. When applying coevolution to coordination

problems, the goal of practitioners is usually to find the

optimal joint strategy, that is, the set of strategies, one for

each agent, that yields the highest payoff. This point is a

stable attracting fixed point of the coevolutionary system, as

well as a Nash equilibrium. However, the search space may

contain additional Nash equilibria with possibly lower payoff.

For example, the coordination game in Table I (B) has two

Nash equilibria: the optimal (1,1) point with a payoff of 11,

and the suboptimal (2,2) point with a lower payoff of 7. Unfor-

tunately, it is possible that most, if not all, learning trajectories

may be pulled toward the suboptimal points because relative

overgeneralization produces large attractive “bowls” around

the suboptima.

Here we should be clear: this pathology is not the same

as the typical local convergence problems that plague many

heuristic methods, nor is it due to stochastic sampling errors.

A genetic algorithm, under the same theoretical conditions

including infinite populations, will be attracted to parts of

the space associated with a unique maximum. The relative

overgeneralization pathology says that, even in the very idyllic

conditions of infinite populations and no genetic operations of

any kind, MPS-CEAs are still not necessarily attracted to the

optimum.

E. Memory Mechanisms

Attempts to augment CEAs to address their many challenges

include a wide range of methods, often employing certain

types of memory mechanisms. In competitive coevolution,

explicit memory methods have been used to retain outstand-

ing opponents [41], to keep track of currently known Nash

equilibria [42], and to maintain as many informatively dis-

tinguishing test cases as possible [43]. Additionally, similar

kinds of explicit memory methods have been recently applied

to cooperative coevolution in an attempt to address the relative

overgeneralization pathology via Pareto dominance [44]. Our

biasing technique, when applied to “realistic” applications as

discussed later, also uses a memory mechanism.

In addition to these direct approaches, memory can be

implicitly added to an evolutionary system by embedding the

populations into a spatial geometry. Researchers in the field

of evolutionary computation have studied these models in

some detail [45], [46], [47]; however, until recently analysis of

coevolutionary spatial models has focused primarily on general

CEA performance measures [48]. Nevertheless, applications of

spatially distributed coevolutionary systems have proven effec-

tive [49], [50], [51], sometimes demonstrating clear advantages

over non-spatial CEAs [52]. Still, the underlying reasons for

these advantages have only begun to be explored [53], [54],

and though there is no reason to believe they specifically

address relative overgeneralization, there is evidence that they

may help maintain adaptive gradients for certain kinds of

problems. Since memory is an important element in our

approach, though, we will experiment with such spatial models

later in the paper in order to provide a contrast between these

explicit and implicit memory mechanisms.

III. BIASING TOWARD OPTIMAL COLLABORATION

How might the MPS-CEA be modified such that it is

more suitable for optimization tasks? Our approach to solving

the relative overgeneralization issue is to bias the search by

computing an individual’s fitness based on two components:

its immediate reward while interacting with individuals in the

population, and a heuristic estimate for the reward it would

have received had it interacted with its optimal collaborators.

The first part of this reward will be called the underlying

objective function, and the second will be called the optimal

collaborator estimate. We will use " to denote the degree

of emphasis the fitness places on the optimal collaborator

estimate.

We note that this notion of bias toward maximum possible

reward has also been used in literature in subtly different

ways than we use it here. Maximum reward has been used in

multiagent reinforcement learning by [8], [9], [10]. To some

extent, the “Hall of Fame” method introduced by [41] for

competitive coevolution is also related to biased coevolution;

however, that technique samples randomly in the Hall of

Fame to increase robustness, while we tend to deterministically

select the ideal partners.

Although several experiments in this paper use an exact

computation for the optimal collaborator estimate, we refer to

a heuristic estimate because in practice it is highly unlikely

that the algorithm will be able to easily compute the actual

ideal collaborators. We envision a variety of approaches to

computing a heuristic estimate. The estimate might be based

on partnering with the most successful collaborators known
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so far in the population; or with collaborators chosen (or

constructed) based on the success they have had with indi-

viduals that are structurally “similar” to the test individual;

or with collaborators chosen based on past history with the

individual’s ancestors; and so forth. We reserve comparison

of such approaches to future work. Here we will concentrate

on the foundations of the approach itself.

Our first, and perhaps the most obvious, approach to biasing

is a modified fitness assessment method that is simply a

weighted sum of the result of the collaborations and the result

of the estimated maximum projection. Equation 5 below de-

scribes this idea mathematically. Here the fitness of argument

xa is being assessed by combining the result of the underlying

objective function, g, with the optimal collaborator estimate,

g′a.

f (x1, . . . ,xa, . . . ,xk) = (1− " ) ·g(x1, . . . ,xa, . . . ,xk)

+ " ·g′a(xa)
(5)

At one extreme, when " = 1, the algorithm will trust only

the estimate, and the states of the other populations are entirely

irrelevant. It is no longer a coevolutionary system at all; there

are rather k EAs searching the k-projected component spaces

independently in parallel. At the other extreme, when " = 0,

the algorithm trusts only the underlying objective function.

This is the traditional MPS-CEA.

Using this definition of " , we may now modify the dynam-

ical system model; however, the specifics of the modification

depend on how evaluation with “typical” collaborators is

performed. One simple approach is to use as “typical collab-

oration” the evaluation model applied previously. Recall we

stated that if an individual’s fitness is based on its immediate

interaction with individuals from the other population, then

!u= A!y and !w= AT!x, as described in Equations 1 and 2. Now,
let us consider a function maxrow(A) that returns a column
vector corresponding to the maximum value of each row in

matrix A. If an individual’s fitness is based on its maximum

possible performance in conjunction with any individual from

the other population, then we may modify equations 1 and 2

to be !u = (1− " )A!y+ " maxrow(A) and !w = (1− " )AT!x+
" maxrow(AT ).
In this modified system, the tendency to optimize perfor-

mance is clear when " = 1 and there is a unique global

optimum. At each iteration of the model, the fitness of each

component will be its best possible fitness. If there is a unique

global maximum, its components will have the highest fitness

in each population, and so the proportion of the corresponding

components will increase in the next step. When there are

multiple global maxima, setting " = 1 is not necessarily a

good choice because it provides no incentive for the joint

populations as a whole to converge to a single solution.

Furthermore, setting " = 1 may place too much faith on an

inaccurate heuristic estimate for the optimal collaborators.

When " is set appropriately, however, biasing can have a

considerable (positive) effect, as we will demonstrate next.

A crucial issue remains: what are the effects of choice of

"? As it turns out, naive approaches to defining " can result

in high sensitivity to the exact value of " . This is a serious

problem if (as would usually be the case) the experimenter

does not know the best value of " beforehand, or chooses to

adjust it dynamically during the run. In Section V we will

construct a class of problem domains intended to demonstrate

this sensitivity, propose an alternative biasing mechanism that

does not have this sensitivity problem.

IV. VISUAL DEMONSTRATION OF BIASING BENEFITS

In [55] we developed a novel approach to visualizing the

degree to which collaborative techniques will tend to converge

to various equilibria. We now use this technique to argue for

the benefit of biasing. We do so by augmenting a common

MPS-CEA fitness-assessment method (the maximum return

over N collaborations), and compare this augmentation against

this fitness-assessment method alone.

A. Maximum of N Collaborations

The maximum of N collaborations method is a common way

to perform fitness assessment in an MPS-CEA. The idea is to

evaluate an individual not with one collaborator, but with some

N collaborators, and return the maximum reward obtained.

In some sense, this method might be seen as a kind of bias

toward collaboration with more optimal partners. But as we

will see, it alone may not be as effective as when augmented

with the proposed biasing method (or indeed as effective as

the proposed biasing method alone).

The evolutionary game theory model used here assumes that

an individual’s fitness is the average of its rewards obtained

when involved in all possible collaborations with individuals

from the other populations. We may modify this definition of

fitness to reflect the maximum of N collaborations method as

follows:

Theorem 1: Let the payoff for individual i when teamed

with individual j be ai j, and (p j) j∈1..n be the probability distri-
bution for the individuals in the population of collaborators for

i (here, n is the number of distinct genotypes in the population

of collaborators). If the ai j values are sorted in increasing

order (ai1 ≤ ai2 ≤ .. ≤ ain), the expected maximum payoff

of i over N pairwise combinations with random collaborators

j1... jN chosen with replacement from the other population is
∑n

j=1 ai j

(

(

∑ j
k=1 pk

)N

−

(

∑ j−1
k=1 pk

)N
)

.

Proof: We appeal to order statistics. The expected

maximum payoff is a linear combination of the actual payoff

ai j times the probability that it is the maximum of pairwise

combinations with N random collaborators. As the ai j values

are sorted, then the probability that a collaborator is chosen

with payoff ≤ ai j is simply
∑ j

k=1 pk. Likewise, the probability

that a collaborator is chosen with payoff < ai j is
∑ j−1

k=1 pk.

Thus the probability that all N collaborators have payoff ≤ ai j

is
(

∑ j
k=1 pk

)N

and the probability that all N collaborators

have payoff < ai j is
(

∑ j−1
k=1 pk

)N

.

Now, the probability that j is the maximum of N collabo-

rators is the probability that the collaborators are chosen only

from the individuals 1... j minus the probability that they are
chosen from that set excluding j, that is, 1...( j− 1). This
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is
(

∑ j
k=1 pk

)N

−

(

∑ j−1
k=1 pk

)N

. Thus the expected maximum

payoff is
∑n

j=1ai j

(

(

∑ j

k=1 pk

)N

−

(

∑ j−1
k=1 pk

)N
)

.

Unfortunately, there are two reasons why this method

alone is insufficient to correct the relative overgeneralization

pathology. First, in order to increase the (supposed) bias,

one must increase the number of collaborators chosen, which

will have severe computational consequences (particularly

when the number of populations is large). Second, though

this type of collaboration method certainly biases the current

search sample, there is no retained memory of particularly

good collaborations that were identified previously. The chief

difficulty remains: the algorithm searches only a projection of

the problem at a time and that projection is always changing—

we are merely biasing how we look at that projection.

B. Visualizing the Basins of Attraction

We use a visualization method to show that selecting the

maximum of N collaborators will not always properly bias

the system toward optimal collaboration, and that augmenting

with explicit biasing helps considerably. To do so, we employ

the EGT model with expected maximum fitness as described

in Sections II and III, using fitness proportionate selection

and no variation operators. We iterate the model until the

proportion of one of the genotypes in each population exceeds

a threshold of 0.99995, or until 50000 generations. Given the

initial configuration, EGT models the coevolutionary search as

a deterministic process. That is, for each initial point in the

search space, we can approximate the equilibrium to which

it converges. As [24] shows, the populations are expected to

converge to pure Nash equilibria in the payoff matrix (elements

that are maximal on their row and column).

The visualization approach we will take is detailed in [55].

In summary, we will present a 2D graph of white, gray,

and black points, representing convergence to the various

Nash equillibria of the Climb and Penalty games. In the

Climb game, the white points indicate convergence to the

optimal equilibrium, and the black points likewise indicate the

suboptimal equilibrium (gray points indicate those few places

where convergence did not occur within 50000 iterations of

the model). In the Penalty game, the white and gray points

are the two optimal equilibria, and the black points are the

suboptimal equilibria. In both cases, the crucial desired feature

is a decrease in black points.

Each axis of the 2D graph is the simplex of one or the

other population. We have employed a special ordering of this

simplex in order to cluster the points around the relevant Nash

equilibria to make the graph more clear. Complete details on

this ordering may be found in [55]. In summary, the simplex

is divided into 3 areas: the initial populations containing more

1s, more 2s, and more 3s, respectively. Each such area is

then allocated a segment in the projection: the first one-

third contains results for initial populations with more 1s,

while the last one-third of the projection contains results for

initial populations with more 3s. Then, each area is divided in

two such that, when projected, the degenerated populations

containing a single genotype appear in the middle of the

segment. For example: the top one-third area in the 2-D

visualization refers to initial first populations with a majority

of 1s, while the right-most one-third area refers to initial

second populations with a majority of 3s.

C. Visualization of Maximum of N Collaborations

Figure 1(a) shows the basins of attraction for the Climb

coordination game when using different numbers of collabo-

rators in each population for the traditional MPS-CEA. The

images show that the “deceptiveness” of the problem domain

decreases as the number of collaborators is increased. When

using a single collaborator, it appears that the coevolutionary

search will find the global optimum if at least one of the

populations starts with a large number of 1s. As the number

of collaborators is increased we observe that the basin of

attraction for the suboptimal equilibrium reduces to areas

where at least one of the initial populations has a very large

proportion of 2s or 3s: as more collaborators are used, the

proportion required to converge to the suboptimum increases.

Figure 2(a) presents the basins of attraction for the Penalty

game. We observe that the two global optima cover most

of the space even when a single collaborator is used; the

suboptimal equilibria covers mainly areas where at least one

of the population started with a high percentage of 2s, and

the other population has 1s and 3s equally distributed— this

increases the percentage of miscoordinations. As the number

of collaborators is increased, the basin of attraction for the

(2,2) point reduces to areas where both populations start with

almost all 2s.

D. Visualization of Maximum of N Collaborations Augmented

with a Biased MPS-CEA

Using N collaborations alone does help reduce penalties due

to miscoordination and helps the system find more optimal

equilibria. However, augmenting this with a more explicit bi-

asing can have a considerable (positive) effect on the resulting

basins of attraction. Indeed, the augmented biased MPS-CEA

using a very small N is superior to a traditional MPS-CEA

using larger values for N.

Our augmented biased MPS-CEA works as follows. The

fitness will be based partly on the maximum of N col-

laborations with randomly chosen partners (the underlying

objective function) and partly on the the reward obtained when

partnering with the optimal collaborator. We set " to 0.5—
although we assume the optimal collaborator is known for any

individual, setting " to 1.0 would cause the biased MPS-CEA
to converge to mixed equilibria in the Penalty domain due to

the presence of two equal global optima.

Figures 1(b) and 2(b) show the basins of attraction for the

equilibria for the biased algorithm. The figures strongly sug-

gest that this augmentation of the best-of-N approach further

reduces the basins of attraction for suboptimal equilibria, and

when biasing, increasing the number of collaborators helps

even further. In fact, in the Penalty domain, the basins of

attraction for the two globally optimal equilibria cover the

entire space, even with a single collaborator.
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(a) Traditional Coevolution
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(b) Biased Coevolution

Fig. 1. Basins of attraction in the Climb problem when using (a) traditional and (b) biased coevolution at " = 0.5, with 1, 3, 5, and 7 collaborators per
population. White and black mark the basins of attraction for the (1,1) and (2,2) equilibria.
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(a) Traditional Coevolution

Second Population

1 collaborator 3 collaborators 5 collaborators 7 collaborators

(b) Biased Coevolution

Fig. 2. Basins of attraction in the Penalty problem when using (a) traditional and (b) biased coevolution with " = 0.5, with 1, 3, 5, and 7 collaborators per
population. White, black and gray mark basins of attraction for the (1,1), (2,2), and (3,3) equilibria.

V. ANALYSIS OF SENSITIVITY TO THE BIASING RATE

As we will show, the current formulation of the explicit

biasing method is very sensitive to " . This is important

because it is not immediately apparent what value of " the ex-

perimenter should use. Large amounts of bias may be unwise

if optimal-collaborator estimates are poor. But depending on

problem properties, small amounts of bias may have almost

no effect. Further, certain system settings may decrease an

algorithm’s sensitivity to the degree of bias or exacerbate it.

A smooth, relatively insensitive biasing procedure is necessary

for the success of biased coevolution, as it mitigates radical,

unexpected changes in the algorithm properties due to changes

in choice of " .

To examine this sensitivity to " , we make two relatively

straightforward and obvious simplifications. In Section VI

we will then relax both simplifications to account for more

realistic problems and algorithms. First, we consider only a

static value for " throughout a run and focus our attention on

how different static values affect final runtime performance.

Though a more realistic algorithm (such as in Section VI)

would likely adjust the degree of bias dynamically throughout

the run, it is unclear how best to do this. Second, we take a

big step and assume that the biasing information (the optimal

collaborator for each individual) is known a priori. In other



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMISSION 2004 8

words, we assume that the function g′a is known beforehand.

This simplification is made in order to reduce the variables

involved in the experiment, and it is reasonable because there

remain important sensitivity issues to consider even with this

simplification.

The results of these experiments will lead us to propose an

alternative approach to applying the bias. As we shall see, this

alternative significantly reduces the sensitivity of the algorithm

to the effects of changing the degree of bias.

A. Problem and Algorithm Properties

We begin by constructing the maximum of two quadratics

(MTQ) class of problem domains, which can offer a range

from simple to very difficult instances. MTQ is a class of two-

dimensional functions loosely defined as max( f1, f2), where
f1 and f2 are two quadratic polynomials. Such a class may

of course be used for a variety of optimization problems

in both traditional EAs and CEAs. If we view the x axis

as representing strategies for one agent (and thus assign a

population to coevolve it), and the y axis as representing the

strategies for a second agent (and similarly assign it to another

population), the MTQ class may be seen as defining a game

payoff for an abstract multiagent problem.

The reason we construct the MTQ class is that these prob-

lems can generate payoff matrices that resolve or exacerbate

the relative overgeneralization pathology of MPS-CEA by

adjusting the relative contributions of joint rewards implicitly

[24]. Another advantage of this particular problem class is

that the maximum projection can be determined easily from

the derivatives of the two underlying quadratic functions.

The MTQ class is defined as:

MTQ(x,y) ←max

{

H1 ∗ (1− 16∗(x−X1)
2

S1
−
16∗(y−Y1)

2

S1
)

H2 ∗ (1− 16∗(x−X2)
2

S2
−
16∗(y−Y2)

2

S2
)

(6)

where x and y take values ranging between 0 and 1. Figure 3

illustrates some example MTQ problem instances. Different

settings for H1, H2, X1, Y1, X2, Y2, S1, and S2 affect the

difficulty of the problem domain in one of the following

aspects:

a) Peak height: H1 and H2 affect the heights of the

two peaks. Higher peaks may increase the chances that the

algorithm converges there.

b) Peak coverage: S1 and S2 affect the area that the two

peaks cover: a higher value for one of them result in a wider

coverage of the specific peak. This makes it more probable

that the coevolutionary search algorithm will converge to this

peak, even though it may be suboptimal.

c) Peak relatedness: The values X1, Y1, X2, and Y2 affect

the locations of the centers of the two quadratics, which in

turn affect the relatedness of the two peaks: similar values

of the x or y coordinates for the two centers imply higher

overlaps of the projections along one or both axes.

Aside from the impact of the properties of the problem

domain, our sensitivity study targets three algorithmic settings:

0
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Fig. 3. Example Maximum of Two Quadratics problems, illustrating
(S1 = 1.6,S2 = 0.5) and (S1 = 0.5,S2 = 0.5).

d) Biasing rate: We are interested in how performance

degrades as the biasing rate " changes. We set " to various

rates in the range [0,1].

e) Population size: The population size affects how much

the coevolutionary algorithm samples the search space. It is

easy to show that coevolution using a bias rate " of 1.0,

combined with infinite populations and perfect knowledge of

maximal projections, will converge to the unique optimum

with probability 1. We expect similar results for large pop-

ulations as well.

f) Collaboration scheme: The MPS-CEA algorithm tries

to simplify the search process by decomposing the candidate

solutions into components and coevolving them in separate

populations. The only information such a population can get

about the overall progress of the search process is through

collaborators— samples that are usually representative of the

status of the other populations. For some spaces, an increased

number of collaborators may better capture the intricacies of

the search space [14], [16].

Though the MTQ class is capable of generating challeng-

ing problems (with respect to the relative overgeneraliza-

tion pathology), it lacks some characteristics that may have

important effects on the performance of algorithms under

more realistic conditions. For example, though there is some

element of non-linearity present in the problem, this effect

is produced by our somewhat artificial maximization of two,

otherwise linearly separable quadratics. It is unclear the degree

to which more realistic problems with truly non-linear rela-

tionships between represented components will have similar

characteristics. However, the problem class does allow us very

explicit control over a wide range of salient properties for our

study (discussed below), and it does demonstrate a kind of

coevolutionary deception (when broad suboptimal peaks are

more attractive than narrow optima) [24].



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMISSION 2004 9

B. Sensitivity Results

All experiments here used the MTQ class of problems.

The coevolutionary search process used two populations, one

for each variable. Each such population used a real-valued

representation, with individuals constrained to values between

0 and 1 inclusive. Non-adaptive Gaussian mutation (mean 0

and standard deviation 0.05) was the only variational operator.

Each population used tournament selection of size 2, and the

best individual survived automatically to the next generation.

The search lasted for 50 generations, after which the best

individuals in each population were at, or very near, one of

the two peaks. Each point in Figures 4–7 was computed over

250 independent runs. All experiments were performed with

the ECJ system [56].

Unless stated otherwise, each population consisted of 32

individuals. The default collaboration scheme used two collab-

orators from each population: the best individual in the previ-

ous generation was always selected, and the other individual

was chosen at random2. Our biasing method combines the a

priori ” fitness with the better of the results obtained when the

individual was teamed with each of the two collaborators. The

default values of the parameters for the first (suboptimal) peak

were H1=50, X1=
1
4
, Y1=

1
4
, and S1=1.6. The second (optimal)

peak was characterized by H2=150, X2=
3
4
, Y2=

3
4
, and S2=

1
32
.

With these settings, the two peaks were nearly at opposite

corners of the domain space.

1) Biasing and Domain Features: The first set of exper-

iments investigated the relationship between the biasing rate

and the three problem domain features described previously:

the relative heights, coverages and locations of the peaks.

There were 11 experimental groups for each property, one for

each value of " ∈ [0,1] in increments of 0.1. Figure 4 shows
the mean final results of these 33 groups.

a) Peak height: We kept H1 constant at 50, and set H2
to 75, 150, and 300. The results indicated that less than 10%

of runs converged optimally when the rate of biasing was low,

while the ratio increased to greater than 90% when using high

biasing rates. Unfortunately, there was no smooth transition

between these two extremes: rather, small modifications to the

biasing rate could change the rate of convergence to the opti-

mum by as much as 70–80%. Moreover, the relative difference

in peak height directly affected where these sudden jumps in

performance appeared. This suggests that the algorithm may

not only be quite sensitive to " with respect to changes in

relative peak height, but also suggests that it may be difficult

to predict where the sudden transitions occur.

b) Peak coverage: S2 was set to
1
128
, 1
64
, 1
32
, 1
16
, 1
8
, and

1
4
, while S1 was constantly 1.6. Here, the location of the
transition was more consistent among the various values, but

the transitions themselves were still abrupt. It also appears that

the relative peak coverages caused more variation in results

when the bias rate was small, while the curves at the other

extreme of the graph appeared close together. The results

2To reduce noise in the evaluation process, the experiments in this section
employed the same random collaborator for all individuals in the population at
that generation. We later discovered that using different random collaborators
for different individuals results in a slightly better performance due to better
sampling of the search space—but sensitivity to " was unaltered.
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Fig. 4. Convergence ratios for peak height (top), peak coverage (center) and
peak relatedness (bottom). x axis shows biasing rate " , and y axis shows ratio
of the 250 trials that converged to, or very near, the global optimum.
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Fig. 5. Convergence ratios for population size (top) and collaboration scheme
(bottom). x axis shows biasing rate " , and y axis shows ratio of the 250 trials
that converged to, or very near, the global optimum.

indicated that certain settings of peak coverage will affect the

algorithm’s sensitivity to the " parameter: the wider the peak,

the more gradual the transition when varying the bias rate.

c) Peak relatedness: The Y2 parameter was set to
1
4
,

3
8
, 1
2
, 5
8
, and 3

4
. These settings incrementally transitioned the

relative peak positions from diagonally opposite locations to

ones aligned along one axis. Similar to peak height, the peak

relatedness had a significant effect on the ratio of runs that

converged to the global optimum: the more related the peaks,

the less biasing was required to assure good performance.

However, the curves had an abrupt transition between lower

and higher rates of convergence to the optimum. Moreover,

the location of this transition depended on the actual degree

of peak relatedness, which suggests that the algorithm may be

highly sensitive to " with respect to this parameter.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMISSION 2004 10

2) Biasing and Algorithm Features: A second set of exper-

iments investigated the relationship between the biasing rate

and the population size and collaboration scheme. Again, there

were 11 groups for each of these two parameters correspond-

ing to each of the " settings. The results are presented in

Figure 5.

a) Population size: We set the size of each of the two

populations to 8, 16, 32, 64, 128, 256, and 512. As expected,

extremely small populations were less likely to reach the

optimum, even with high biasing rates. We observed the same

abrupt shift in performance as we saw in the previous exper-

iments. The results suggested that increasing the population

size does not necessarily alleviate algorithm sensitivity to " .

b) Collaboration scheme: The default setting in all previ-

ous experiments used two collaborators to evaluate the fitness

of each individual: the best-performing individual from the

other population in the previous generation, and also a random

individual. To test sensitivity to this collaboration scheme, we

varied the number of random individuals from 0 to 4; the best

individual from each population in the previous generation was

always used. Varying the number of collaborators presents a

tradeoff between computational complexity and the efficiency

of the algorithm [14]: more collaborators induce an increased

computational complexity, but the performance of the search

might also be significantly improved. The bottom graph in

Figure 5 shows that the collaboration scheme had some

influence over the performance of the algorithm at low biasing

rates, but it had no effect when higher biasing rates were

used. Again, the abrupt change in performance indicated that

the algorithm could be highly sensitive to the " parameter,

regardless of the collaboration methodology.

The result of nearly all of these experiments is that the

biased MPS-CEA we have so far described seems to be very

sensitive to " , and we cannot alleviate this by adjusting the

algorithmic parameters. It would appear that finding a suitable

value for this parameter in practice may be difficult as it is

applied currently. Fortunately, this need not be the case.

C. An Alternative Stochastic Biasing Mechanism

To uncover a possible simple alternative that does not share

this problem, recall that for larger differences in peak heights,

a wider range of biasing rates resulted in a high ratio of

convergence; however, when one peak was only slightly higher

than the other, the range of high convergence ratios was much

smaller. The transition was abrupt, but the location of the

transition shifted depending on the peak height differences.

Our hypothesis is that this extreme sensitivity of the algo-

rithm to the biasing method with respect to the relative peak

heights is caused by the linear combination of the two fitness

components: the fitness when teamed with collaborators, and

the fitness when in combination with the optimal collaborator.

The higher the optimal peak, the lower the bias rate it needs

to dominate the other term. However, if one peak is slightly

higher than the other, the algorithm requires more biasing to

locate the optimum.

To counter this, we used a non-parametric comparison

method which considers the relative order of two components
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Fig. 6. Convergence ratios for probabilistic biasing when varying peak height
(top), peak coverage (center) and peak relatedness (bottom). x axis shows
biasing rate " , and y axis shows ratio of the 250 trials that converged to, or
very near, the global optimum.

rather than their exact values. The justification for this tech-

nique is similar to that of non-parametric selection methods

such as tournament selection [57], rank selection [58], and

truncation selection [59]. In our technique, each individual

is assigned two fitnesses: the underlying objective one when

combined with the collaborators from other populations, and

another one indicating the performance of the individual when

in combination with its optimal collaborator. When comparing

two individuals, with probability " we compare based on the

first “fitness”; else we compare based on the second.

We performed the same sensitivity analysis for the new

algorithm. The results are presented in Figures 6 and 7. In all

cases, the new algorithm does not exhibit the sudden jumps

in performance as did the original. This suggests that it is an

improvement resulting in significantly less sensitivity to the

settings we have investigated.

Drawing from research in multiobjective optimization [60],

[61], we experimented with some additional ways to counter

the effects of linear combination . One alternative normalizes

the two components before adding them; but our experiments

using this mechanism still revealed abrupt transitions in perfor-

mance. Another approach is to compare pairs of components

based on Pareto dominance: one pair is better than another

if both of its components are equivalent to or better than the

corresponding components in the other pair, and at least one of

its component is better than its corresponding component in

the other pair. Our attempts to use Pareto dominance were

again not successful at removing the abrupt transitions in

performance as " was changed.
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Fig. 7. Convergence ratios for probabilistic biasing when varying population
size (top) and collaboration scheme (bottom). x axis shows biasing rate " ,
and y axis shows ratio of the 250 trials that converged to, or very near, the
global optimum.

VI. COMPARING REALISTIC IMPLEMENTATIONS OF

TRADITIONAL AND BIASED MPS-CEAS

A. Method of Study

While the previous theoretical discussion, as well as the sen-

sitivity analysis just discussed, helps justify our intuition for

biasing the fitness evaluation, neither is immediately applicable

to real problems. In a more realistic setting, simplifying model

assumptions such as infinite populations, lack of variational

operators, complete mixing, and a priori knowledge of the

maximum payoff are not possible.

A previous simplifying assumption (a priori known biasing

information) allowed us to keep the biasing rate constant

during the coevolutionary search. To convert theory into

practice, we adopted a rote learning algorithm for learning

the biasing information. Specifically, if an individual selects

action i, we assume its optimal collaborator picks that action

j which so far has shown the highest performance when

paired with i. As evolution progresses, the action chosen by

the optimal collaborator changes to reflect the better (i, j)
pairs that are evaluated. The main difference between the two

representations in Sections VI-C and VI-D is primarily in how

an individual chooses its actions.

We employed the stochastic biasing mechanism described

in Section V-C. We decided on a simple proof-of-concept rule

for updating the biasing rate. The algorithm started with " = 1,
decreasing linearly until reaching " = 0 at 75% of the total

number of generations, at which point it stayed at 0 until the

end of the run. While our dynamic adjustment of " was ad-

hoc, it was a sufficient method to demonstrate our point in this

context. Indeed, we will show that the biased coevolutionary

algorithms outperformed their unbiased counterparts even with

this ad-hoc setting.

We performed several experiments to compare traditional

coevolution with biased coevolution in this context. We tested

on the Climb and the Penalty coordination games introduced

in Section II-A, and on a variation of MTQ which we call the

Two Peaks domain, with a joint reward function of the form

f (x,y) =max











0

10−32 ∗ ((x− 1
3
)2+(y− 1

3
)2)

15−128 ∗ ((x−1)2+(y−1)2)

with x and y taking values between 0 and 1. Finally, we tested

the methods in a cooperative learning domain with increased

non-linear interactions: the joint reward function was based on

the two-dimensional Rosenbrock function

f (x,y) = −

(

100 ∗
(

x2− y
)2

+(1− x)2
)

x and y taking values between -2.048 to 2.048. For simplic-

ity, we discretized each axis into 16, 32, 64, and 128 segments

for experiments with both the Two Peaks and the Rosenbrock

functions. Increased discretization resulted in larger search

spaces, but not necessarily more difficult ones—when search-

ing for pure strategies for the Rosenbrock domain (Table V),

the rate of finding the global optima for all coevolutionary

methods for 32 intervals is lower than that for 64 intervals.

The experiments again used the ECJ software package [56]. In

order to establish statistical significance, all claims of “worse”

or “better” were verified using nonparametric tests. We used

the Welch test (a variation the Student t-test that does not

assume equal variance for the samples) repeatedly for pairs

of samples. Given that the samples were rarely following a

normal distribution, we first ranked the set of observations

from both samples, then we performed the Welch test on those

ranks. We also used the Bonferroni inequality to adjust the p-

value level for each test such as to obtain 95% confidence

over all comparisons; as a consequence, each Welch test was

applied at a 99.95% confidence level.

B. Competing Techniques

We consider both biased and unbiased versions of three

MPS-CEA algorithms. The first such algorithm is a “tradi-

tional” MPS-CEA. The others are two spatially-embedded

MPS-CEAs similar to those discussed in Section II-E. We

detail each of these next.

For the traditional MPS-CEA algorithm we chose a common

approach to MPS coevolution fitness assessment: an individual

was assessed twice to determine its fitness, once with a

collaborator chosen at random and once partnered with the

individual in the other population that had received the highest

fitness in the previous generation. An individual’s fitness was

set to the maximum of these two assessments. This is termed

Traditional in the remainder of this section.

In a spatially distributed MPS-CEA the individuals are

positioned at specified locations in geometric space, such

that a notion of a neighborhood exists among individuals.

For consistency across small and moderate population sizes,

we embedded each population in a one-dimensional ring. A

neighborhood of radius 1 for an individual consisted of three

individuals in this case: the specific individual, together with

the individuals to its immediate left and right (on the ring). The

spatial embedding of the populations influences the breeding

process as follows: for each location, a number of individuals
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are selected with replacement from a local neighborhood

(the radius of the neighborhood is detailed for each problem

domain later), and the better ones are selected for breeding (the

best individual is selected for mutation alone, or the better two

individuals are selected for crossover, followed by mutation).

When creating a child for location i, the parent at location i

always competed for selection to breed.

The spatial embedding also influences the scheme to select

collaborators. We experimented with two spatial collaboration

schemes. First, we evaluated each individual with the unique

collaborator from the other population that had the same

location in space. We refer to this setting as Spatial. We

doubled the population size for Spatial to allow it to have

the same total number of evaluations as the other methods.

A second spatially-embedded MPS-CEA algorithm evaluated

each individual with two collaborators: the collaborator at the

same location in space (as before), and a random collaborator

from a small neighborhood (the radius of the neighborhood is

detailed later). We term this second technique Spatial2 for the

remainder of this section.

The combination of biasing with each of the three al-

gorithms is termed Biased Traditional, Biased Spatial, and

Biased Spatial2 respectively.

C. Searching for Pure Strategies

A first set of experiments encoded a single action (an

integer) in each individual. In other words, each individual

deterministically specified an action. In game-theory parlance,

each individual thus represented a “pure strategy”. Such an

individual bred children through mutation: the individual’s

integer was increased or decreased (the direction chosen at

random beforehand with probability 0.5) while a biased coin

came up heads (with probability 1
8
for Climb and Penalty, and

with probability 1
4
for Two Peaks and Rosenbrock). Evolution-

ary runs in the Climb and Penalty problem domain used only 3

individuals per population (Spatial used 6 individuals) and they

lasted for 40 generations. Runs in the Two Peaks and Rosen-

brock domains used 20 individuals per population (Spatial

used 40) and they lasted for 200 generations. Spatial2 selected

the second collaborator randomly using a neighborhood of

radius 1. Selection for breeding used tournament selection with

size 2. Parents were selected from neighborhoods of radius 1

using tournament selection with size 2 for each location in the

spatially-embedded models. The most-fit individual survived

automatically from one generation to the next in the non-

spatially-embedded models.

Results Summary: The use of the proposed biasing mech-

anism usually resulted in statistically significant improvements

in the rate of finding the global optima. In the few situations

where biasing did not help, it did not hurt performance either.

As a side-note, the Spatial algorithm consistently outperformed

the traditional MPS-CEA.

Results Specifics: Tables II–V present the average per-

centage (out of 1000 runs) that converged to the global opti-

mum. Overall, the spatial methods outperformed the traditional

methods—not surprising, given the positive results in the

literature as discussed in Section II-E—but the biased version

TABLE II

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, CLIMB DOMAIN WITH PURE STRATEGY REPRESENTATION

Penalty
-30 -300 -3000 -30000

Traditional 56.1% 56.9% 56.8% 56.9%
Biased Traditional 79.9% 77.6% 80.8% 81.0%

Spatial 76.4% 79.7% 77.0% 77.2%
Biased Spatial 85.6% 88.2% 88.4% 87.0%

Spatial2 67.1% 69.8% 71.5% 70.0%
Biased Spatial2 82.4% 80.9% 81.7% 82.7%

TABLE III

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, PENALTY DOMAIN WITH PURE STRATEGY REPRESENTATION

Penalty
-10 -100 -1000 -10000

Traditional 88.2% 89.4% 90.3% 88.4%
Biased Traditional 93.2% 93.5% 91.9% 93.4%

Spatial 99.3% 98.9% 99.3% 98.9%
Biased Spatial 99.7% 99.4% 99.3% 99.4%

Spatial2 93.5% 93.1% 94.8% 92.6%
Biased Spatial2 94.6% 95.8% 96.2% 94.2%

of any method generally outperformed the unbiased version of

that method. In the Climb domain, Spatial was significantly

better than Traditional; Spatial was no better than Spatial2

for Penalty=-3000 at the properly adjusted confidence level of

99.95%, but it was superior using only 99.914% confidence.

For all three methods, biasing significantly improved perfor-

mance—Biased Spatial in particular converged to the global

optima in about 90% of the runs, significantly better than all

five other methods.

Spatial was better than both Traditional and Spatial2 in

the Penalty domain. Except for significant improvements of

Biased Traditional over Traditional when Penalty=-10 and

Penalty=-10000, biasing was not effective at improving results

at the 99.95% confidence level (though it did not damage

results either). We performed three additional tests using all

4000 runs for each of the methods (1000 for each value of the

penalty); the increased number of observations allowed us to

establish that biasing was effective at significantly improving

the performance of Traditional and (with only 99.89% confi-

dence) Spatial2.

In the Two Peaks domain, Spatial was again better than

Spatial2, which was better than Traditional. Enhancing the

techniques with the proposed biasing mechanism resulted in

significant improvements for Traditional (with only 99.4%

confidence for 128 discretization level), and for Spatial2 (only

for a discretization level of 8). All other differences were

statistically insignificant.

In the Rosenbrock domain, Spatial was better than Tradi-

tional (with confidence level 99.95% for discretization level

equals 128, and only with confidence levels 99.9% and 99.85%

for discretization levels 8 and respectively 16) and Spatial2

(with confidence level 99.95% for discretization levels of

64 and 128, and only with confidence levels 99% for dis-

cretization level 8). Additional nonparametric tests using all
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TABLE IV

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, TWO PEAKS DOMAIN WITH PURE STRATEGY REPRESENTATION

Discretization Level (Number of Actions)
16 32 64 128

Traditional 51.6% 50.8% 49.6% 49.0%
Biased Traditional 68.5% 65.8% 59.2% 59.4%

Spatial 86.5% 91.2% 89.3% 85.6%
Biased Spatial 84.1% 88.9% 87.9% 86.6%

Spatial2 72.0% 73.2% 69.3% 66.5%
Biased Spatial2 78.6% 74.7% 72.5% 68.4%

TABLE V

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, ROSENBROCK DOMAIN WITH PURE STRATEGY

REPRESENTATION

Discretization Level (Number of Actions)
16 32 64 128

Traditional 82.5% 33.6% 37.9% 16.5%
Biased Traditional 87.1% 48.8% 51.9% 21.9%

Spatial 84.3% 40.8% 45.4% 22.1%
Biased Spatial 86.6% 56.6% 82.0% 39.8%

Spatial2 78.2% 33.5% 41.2% 16.4%
Biased Spatial2 74.5% 42.0% 67.3% 22.8%

4000 runs established that Spatial was significantly better than

Traditional and Spatial2 with 99.95% confidence. The methods

in combination with biasing usually performed better than

alone; biasing never decreased significantly the performance

of a method.

D. Searching for Mixed Strategies

Though using a pure strategy representation provides a clear

connection to theory and emphasizes the problem properties

in which we are interested, using such an encoding in these

simple problems results in very small search spaces. It would

be nice to consider larger problems with similar properties.

We accomplished this by encoding a “mixed strategy” (to

again use game theory parlance) in each individual. More

specifically, individuals consisted now of a probability dis-

tribution over the available actions. When evaluating such

individuals with a collaborator (another mixed strategy), 50

independent interactions were performed, each consisting of

a joint action chosen at random according to the individuals’

mixed strategies. The joint reward for the two individuals was

computed as the average reward over the 50 joint rewards.

Observe that using mixed strategies creates a potentially more

difficult problem domain than using pure strategies for reasons

of both search space size and the stochastic nature of the fitness

result.

Results Summary: The results suggest that the mixed

strategy representation induces a significantly more complex

search space than the pure strategy representation: mixed

strategies usually have a non-zero probability of exploring

different actions that may incur penalties. For this reason,

we argue that the slope around the optimal peak has an

abrupt gradient that may explain the decrease in performance.

Consistent with the previous experiments involving the pure

TABLE VI

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, CLIMB DOMAIN WITH MIXED STRATEGY REPRESENTATION

Penalty
-30 -300 -3000 -30000

Traditional 25% 20% 19% 21%
Biased Traditional 100% 100% 100% 100%

Spatial 67% 28% 27% 26%
Biased Spatial 100% 100% 100% 100%

Spatial2 50% 26% 25% 27%
Biased Spatial2 99% 99% 99% 99%

TABLE VII

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, PENALTY DOMAIN WITH MIXED STRATEGY REPRESENTATION

Penalty
-10 -100 -1000 -10000

Traditional 100% 99% 99% 99%
Biased Traditional 100% 100% 100% 100%

Spatial 100% 99% 99% 98%
Biased Spatial 100% 100% 99% 99%

Spatial2 99% 99% 98% 98%
Biased Spatial2 100% 100% 100% 99%

strategy representation, the results indicate that biasing never

decreases the performance of a method, but it rather improves

it significantly in many domains.

Results Specifics: Traditional and Biased selected parents

via tournament selection with size 2; breeding involved one-

point crossover, followed by mutation by adding random

Gaussian noise (mean 0 and standard deviation 0.25) with

probability 1
L
for each of the distribution values (where L is

the number of actions in the problem domain), followed by

renormalization of the distribution. We performed an exten-

sive sensitivity study to set the parameters of the spatially-

embedded coevolutionary algorithms. We found that lower

mutation rates worked better (following crossover, we added

Gaussian random noise to each gene with probability 0.2 for

the Climb and Penalty domains, and only with probability 1
3L

for Two Peaks and Rosenbrock). When using the Traditional

and the Spatial2 methods, each population contained 20 indi-

viduals for Climb and Penalty, and 100 individuals for the Two

Peaks and Rosenbrock domains (as noted, Spatial used twice

the population size but an equivalent number of evaluations).

The parents were selected using tournament selection with

size 2 and with a neighborhood radius of 1 for Climb and

Penalty. Given the larger population sizes for Two Peaks

and Rosenbrock, parents were selected from neighborhoods

of radius 3; the sensitivity study also indicated a tournament

selection size of 5 for the Two Peaks domain, and of 3 for

the Rosenbrock domain. Runs lasted for 200 generations in

the Climb and Penalty domains, and for 1000 generations in

the Two Peaks and Rosenbrock domains. We performed 1000

runs for each treatment to obtain statistical significance.

The mixed representation introduces an intriguing problem:

what does the optimal collaborator for a mixed strategy look

like, and how can it be learned? Our estimate for the optimal

collaborator is done exactly as was done in the pure-strategy
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TABLE VIII

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, TWO PEAKS DOMAIN WITH MIXED STRATEGY

REPRESENTATION

Discretization Level (Number of Actions)
16 32 64 128

Traditional 0% 0% 0% 0%
Biased Traditional 100% 100% 100% 100%

Spatial 0% 0% 0% 0%
Biased Spatial 100% 100% 100% 100%

Spatial2 0% 0% 0% 0%
Biased Spatial2 100% 100% 100% 100%

TABLE IX

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL

OPTIMUM, ROSENBROCK DOMAIN WITH MIXED STRATEGY

REPRESENTATION

Discretization Level (Number of Actions)
16 32 64 128

Traditional 62% 12% 0% 0%
Biased Traditional 100% 100% 99% 82.9%

Spatial 93% 38% 3% 0%
Biased Spatial 100% 100% 100% 84.3%

Spatial2 85% 25% 1% 0%
Biased Spatial2 100% 100% 100% 79.8%

case: after selecting the action i (chosen from the individual’s

mixed strategy distribution), we then select j based on j’s

historical success when paired with i. To update this history

information, we use only the first joint reward (of the total

of 50) from each evaluation of a pair of individuals. To

do otherwise would give the estimation procedure an undue

advantage.3

Tables VI–IX present the percentages of runs that converged

to the global optimum when using the mixed strategy rep-

resentation in the Climb, Penalty, and the discretized Two

Peaks and Rosenbrock domains. As the evaluation of an

individual is averaged over 50 interactions, we considered that

a run converged to the global optimum if the fitness of the

best individuals (one per population) in the last generation

was within 10% of the value of the global optimum— to

exceed this threshold, each of the mixed strategies should have

probability close to 1 for picking the action corresponding to

the global optimum, as the joint reward for any other pair of

actions was less than this threshold.

In the Climb domain, both Spatial and Spatial2 significantly

outperformed Traditional. However, enhancing any of them

with our biasing method resulted in convergence to the global

optimum in almost every run. The Penalty domain was again

easier then Climb—most runs found the global optimum.

The Two Peaks domain was consistently too difficult for

either Traditional, Spatial and Spatial2, but all of them found

the global optima in 100% of the runs when in combination

with biasing. The Rosenbrock domain was relatively easier for

coevolution, especially at low discretization levels. Traditional

was again significantly worse than Spatial2, which in turn was

3We also performed experiments using all 50 joint rewards to improve the
optimal collaborator estimate, and the results improved further— all methods
in combination with biasing found the global optimum in most cases.

significantly worse than Spatial. However, the performance of

all methods was significantly superior when in combination

with biasing.

VII. CONCLUSION

Coevolutionary algorithms offer great potential for concur-

rent multiagent learning domains. Their ability to focus on

decomposed partitions of a larger, structured joint problem

space make them very natural algorithms to consider for such

problems. Despite this, pathologies resulting from the game-

theoretic nature of CEAs, namely their propensity toward

relative overgeneralization, interfere with finding solutions that

correspond to optimal collaborations of interacting individuals.

Some basic changes in the algorithm are necessary to correct

this problem.

Our approach to address this problem was to alter the CEA

such that the fitness of an individual was based partly on

the result of interaction with other individuals, and partly on

an estimate of the best possible reward for that individual if

partnered with its optimal collaborator. This form of bias drew

its inspiration from similar methods in reinforcement learning

literature, and its justification from a limited theoretical analy-

sis. We used a novel visualization method to help demonstrate

the efficacy of the method from a theoretical viewpoint.

Empirically, we explored the sensitivity of the method to the

degree of bias, offering a mechanism to mitigate this sensitivity

by probabilistically combining these two parts of the fitness

evaluation. Finally, we provided early experimental evidence

that our biasing method has merit, even as the biasing estimate

is also learned during the search.

This work clearly reflects the early stages of studying

biasing methods for coevolutionary algorithms. In more dif-

ficult problems, rote learning methods will be impractical

and more complex learning methods must be employed to

establish trustworthy and computationally efficient estimates

of optimal collaboration. Moreover, we have provided no

general understanding about how to adjust " dynamically.

Finally, a comprehensive investigation of when such methods

are likely to succeed or fail has not, as yet, been undertaken.

We intend to pursue each of these. Regardless, preliminary

empirical evidence suggests that biasing CEAs toward optimal

collaboration may be beneficial in practice.

ACKNOWLEDGMENTS

R. Paul Wiegand’s participation in this work was made

possible by the American Society of Engineering Education.

The authors would like to thank Anthony Bucci, Edwin de

Jong, Anthony Liekens, Elena Popovici, David Fogel, Xin

Yao, and the anonymous reviewers for their helpful comments

and suggestions. Some of the text and figures in this article

previously appeared in earlier publications [55], [62] and

has been reused with permission from Springer Science and

Business Media.

REFERENCES

[1] R. Wiegand and M. Potter, “Robustness in compositional coevolution,”
in Proceedings from the 2006 Genetic and Evolutionary Conference.
ACM Press, 2006.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMISSION 2004 15

[2] T. Jansen and R. P. Wiegand, “The cooperative coevolutionary (1+1)
ea,” Evolutionary Computation, vol. 12, no. 4, pp. 405–434, 2004.

[3] R. P. Wiegand, K. A. De Jong, and W. C. Liles, “The effects of repre-
sentational bias on collaboration methods in cooperative coevolution,”
in Proceedings of the Seventh International Conference on Parallel

Problem Solving from Nature (PPSN VII), J. J. et al. Merelo Guervós,
Ed. Berlin, Germany: Springer, 2002, pp. 257–268.

[4] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, 2005.

[5] S. Luke and L. Spector, “Evolving teamwork and coordination with
genetic programming,” in Genetic Programming 1996: Proceedings of
the First Annual Conference, J. R. Koza, D. E. Goldberg, D. B. Fogel,
and R. L. Riolo, Eds. Stanford University, CA, USA: MIT Press, 1996,
pp. 150–156.

[6] A. Hara and T. Nagao, “Emergence of cooperative behavior using ADG;
Automatically Defined Groups,” in Proceedings of the 1999 Genetic and
Evolutionary Computation Conference (GECCO-99), 1999, pp. 1038–
1046.

[7] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time neuroevolution
in the NERO video game,” IEEE Transactions on Evolutionary Compu-
tation, vol. 9, no. 6, pp. 653–668, 2005.

[8] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” in Proceedings of National Conference
on Artificial Intelligence (AAAI-98), 1998, pp. 746–752.

[9] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,” in Proceedings of the
Seventeenth International Conference on Machine Learning. Morgan
Kaufmann, 2000, pp. 535–542.

[10] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coor-
dination in cooperative multi-agent systems,” in Proceedings of the

Eighteenth National Conference on Aritificial Intelligence (AAAI-02).
MIT Press, 2002, pp. 326–331.

[11] P. Husbands and F. Mill, “Simulated coevolution as the mechanism for
emergent planning and scheduling,” in Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, R. Belew and L. Booker,
Eds. Morgan Kaufmann, 1991, pp. 264–270.

[12] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Proceedings of the Third International Con-
ference on Parallel Problem Solving from Nature (PPSN III), Y. Davidor
and H.-P. Schwefel, Eds. Springer, 1994, pp. 249–257.

[13] M. Potter, “The design and analysis of a computational model of
cooperative coevolution,” Ph.D. dissertation, George Mason University,
Fairfax, Virginia, 1997.

[14] R. P. Wiegand, W. Liles, and K. De Jong, “An empirical analysis
of collaboration methods in cooperative coevolutionary algorithms,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) 2001, L. et al. Spector, Ed. Morgan Kaufmann, 2001, pp.
1235–1242.

[15] L. Bull, “On coevolutionary genetic algorithms,” Soft Computing, vol. 5,
pp. 201–207, 2001.

[16] ——, “Evolutionary computing in multi-agent environments: Partners,”
in Proceedings of the Seventh International Conference on Genetic
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