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Abstract— Cooperative coevolutionary algorithms offer great
potential for concurrent multiagent learning domains and are
of special utility to domains involving teams of multiple agents.
Unfortunately, they also exhibit pathologies resulting from their
game-theoretic nature, and these pathologies interfere with find-
ing solutions that correspond to optimal collaborations of inter-
acting agents. We address this problem by biasing a cooperative
coevolutionary algorithm in such a way that the fitness of an
individual is based partly on the result of interactions with other
individuals (as is usual), and partly on an estimate of the best
possible reward for that individual if partnered with its optimal
collaborator. We justify this idea using existing theoretical models
of a relevant subclass of coevolutionary algorithms, demonstrate
how to apply biasing in a way that is robust with respect to
parameterization, and provide some experimental evidence to
validate the biasing approach. We show that it is possible to bias
coevolutionary methods to better search for optimal multiagent
behaviors.

Index Terms— Coevolution, cooperative coevolution, biased
coevolution, multiagent learning, optimal collaboration, multi-
population symmetric coevolution.

I. INTRODUCTION

OEVOLUTIONARY ALGORITHMS (CEAs) are popu-

lar augmentations of traditional evolutionary algorithms
(EAs). The basic elements of these augmentations lay in the
adaptive nature of fitness evaluation in coevolutionary systems:
individuals are assigned fitness values based on interactions
with other individuals. Of particular interest are CEAs that
have a kind of compositional nature that lend themselves
toward learning behaviors for multiple, interacting agents.
The most obvious CEAs for such problems are so-called
cooperative! coevolutionary algorithms, which are typically
formulated such that multiple interacting individuals succeed
or fail together as a team.

One would imagine that cooperative coevolutionary algo-
rithms may be effective for problems with certain structural
properties among interacting components such as those prob-
lems that can be decomposed appropriately to limit particular
types of nonlinear relationships [2], [3]. The intuition behind
this advantage is that the algorithm searches only projections
of the space at any time (one projection per population),
thus reducing the search in a given generation from one
exponentially large joint space to multiple simpler subspaces.
Each decomposed subproblem may be cast as a projection

!The term ’cooperative’ is problematic for reasons we discuss later in the
paper. A better general term might be ’compositional’ [1].

of the (joint) problem space. Unfortunately, a great deal of
information is discarded when basing an individual’s fitness
only on a projection of the joint space. One consequence of
this is that a population’s estimate of this projection is strongly
influenced by the particular makeup of other populations, and
this makeup is largely out of the original population’s control.
The result is that it is easy for a poor sample set to mislead the
algorithm about the search space as a whole. This often leads
to a preference for the kind of individual that partners well
with a broad range of individuals from the other populations,
whether or not that individual can form a globally optimal
partnership.

The obvious countermeasure would be to bias the algorithm
to seek optimal collaborations. In this paper we explore this
option. We justify this idea by using existing theoretical
models of certain cooperative coevolutionary algorithms, show
how to apply biasing in a way that is robust with respect to
parameterization, and provide some experimental evidence to
validate the biasing approach. We show that it is possible to
improve coevolutionary search for optimal multiagent behav-
iors using a biasing method.

Section 2 provides a brief background in multiagent learning
and compositional approaches to multipopulation coevolution,
as well as a dynamical systems approach for analyzing these
types of algorithms. Here we describe precisely the subset of
cooperative coevolutionary algorithms of interest to us, which
we term multipopulation symmetric coevolutionary algorithms
(or MPS-CEAs). Section 3 then proposes our approach to
explicitly incorporating bias into MPS-CEAs, and provides a
limited theoretical justification for our approach. In Section 4,
we introduce a novel visualization method for observing basins
of attraction in a multi-dimensional space, which allows us to
demonstrate the efficacy of this biasing. In Section 5, we show
that our biasing method is highly sensitive to a key parameter,
and propose a modification of the method to mitigate this
sensitivity. In Section 6, we provide experimental results
for the application of our biased cooperative coevolutionary
algorithm using a simple rote learning method for developing
the bias over the run of the algorithm. We show that biasing
enhances both a traditional MPS-CEA algorithm, as well as
spatially-embedded MPS-CEAs. We complete the paper with
a discussion of our conclusions and future work.
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II. BACKGROUND

A. Concurrent Multiagent Learning

A large portion of multiagent research may be divided
neatly according to whether or not it involves multiple learners
[4]. Some research applies a single learner to improve the
performance of an entire team of agents (for example, [5],
[6], [7]). Other research applies separate learning processes
to individual agents, while still assessing the quality of the
agents as a team. The material in this paper concerns these
latter approaches, which we will term concurrent multiagent
learning.

The primary advantage of concurrent multiagent learning
is that it projects the large joint team search space onto
separate, smaller, component search spaces. If the problem
can be decomposed such that individual agent behaviors are
relatively disjoint, then this can result in a dramatic reduction
in search space. A second, related advantage is that breaking
the learning process into smaller chunks permits more flexibil-
ity in the use of computational resources because these chunks
may, at least partly, be learned independently of one another.

Coordination games are standard problem domains for con-
current multiagent learning. A coordination game consists of
a series of stages. At each stage, each agent is asked to choose
an action without knowing which actions the other agents will
choose. After each agent has decided on an action, they all
perform their actions concurrently. A reward is then given to
all agents, its value depending on their joint action. In some
games, the agents may observe the other agents’ actions upon
receiving the reward.

Claus and Boutilier [8] introduced two simple benchmark
coordination games, Climb and Penalty. The domains are dif-
ficult because of the penalties associated with miscoordinated
actions and the presence of suboptimal collaborations that
avoid such penalties. The joint payoff matrices for the two
3 x 3 coordination games are presented in Table I. If Agent
1 performs action 1 and Agent 2 performs action 2, we will
refer to the joint action with the form (1,2)..

Agents in the Climb domain receive maximum payoff
when they both choose action 1. However, the joint reward
matrix has a second equilibrium: when both agents choose
action 2. This is a suboptimal equilibrium, because the team
reward is lower than at (1,1). The Penalty domain has two
optimal equilibria, at (1,1) and (3,3). However, there are
significant penalties associated with agents choosing (1,3) and
(3,1). Additionally, (2,2) is a third equilibrium. This point is
suboptimal, but there is no penalty for miscoordination if only
one agent chooses action 2.

Claus and Boutilier [8] showed that a concurrent rein-
forcement learning algorithm is not guaranteed to find the
optimal team behaviors for these games, even in the case when
agents are able to observe other agents’ actions. The authors
then suggested that the search could be improved by using
more optimistic exploration actions; this direction was further
explored in [9], [10]. We will use the Climb and Penalty games
later in this paper as two of our multiagent learning testbeds.

TABLE I
EXAMPLES OF COORDINATION GAME PAYOFF MATRICES: (A) THE 3X3
CLIMB GAME; (B) THE 3X3 PENALTY GAME. BOTH AGENTS RECEIVE THE
SAME PAYOFF FOR A GIVEN JOINT ACTION, AS SHOWN IN THE MATRIX.
PAYOFFS MARKED "PENALTY’ ARE FILLED WITH SOME NEGATIVE
NUMBER DEPENDING ON THE EXPERIMENT.

Agent 2 Agent 2
1 2 3 | 1 2 3
-1 11 penalty 0 -1 10 0 penalty
S 2| penalty 7 6 5 2 0 2 0
£ 31 0 0 5 & 3|penalty 0 10

(A) B)

B. Cooperative Coevolution

Cooperative coevolutionary systems are often a good fit
for concurrent multiagent learning problems. When agents
are working together as a team to perform some joint task,
it is often very natural to represent individual behaviors
separately and evolve multiple populations of such agents
working in collaboration with one another. For examples of
such cooperative coevolutionary algorithms, see Husbands and
Mill [11] and Potter and De Jong [12].

Here we assume the use of the architecture defined by Potter
[13]. The cooperative coevolutionary algorithm works as fol-
lows. Each population is assigned to search for a component
of the solution (e.g., an agent in a multiagent team), and
individuals represent candidate solutions for such components.
One member from each population is needed in order to
assemble a complete solution (e.g., the team). Evaluation
of an individual from a particular population is performed
by assembling that individual with collaborating individuals
from other populations and testing the resultant full solution.
To combat noise in the evaluation process due to choice of
collaborators, multiple evaluations are usually performed, each
with different collaborator sets. An individual’s fitness could
be the maximum (or the minimum or the average) over such
evaluations, among other approaches. The effects of different
evaluation schemes on performance are studied in [3], [14],
[15], [16]. Aside from evaluation, the populations are evolved
independently. Applications of this method include optimiza-
tion of inventory control systems [17], learning constructive
neural networks [18], multiagent systems [19], [20], [21], and
rule learning [22], [23].

An example may serve to clarify this process. Suppose we
are optimizing a three-argument function f(x,y,z). Here, x, y
and z represent possible strategies for three agents, and f is
a function that indicates the performance of the team. One
might assign individuals in the first population to represent
the x argument, the second to represent y, and the third to
represent z. Each population is evolved separately, except that
when evaluating an individual in some population (e.g., x),
collaborating individuals are chosen from the other populations
(v and z) in order to obtain an objective function value
with a complete solution, f(x,y,z). This function value is the
payoff that the evaluated individual (in this case x) receives.
An individual’s fitness is computed from the combination of
payoffs from one or more evaluations with various sets of
collaborators.
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One simple method is to choose collaborators by using
the most-fit individual from each of those populations as
determined by the previous round of evaluations. Another
approach is to pick collaborators at random from the other
populations. Once a complete solution is formed, it can be
evaluated and the resulting score can be assigned to the
individual. We also assume that learning in the populations
is performed concurrently. That is, all populations advance to
the next generation at the same time.

Though historically the term “cooperative” has been applied
to such algorithms, “cooperative coevolution” is a confus-
ing and ambiguous term, and as noted in [24], it is used
inconsistently in the literature. The term has been variously
applied to describe the emergent dynamics of systems [25],
properties of the underlying payoff of the problem [26], and
the compositional approach of the design engineer [13]. All
these cases lack a clear definition for the term.

For this reason, for the rest of this paper we focus on a
specific, well-defined subclass of cooperative coevolutionary
algorithms that we call a multipopulation symmetric coevolu-
tionary algorithm (MPS-CEA). Such algorithms are symmetric
in a sense similar to “symmetric games” in game theory.
When a particular individual is being evaluated as part of
a particular collaboration (a set of components, a team, a
solution, etc.), the individual will receive some payoff. In a
symmetric cooperative coevolutionary algorithm, if that same
collaboration is used to evaluate one of the other component
individuals in the set, the same payoff will be awarded. That
is, a given f(x,y,z) is the same value regardless of whether x,
¥, or z is the payoff recipient.

In a traditional EA, when solutions have a genetic basis for
their expressed behavior, increasing the explorative powers of
the genetic operators in order to expand the search of some
part of the space comes at the cost of increased destruction
of the existing learned genetic material. In the MPS-CEAs,
the decomposition of the solution in a sense protects some
components of the solution while the search is being per-
formed on a given component, thus allowing the operator
to focus its search on each component separately [27]. This
kind of a priori partitioning may have severe consequences
if the true problem decomposition is poorly matched with
the representational decomposition [3], [28], [29]. However,
a well-matched decomposition may still perform admirably
even with significant non-linear interaction among components
[2]. Consequently, MPS-CEAs may well benefit multiagent
learning even when dependencies exist among agents [2], [3].

C. Modeling Multipopulation Symmetric Coevolution

An appealing abstract mathematical model for multipopula-
tion symmetric coevolution comes from the biology literature:
evolutionary game theory (EGT) [30], [31]. EGT provides
a formalism based on traditional game theory and dynami-
cal systems techniques to analyze the limiting behaviors of
interacting populations under long-term evolution. EGT has
been previously applied to the analysis of single population
competitive coevolution [32], [33], [34] and multipopulation
symmetric coevolutionary algorithms [26], [35]. To a certain

degree, the EGT model bears some similarity to Markov
models for coevolutionary systems [36], [37], [15], [38].

In this paper, we consider only two-population models. In
such models, a common way of expressing the rewards from
individual interactions is through a pair of payoff matrices.
Since we are concentrating solely on symmetric CEAs, we
may assume that when individuals from the first population
interact with individuals from the second, one payoff matrix
A is used, while individuals from the second population receive
rewards defined by the transpose of this matrix (A”). In our
theoretical exploration of EGT in this paper, we will use an
infinite population: thus a population can be thought of not as
a set of individuals, but rather as a finite-length vector X of
proportions, where each element in the vector is the proportion
of a given individual configuration (popularly known as a
genotype or, as we will term it, a strategy) in the population.
As the proportions in a valid vector must sum to one, all legal
vectors make up what is commonly known as the unit simplex,
denoted A", where n here is the number of distinct genotypes
possible, X € A" : x; € [0,1],> "7, x; = 1. In a two-population
model, the domain space of the system is a Cartesian product
of two such simplexes, A" x A™.

Formally we can model the effects of evaluation and propor-
tional selection over time using a pair of difference equations,
one for each population. The proportion vectors for the two
populations are X and y respectively. Neglecting the issue of
mutation and breeding and concentrating only on the effects
of selection, we can define the dynamical system of a two-
population symmetric coevolutionary algorithm as:

i o= AV (1

w = A’x 2)
.

i = () )

;o Wi )

i = <m)y1 4

where ¥’ and ¥’ represent the new population distributions for
the next generation. Here it is assumed that an individual’s
fitness is the mean payoff over pairwise collaborations with
every member of the cooperating population. We call this
complete mixing. The equations above describe a two-step
process. First, the vectors # and w are derived; these represent
the fitness assessments of individuals in the generations X and
¥ respectively. Then selection is performed by computing the
proportion of the fitness of a specific individual over the sum
fitness of the entire population.

Using such a model, one may begin to answer questions
about where long-term system trajectories will go. In dynam-
ical systems parlance, this translates to questions about the
existence of fixed points in the system, the stability of those
points, and the basins of attraction that map to them. A fair
amount is known formally about the fixed points and their
stability [26]. For example, in the absence of variation, all
basis vector points are fixed points, though most are unstable.
Pure Nash equilibria are stable, attracting fixed points in the
system. Since a Nash equilibrium does not necessarily imply
global optimality, there may exist stable fixed points at basis
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vectors associated with suboptimal payoff values. This means
that the number of stable attracting points is linearly bounded
by the number of strategies available to one of the populations.
The semantic interpretation of these facts becomes clearer in
the context of performance questions about the algorithm when
something is known about the basins of attraction of relevant
fixed points. Unfortunately, such knowledge is difficult to
come by analytically, and most research on the properties of
the basins of attraction have been empirical in nature. The
visualization of trajectories in our formal model (Section IV)
falls in this empirical vein.

D. The Relative Overgeneralization Pathology

Coevolution can exhibit a number of pathologies such as
loss of gradient [39] and focusing [40]. The focus of our paper
is another prominent pathology called relative overgeneral-
ization [24]. In this pathology, an MPS-CEA can prefer not
optimal individuals but rather “jack-of-all-trades” individuals
that dovetail nicely with most of the current individuals
from the other population. While relative overgeneralization
could suggest that MPS-CEAs might inherently favor robust
solutions, it also means that MPS-CEAs are not necessarily
optimizers in the sense that one might intuitively expect them
to be. This is grim news for practitioners wanting to coevolve
“optimal” (or perhaps, even “good”) cooperative strategies
using a coevolutionary algorithm — what might be referred to
as the optimal collaborations.

The dynamics of relative overgeneralization may be de-
scribed in this way. When applying coevolution to coordination
problems, the goal of practitioners is usually to find the
optimal joint strategy, that is, the set of strategies, one for
each agent, that yields the highest payoff. This point is a
stable attracting fixed point of the coevolutionary system, as
well as a Nash equilibrium. However, the search space may
contain additional Nash equilibria with possibly lower payoft.
For example, the coordination game in Table I (B) has two
Nash equilibria: the optimal (1,1) point with a payoff of 11,
and the suboptimal (2,2) point with a lower payoff of 7. Unfor-
tunately, it is possible that most, if not all, learning trajectories
may be pulled toward the suboptimal points because relative
overgeneralization produces large attractive “bowls” around
the suboptima.

Here we should be clear: this pathology is not the same
as the typical local convergence problems that plague many
heuristic methods, nor is it due to stochastic sampling errors.
A genetic algorithm, under the same theoretical conditions
including infinite populations, will be attracted to parts of
the space associated with a unique maximum. The relative
overgeneralization pathology says that, even in the very idyllic
conditions of infinite populations and no genetic operations of
any kind, MPS-CEAs are still not necessarily attracted to the
optimum.

E. Memory Mechanisms

Attempts to augment CEAs to address their many challenges
include a wide range of methods, often employing certain
types of memory mechanisms. In competitive coevolution,

explicit memory methods have been used to retain outstand-
ing opponents [41], to keep track of currently known Nash
equilibria [42], and to maintain as many informatively dis-
tinguishing test cases as possible [43]. Additionally, similar
kinds of explicit memory methods have been recently applied
to cooperative coevolution in an attempt to address the relative
overgeneralization pathology via Pareto dominance [44]. Our
biasing technique, when applied to “realistic” applications as
discussed later, also uses a memory mechanism.

In addition to these direct approaches, memory can be
implicitly added to an evolutionary system by embedding the
populations into a spatial geometry. Researchers in the field
of evolutionary computation have studied these models in
some detail [45], [46], [47]; however, until recently analysis of
coevolutionary spatial models has focused primarily on general
CEA performance measures [48]. Nevertheless, applications of
spatially distributed coevolutionary systems have proven effec-
tive [49], [50], [51], sometimes demonstrating clear advantages
over non-spatial CEAs [52]. Still, the underlying reasons for
these advantages have only begun to be explored [53], [54],
and though there is no reason to believe they specifically
address relative overgeneralization, there is evidence that they
may help maintain adaptive gradients for certain kinds of
problems. Since memory is an important element in our
approach, though, we will experiment with such spatial models
later in the paper in order to provide a contrast between these
explicit and implicit memory mechanisms.

III. BIASING TOWARD OPTIMAL COLLABORATION

How might the MPS-CEA be modified such that it is
more suitable for optimization tasks? Our approach to solving
the relative overgeneralization issue is to bias the search by
computing an individual’s fitness based on two components:
its immediate reward while interacting with individuals in the
population, and a heuristic estimate for the reward it would
have received had it interacted with its optimal collaborators.
The first part of this reward will be called the underlying
objective function, and the second will be called the optimal
collaborator estimate. We will use d to denote the degree
of emphasis the fitness places on the optimal collaborator
estimate.

We note that this notion of bias toward maximum possible
reward has also been used in literature in subtly different
ways than we use it here. Maximum reward has been used in
multiagent reinforcement learning by [8], [9], [10]. To some
extent, the “Hall of Fame” method introduced by [41] for
competitive coevolution is also related to biased coevolution;
however, that technique samples randomly in the Hall of
Fame to increase robustness, while we tend to deterministically
select the ideal partners.

Although several experiments in this paper use an exact
computation for the optimal collaborator estimate, we refer to
a heuristic estimate because in practice it is highly unlikely
that the algorithm will be able to easily compute the actual
ideal collaborators. We envision a variety of approaches to
computing a heuristic estimate. The estimate might be based
on partnering with the most successful collaborators known
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so far in the population; or with collaborators chosen (or
constructed) based on the success they have had with indi-
viduals that are structurally “similar” to the test individual;
or with collaborators chosen based on past history with the
individual’s ancestors; and so forth. We reserve comparison
of such approaches to future work. Here we will concentrate
on the foundations of the approach itself.

Our first, and perhaps the most obvious, approach to biasing
is a modified fitness assessment method that is simply a
weighted sum of the result of the collaborations and the result
of the estimated maximum projection. Equation 5 below de-
scribes this idea mathematically. Here the fitness of argument
X, 1s being assessed by combining the result of the underlying
objective function, g, with the optimal collaborator estimate,

g0

T, Xaye ooy x) = (1=0) - g(x1, .+« Xgy e ooy Xg)

+0 -g;(xa)

At one extreme, when 8 = 1, the algorithm will trust only
the estimate, and the states of the other populations are entirely
irrelevant. It is no longer a coevolutionary system at all; there
are rather k EAs searching the k-projected component spaces
independently in parallel. At the other extreme, when 6 =0,
the algorithm trusts only the underlying objective function.
This is the traditional MPS-CEA.

Using this definition of §, we may now modify the dynam-
ical system model; however, the specifics of the modification
depend on how evaluation with “typical” collaborators is
performed. One simple approach is to use as “typical collab-
oration” the evaluation model applied previously. Recall we
stated that if an individual’s fitness is based on its immediate
interaction with individuals from the other population, then
ii = Ay and w = AT X, as described in Equations 1 and 2. Now,
let us consider a function maxrow(A) that returns a column
vector corresponding to the maximum value of each row in
matrix A. If an individual’s fitness is based on its maximum
possible performance in conjunction with any individual from
the other population, then we may modify equations 1 and 2
to be ii = (1 — §)Ay + 8 maxrow(A) and W = (1 — 8)AT%+
8 maxrow(AT).

In this modified system, the tendency to optimize perfor-
mance is clear when 6 = 1 and there is a unique global
optimum. At each iteration of the model, the fitness of each
component will be its best possible fitness. If there is a unique
global maximum, its components will have the highest fitness
in each population, and so the proportion of the corresponding
components will increase in the next step. When there are
multiple global maxima, setting 6 = 1 is not necessarily a
good choice because it provides no incentive for the joint
populations as a whole to converge to a single solution.
Furthermore, setting 6 = 1 may place too much faith on an
inaccurate heuristic estimate for the optimal collaborators.
When 9§ is set appropriately, however, biasing can have a
considerable (positive) effect, as we will demonstrate next.

A crucial issue remains: what are the effects of choice of
0? As it turns out, naive approaches to defining § can result
in high sensitivity to the exact value of 8. This is a serious

(&)

problem if (as would usually be the case) the experimenter
does not know the best value of § beforehand, or chooses to
adjust it dynamically during the run. In Section V we will
construct a class of problem domains intended to demonstrate
this sensitivity, propose an alternative biasing mechanism that
does not have this sensitivity problem.

IV. VISUAL DEMONSTRATION OF BIASING BENEFITS

In [55] we developed a novel approach to visualizing the
degree to which collaborative techniques will tend to converge
to various equilibria. We now use this technique to argue for
the benefit of biasing. We do so by augmenting a common
MPS-CEA fitness-assessment method (the maximum return
over N collaborations), and compare this augmentation against
this fitness-assessment method alone.

A. Maximum of N Collaborations

The maximum of N collaborations method is a common way
to perform fitness assessment in an MPS-CEA. The idea is to
evaluate an individual not with one collaborator, but with some
N collaborators, and return the maximum reward obtained.
In some sense, this method might be seen as a kind of bias
toward collaboration with more optimal partners. But as we
will see, it alone may not be as effective as when augmented
with the proposed biasing method (or indeed as effective as
the proposed biasing method alone).

The evolutionary game theory model used here assumes that
an individual’s fitness is the average of its rewards obtained
when involved in all possible collaborations with individuals
from the other populations. We may modify this definition of
fitness to reflect the maximum of N collaborations method as
follows:

Theorem 1: Let the payoff for individual i when teamed
with individual j be a;;, and (p;) jc1... be the probability distri-
bution for the individuals in the population of collaborators for
i (here, n is the number of distinct genotypes in the population
of collaborators). If the a;; values are sorted in increasing
order (a;; < ap < .. < aj), the expected maximum payoff
of i over N pairwise combinations with random collaborators
Jji---jn chosen with replacement from the other population is

. N . N
Z’}:laij ((Z)ﬁlpk) - (Zi;ipk) )

Proof: ~We appeal to order statistics. The expected
maximum payoff is a linear combination of the actual payoff
a;;j times the probability that it is the maximum of pairwise
combinations with N random collaborators. As the a;; values
are sorted, then the probability that a collaborator is chosen
with payoff < g;; is simply Z'/i:l pi- Likewise, the probability
that a collaborator is chosen with payoff < a;; is Z,i;} Dk-
Thus the probability that all N collaborators have payoff < a;;

is (Zizl pk)N and the probability that all N collaborators
have payoff < a;; is (Z;ﬁ:l’k N

Now, the probability that j is the maximum of N collabo-
rators is the probability that the collaborators are chosen only
from the individuals 1...j minus the probability that they are
chosen from that set excluding j, that is, 1...(j —1). This
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. N , N
is (Zizﬂ’k) - (Z,ﬁ;%pk) . Thus the expected maximum

. N . N

payoff is 37, aij ((Z/Jclpk) - (Zi;}l?k) ) u

Unfortunately, there are two reasons why this method
alone is insufficient to correct the relative overgeneralization
pathology. First, in order to increase the (supposed) bias,
one must increase the number of collaborators chosen, which
will have severe computational consequences (particularly
when the number of populations is large). Second, though
this type of collaboration method certainly biases the current
search sample, there is no retained memory of particularly
good collaborations that were identified previously. The chief
difficulty remains: the algorithm searches only a projection of
the problem at a time and that projection is always changing —
we are merely biasing how we look at that projection.

B. Visualizing the Basins of Attraction

We use a visualization method to show that selecting the
maximum of N collaborators will not always properly bias
the system toward optimal collaboration, and that augmenting
with explicit biasing helps considerably. To do so, we employ
the EGT model with expected maximum fitness as described
in Sections II and III, using fitness proportionate selection
and no variation operators. We iterate the model until the
proportion of one of the genotypes in each population exceeds
a threshold of 0.99995, or until 50000 generations. Given the
initial configuration, EGT models the coevolutionary search as
a deterministic process. That is, for each initial point in the
search space, we can approximate the equilibrium to which
it converges. As [24] shows, the populations are expected to
converge to pure Nash equilibria in the payoff matrix (elements
that are maximal on their row and column).

The visualization approach we will take is detailed in [55].
In summary, we will present a 2D graph of white, gray,
and black points, representing convergence to the various
Nash equillibria of the Climb and Penalty games. In the
Climb game, the white points indicate convergence to the
optimal equilibrium, and the black points likewise indicate the
suboptimal equilibrium (gray points indicate those few places
where convergence did not occur within 50000 iterations of
the model). In the Penalty game, the white and gray points
are the two optimal equilibria, and the black points are the
suboptimal equilibria. In both cases, the crucial desired feature
is a decrease in black points.

Each axis of the 2D graph is the simplex of one or the
other population. We have employed a special ordering of this
simplex in order to cluster the points around the relevant Nash
equilibria to make the graph more clear. Complete details on
this ordering may be found in [55]. In summary, the simplex
is divided into 3 areas: the initial populations containing more
Is, more 2s, and more 3s, respectively. Each such area is
then allocated a segment in the projection: the first one-
third contains results for initial populations with more Is,
while the last one-third of the projection contains results for
initial populations with more 3s. Then, each area is divided in
two such that, when projected, the degenerated populations
containing a single genotype appear in the middle of the

segment. For example: the top one-third area in the 2-D
visualization refers to initial first populations with a majority
of 1s, while the right-most one-third area refers to initial
second populations with a majority of 3s.

C. Visualization of Maximum of N Collaborations

Figure 1(a) shows the basins of attraction for the Climb
coordination game when using different numbers of collabo-
rators in each population for the traditional MPS-CEA. The
images show that the “deceptiveness” of the problem domain
decreases as the number of collaborators is increased. When
using a single collaborator, it appears that the coevolutionary
search will find the global optimum if at least one of the
populations starts with a large number of 1s. As the number
of collaborators is increased we observe that the basin of
attraction for the suboptimal equilibrium reduces to areas
where at least one of the initial populations has a very large
proportion of 2s or 3s: as more collaborators are used, the
proportion required to converge to the suboptimum increases.

Figure 2(a) presents the basins of attraction for the Penalty
game. We observe that the two global optima cover most
of the space even when a single collaborator is used; the
suboptimal equilibria covers mainly areas where at least one
of the population started with a high percentage of 2s, and
the other population has 1s and 3s equally distributed — this
increases the percentage of miscoordinations. As the number
of collaborators is increased, the basin of attraction for the
(2,2) point reduces to areas where both populations start with
almost all 2s.

D. Visualization of Maximum of N Collaborations Augmented
with a Biased MPS-CEA

Using N collaborations alone does help reduce penalties due
to miscoordination and helps the system find more optimal
equilibria. However, augmenting this with a more explicit bi-
asing can have a considerable (positive) effect on the resulting
basins of attraction. Indeed, the augmented biased MPS-CEA
using a very small N is superior to a traditional MPS-CEA
using larger values for N.

Our augmented biased MPS-CEA works as follows. The
fitness will be based partly on the maximum of N col-
laborations with randomly chosen partners (the underlying
objective function) and partly on the the reward obtained when
partnering with the optimal collaborator. We set 6 to 0.5 —
although we assume the optimal collaborator is known for any
individual, setting d to 1.0 would cause the biased MPS-CEA
to converge to mixed equilibria in the Penalty domain due to
the presence of two equal global optima.

Figures 1(b) and 2(b) show the basins of attraction for the
equilibria for the biased algorithm. The figures strongly sug-
gest that this augmentation of the best-of-N approach further
reduces the basins of attraction for suboptimal equilibria, and
when biasing, increasing the number of collaborators helps
even further. In fact, in the Penalty domain, the basins of
attraction for the two globally optimal equilibria cover the
entire space, even with a single collaborator.
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Fig. 1. Basins of attraction in the Climb problem when using (a) traditional and (b) biased coevolution at 6 = 0.5, with 1, 3, 5, and 7 collaborators per
population. White and black mark the basins of attraction for the (1,1) and (2,2) equilibria.
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Fig. 2. Basins of attraction in the Penalty problem when using (a) traditional and (b) biased coevolution with = 0.5, with 1, 3, 5, and 7 collaborators per
population. White, black and gray mark basins of attraction for the (1,1), (2,2), and (3,3) equilibria.

V. ANALYSIS OF SENSITIVITY TO THE BIASING RATE

As we will show, the current formulation of the explicit
biasing method is very sensitive to 8. This is important
because it is not immediately apparent what value of 6 the ex-
perimenter should use. Large amounts of bias may be unwise
if optimal-collaborator estimates are poor. But depending on
problem properties, small amounts of bias may have almost
no effect. Further, certain system settings may decrease an
algorithm’s sensitivity to the degree of bias or exacerbate it.
A smooth, relatively insensitive biasing procedure is necessary
for the success of biased coevolution, as it mitigates radical,
unexpected changes in the algorithm properties due to changes

in choice of §.

To examine this sensitivity to 6, we make two relatively
straightforward and obvious simplifications. In Section VI
we will then relax both simplifications to account for more
realistic problems and algorithms. First, we consider only a
static value for & throughout a run and focus our attention on
how different static values affect final runtime performance.
Though a more realistic algorithm (such as in Section VI)
would likely adjust the degree of bias dynamically throughout
the run, it is unclear how best to do this. Second, we take a
big step and assume that the biasing information (the optimal
collaborator for each individual) is known a priori. In other
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words, we assume that the function g/, is known beforehand.
This simplification is made in order to reduce the variables
involved in the experiment, and it is reasonable because there
remain important sensitivity issues to consider even with this
simplification.

The results of these experiments will lead us to propose an
alternative approach to applying the bias. As we shall see, this
alternative significantly reduces the sensitivity of the algorithm
to the effects of changing the degree of bias.

A. Problem and Algorithm Properties

We begin by constructing the maximum of two quadratics
(MTQ) class of problem domains, which can offer a range
from simple to very difficult instances. MTQ is a class of two-
dimensional functions loosely defined as max(fi,f>), where
f1 and f, are two quadratic polynomials. Such a class may
of course be used for a variety of optimization problems
in both traditional EAs and CEAs. If we view the x axis
as representing strategies for one agent (and thus assign a
population to coevolve it), and the y axis as representing the
strategies for a second agent (and similarly assign it to another
population), the MTQ class may be seen as defining a game
payoff for an abstract multiagent problem.

The reason we construct the MTQ class is that these prob-
lems can generate payoff matrices that resolve or exacerbate
the relative overgeneralization pathology of MPS-CEA by
adjusting the relative contributions of joint rewards implicitly
[24]. Another advantage of this particular problem class is
that the maximum projection can be determined easily from
the derivatives of the two underlying quadratic functions.

The MTQ class is defined as:

Hi * (1 o 16%(x—X1)? . 16*(y7Y1)2)

MTQ(x,y) « max e e (6)
Hz*(l— (22 2) _ ()S2 2) )

where x and y take values ranging between O and 1. Figure 3
illustrates some example MTQ problem instances. Different
settings for Hy, Hy, X, Y1, X2, Y2, S1, and S, affect the
difficulty of the problem domain in one of the following
aspects:

a) Peak height: Hy and H, affect the heights of the
two peaks. Higher peaks may increase the chances that the
algorithm converges there.

b) Peak coverage: S| and S, affect the area that the two
peaks cover: a higher value for one of them result in a wider
coverage of the specific peak. This makes it more probable
that the coevolutionary search algorithm will converge to this
peak, even though it may be suboptimal.

c) Peak relatedness: The values Xi, Y1, X», and Y, affect
the locations of the centers of the two quadratics, which in
turn affect the relatedness of the two peaks: similar values
of the x or y coordinates for the two centers imply higher
overlaps of the projections along one or both axes.

Aside from the impact of the properties of the problem
domain, our sensitivity study targets three algorithmic settings:
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Fig. 3. Example Maximum of Two Quadratics problems, illustrating
(S1=1.6,5,=0.5) and (S; =0.5,5, =0.5).

d) Biasing rate: We are interested in how performance
degrades as the biasing rate § changes. We set § to various
rates in the range [0,1].

e) Population size: The population size affects how much
the coevolutionary algorithm samples the search space. It is
easy to show that coevolution using a bias rate § of 1.0,
combined with infinite populations and perfect knowledge of
maximal projections, will converge to the unique optimum
with probability 1. We expect similar results for large pop-
ulations as well.

f) Collaboration scheme: The MPS-CEA algorithm tries
to simplify the search process by decomposing the candidate
solutions into components and coevolving them in separate
populations. The only information such a population can get
about the overall progress of the search process is through
collaborators — samples that are usually representative of the
status of the other populations. For some spaces, an increased
number of collaborators may better capture the intricacies of
the search space [14], [16].

Though the MTQ class is capable of generating challeng-
ing problems (with respect to the relative overgeneraliza-
tion pathology), it lacks some characteristics that may have
important effects on the performance of algorithms under
more realistic conditions. For example, though there is some
element of non-linearity present in the problem, this effect
is produced by our somewhat artificial maximization of two,
otherwise linearly separable quadratics. It is unclear the degree
to which more realistic problems with truly non-linear rela-
tionships between represented components will have similar
characteristics. However, the problem class does allow us very
explicit control over a wide range of salient properties for our
study (discussed below), and it does demonstrate a kind of
coevolutionary deception (when broad suboptimal peaks are
more attractive than narrow optima) [24].
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B. Sensitivity Results

All experiments here used the MTQ class of problems.
The coevolutionary search process used two populations, one
for each variable. Each such population used a real-valued
representation, with individuals constrained to values between
0 and 1 inclusive. Non-adaptive Gaussian mutation (mean 0
and standard deviation 0.05) was the only variational operator.
Each population used tournament selection of size 2, and the
best individual survived automatically to the next generation.
The search lasted for 50 generations, after which the best
individuals in each population were at, or very near, one of
the two peaks. Each point in Figures 4-7 was computed over
250 independent runs. All experiments were performed with
the ECJ system [56].

Unless stated otherwise, each population consisted of 32
individuals. The default collaboration scheme used two collab-
orators from each population: the best individual in the previ-
ous generation was always selected, and the other individual
was chosen at random?. Our biasing method combines the a
priori ” fitness with the better of the results obtained when the
individual was teamed with each of the two collaborators. The
default values of the parameters for the first (suboptimal) peak
were H;=50, X1=£, Y1=%, and S1=1.6. The second (optimal)
peak was characterized by H,=150, XQ:%, YZ:%, and Szzé.
With these settings, the two peaks were nearly at opposite
corners of the domain space.

1) Biasing and Domain Features: The first set of exper-
iments investigated the relationship between the biasing rate
and the three problem domain features described previously:
the relative heights, coverages and locations of the peaks.
There were 11 experimental groups for each property, one for
each value of 0 € [0,1] in increments of 0.1. Figure 4 shows
the mean final results of these 33 groups.

a) Peak height: We kept H; constant at 50, and set H;
to 75, 150, and 300. The results indicated that less than 10%
of runs converged optimally when the rate of biasing was low,
while the ratio increased to greater than 90% when using high
biasing rates. Unfortunately, there was no smooth transition
between these two extremes: rather, small modifications to the
biasing rate could change the rate of convergence to the opti-
mum by as much as 70-80%. Moreover, the relative difference
in peak height directly affected where these sudden jumps in
performance appeared. This suggests that the algorithm may
not only be quite sensitive to d with respect to changes in
relative peak height, but also suggests that it may be difficult
to predict where the sudden transitions occur.

b) Peak coverage: S, was set to 718, &, 3—12, %, %, and
;{, while S| was constantly 1.6. Here, the location of the
transition was more consistent among the various values, but
the transitions themselves were still abrupt. It also appears that
the relative peak coverages caused more variation in results
when the bias rate was small, while the curves at the other
extreme of the graph appeared close together. The results

2To reduce noise in the evaluation process, the experiments in this section
employed the same random collaborator for all individuals in the population at
that generation. We later discovered that using different random collaborators
for different individuals results in a slightly better performance due to better
sampling of the search space — but sensitivity to d was unaltered.
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Fig. 4. Convergence ratios for peak height (top), peak coverage (center) and
peak relatedness (bottom). x axis shows biasing rate d, and y axis shows ratio
of the 250 trials that converged to, or very near, the global optimum.
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Fig. 5. Convergence ratios for population size (top) and collaboration scheme
(bottom). x axis shows biasing rate 0, and y axis shows ratio of the 250 trials
that converged to, or very near, the global optimum.

indicated that certain settings of peak coverage will affect the
algorithm’s sensitivity to the 6 parameter: the wider the peak,
the more gradual the transition when varying the bias rate.

c) Peak relatedness: The Y, parameter was set to %,
%, %, %, and %. These settings incrementally transitioned the
relative peak positions from diagonally opposite locations to
ones aligned along one axis. Similar to peak height, the peak
relatedness had a significant effect on the ratio of runs that
converged to the global optimum: the more related the peaks,
the less biasing was required to assure good performance.
However, the curves had an abrupt transition between lower
and higher rates of convergence to the optimum. Moreover,
the location of this transition depended on the actual degree
of peak relatedness, which suggests that the algorithm may be
highly sensitive to d with respect to this parameter.
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2) Biasing and Algorithm Features: A second set of exper-
iments investigated the relationship between the biasing rate
and the population size and collaboration scheme. Again, there
were 11 groups for each of these two parameters correspond-
ing to each of the & settings. The results are presented in
Figure 5.

a) Population size: We set the size of each of the two
populations to 8, 16, 32, 64, 128, 256, and 512. As expected,
extremely small populations were less likely to reach the
optimum, even with high biasing rates. We observed the same
abrupt shift in performance as we saw in the previous exper-
iments. The results suggested that increasing the population
size does not necessarily alleviate algorithm sensitivity to d.

b) Collaboration scheme: The default setting in all previ-
ous experiments used two collaborators to evaluate the fitness
of each individual: the best-performing individual from the
other population in the previous generation, and also a random
individual. To test sensitivity to this collaboration scheme, we
varied the number of random individuals from O to 4; the best
individual from each population in the previous generation was
always used. Varying the number of collaborators presents a
tradeoff between computational complexity and the efficiency
of the algorithm [14]: more collaborators induce an increased
computational complexity, but the performance of the search
might also be significantly improved. The bottom graph in
Figure 5 shows that the collaboration scheme had some
influence over the performance of the algorithm at low biasing
rates, but it had no effect when higher biasing rates were
used. Again, the abrupt change in performance indicated that
the algorithm could be highly sensitive to the d parameter,
regardless of the collaboration methodology.

The result of nearly all of these experiments is that the
biased MPS-CEA we have so far described seems to be very
sensitive to 0, and we cannot alleviate this by adjusting the
algorithmic parameters. It would appear that finding a suitable
value for this parameter in practice may be difficult as it is
applied currently. Fortunately, this need not be the case.

C. An Alternative Stochastic Biasing Mechanism

To uncover a possible simple alternative that does not share
this problem, recall that for larger differences in peak heights,
a wider range of biasing rates resulted in a high ratio of
convergence; however, when one peak was only slightly higher
than the other, the range of high convergence ratios was much
smaller. The transition was abrupt, but the location of the
transition shifted depending on the peak height differences.

Our hypothesis is that this extreme sensitivity of the algo-
rithm to the biasing method with respect to the relative peak
heights is caused by the linear combination of the two fitness
components: the fitness when teamed with collaborators, and
the fitness when in combination with the optimal collaborator.
The higher the optimal peak, the lower the bias rate it needs
to dominate the other term. However, if one peak is slightly
higher than the other, the algorithm requires more biasing to
locate the optimum.

To counter this, we used a non-parametric comparison
method which considers the relative order of two components
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Fig. 6. Convergence ratios for probabilistic biasing when varying peak height
(top), peak coverage (center) and peak relatedness (bottom). x axis shows
biasing rate 0, and y axis shows ratio of the 250 trials that converged to, or
very near, the global optimum.

rather than their exact values. The justification for this tech-
nique is similar to that of non-parametric selection methods
such as tournament selection [57], rank selection [58], and
truncation selection [59]. In our technique, each individual
is assigned two fitnesses: the underlying objective one when
combined with the collaborators from other populations, and
another one indicating the performance of the individual when
in combination with its optimal collaborator. When comparing
two individuals, with probability 6 we compare based on the
first “fitness”; else we compare based on the second.

We performed the same sensitivity analysis for the new
algorithm. The results are presented in Figures 6 and 7. In all
cases, the new algorithm does not exhibit the sudden jumps
in performance as did the original. This suggests that it is an
improvement resulting in significantly less sensitivity to the
settings we have investigated.

Drawing from research in multiobjective optimization [60],
[61], we experimented with some additional ways to counter
the effects of linear combination . One alternative normalizes
the two components before adding them; but our experiments
using this mechanism still revealed abrupt transitions in perfor-
mance. Another approach is to compare pairs of components
based on Pareto dominance: one pair is better than another
if both of its components are equivalent to or better than the
corresponding components in the other pair, and at least one of
its component is better than its corresponding component in
the other pair. Our attempts to use Pareto dominance were
again not successful at removing the abrupt transitions in
performance as 8 was changed.
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VI. COMPARING REALISTIC IMPLEMENTATIONS OF
TRADITIONAL AND BIASED MPS-CEAS

A. Method of Study

While the previous theoretical discussion, as well as the sen-
sitivity analysis just discussed, helps justify our intuition for
biasing the fitness evaluation, neither is immediately applicable
to real problems. In a more realistic setting, simplifying model
assumptions such as infinite populations, lack of variational
operators, complete mixing, and a priori knowledge of the
maximum payoff are not possible.

A previous simplifying assumption (a priori known biasing
information) allowed us to keep the biasing rate constant
during the coevolutionary search. To convert theory into
practice, we adopted a rote learning algorithm for learning
the biasing information. Specifically, if an individual selects
action i, we assume its optimal collaborator picks that action
j which so far has shown the highest performance when
paired with i. As evolution progresses, the action chosen by
the optimal collaborator changes to reflect the better (i, j)
pairs that are evaluated. The main difference between the two
representations in Sections VI-C and VI-D is primarily in how
an individual chooses its actions.

We employed the stochastic biasing mechanism described
in Section V-C. We decided on a simple proof-of-concept rule
for updating the biasing rate. The algorithm started with 6 =1,
decreasing linearly until reaching 6 =0 at 75% of the total
number of generations, at which point it stayed at O until the
end of the run. While our dynamic adjustment of 6 was ad-
hoc, it was a sufficient method to demonstrate our point in this
context. Indeed, we will show that the biased coevolutionary
algorithms outperformed their unbiased counterparts even with
this ad-hoc setting.

We performed several experiments to compare traditional
coevolution with biased coevolution in this context. We tested
on the Climb and the Penalty coordination games introduced
in Section II-A, and on a variation of MTQ which we call the
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Two Peaks domain, with a joint reward function of the form

0
10-32% ((x =12+ (= 1))
15— 1284 ((x— 1)+ (y— 1)?)

fx,y) = max

with x and y taking values between 0 and 1. Finally, we tested
the methods in a cooperative learning domain with increased
non-linear interactions: the joint reward function was based on
the two-dimensional Rosenbrock function

fy) == (1005 (2 =)+ (1))

x and y taking values between -2.048 to 2.048. For simplic-
ity, we discretized each axis into 16, 32, 64, and 128 segments
for experiments with both the Two Peaks and the Rosenbrock
functions. Increased discretization resulted in larger search
spaces, but not necessarily more difficult ones — when search-
ing for pure strategies for the Rosenbrock domain (Table V),
the rate of finding the global optima for all coevolutionary
methods for 32 intervals is lower than that for 64 intervals.
The experiments again used the ECJ software package [56]. In
order to establish statistical significance, all claims of “worse”
or “better” were verified using nonparametric tests. We used
the Welch test (a variation the Student t-test that does not
assume equal variance for the samples) repeatedly for pairs
of samples. Given that the samples were rarely following a
normal distribution, we first ranked the set of observations
from both samples, then we performed the Welch test on those
ranks. We also used the Bonferroni inequality to adjust the p-
value level for each test such as to obtain 95% confidence
over all comparisons; as a consequence, each Welch test was
applied at a 99.95% confidence level.

B. Competing Techniques

We consider both biased and unbiased versions of three
MPS-CEA algorithms. The first such algorithm is a “tradi-
tional” MPS-CEA. The others are two spatially-embedded
MPS-CEAs similar to those discussed in Section II-E. We
detail each of these next.

For the traditional MPS-CEA algorithm we chose a common
approach to MPS coevolution fitness assessment: an individual
was assessed twice to determine its fitness, once with a
collaborator chosen at random and once partnered with the
individual in the other population that had received the highest
fitness in the previous generation. An individual’s fitness was
set to the maximum of these two assessments. This is termed
Traditional in the remainder of this section.

In a spatially distributed MPS-CEA the individuals are
positioned at specified locations in geometric space, such
that a notion of a neighborhood exists among individuals.
For consistency across small and moderate population sizes,
we embedded each population in a one-dimensional ring. A
neighborhood of radius 1 for an individual consisted of three
individuals in this case: the specific individual, together with
the individuals to its immediate left and right (on the ring). The
spatial embedding of the populations influences the breeding
process as follows: for each location, a number of individuals
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are selected with replacement from a local neighborhood
(the radius of the neighborhood is detailed for each problem
domain later), and the better ones are selected for breeding (the
best individual is selected for mutation alone, or the better two
individuals are selected for crossover, followed by mutation).
When creating a child for location 7, the parent at location i
always competed for selection to breed.

The spatial embedding also influences the scheme to select
collaborators. We experimented with two spatial collaboration
schemes. First, we evaluated each individual with the unique
collaborator from the other population that had the same
location in space. We refer to this setting as Spatial. We
doubled the population size for Spatial to allow it to have
the same total number of evaluations as the other methods.
A second spatially-embedded MPS-CEA algorithm evaluated
each individual with two collaborators: the collaborator at the
same location in space (as before), and a random collaborator
from a small neighborhood (the radius of the neighborhood is
detailed later). We term this second technique Spatial2 for the
remainder of this section.

The combination of biasing with each of the three al-
gorithms is termed Biased Traditional, Biased Spatial, and
Biased Spatial2 respectively.

C. Searching for Pure Strategies

A first set of experiments encoded a single action (an
integer) in each individual. In other words, each individual
deterministically specified an action. In game-theory parlance,
each individual thus represented a “pure strategy”. Such an
individual bred children through mutation: the individual’s
integer was increased or decreased (the direction chosen at
random beforehand with probability 0.5) while a biased coin
came up heads (with probability % for Climb and Penalty, and
with probability 71; for Two Peaks and Rosenbrock). Evolution-
ary runs in the Climb and Penalty problem domain used only 3
individuals per population (Spatial used 6 individuals) and they
lasted for 40 generations. Runs in the Two Peaks and Rosen-
brock domains used 20 individuals per population (Spatial
used 40) and they lasted for 200 generations. Spatial2 selected
the second collaborator randomly using a neighborhood of
radius 1. Selection for breeding used tournament selection with
size 2. Parents were selected from neighborhoods of radius 1
using tournament selection with size 2 for each location in the
spatially-embedded models. The most-fit individual survived
automatically from one generation to the next in the non-
spatially-embedded models.

Results Summary: The use of the proposed biasing mech-
anism usually resulted in statistically significant improvements
in the rate of finding the global optima. In the few situations
where biasing did not help, it did not hurt performance either.
As a side-note, the Spatial algorithm consistently outperformed
the traditional MPS-CEA.

Results Specifics: Tables II-V present the average per-
centage (out of 1000 runs) that converged to the global opti-
mum. Overall, the spatial methods outperformed the traditional
methods — not surprising, given the positive results in the
literature as discussed in Section II-E — but the biased version
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TABLE II
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, CLIMB DOMAIN WITH PURE STRATEGY REPRESENTATION

Penalty

-30 -300 -3000 | -30000
Traditional 56.1% | 56.9% | 56.8% | 56.9%
Biased Traditional | 79.9% | 77.6% | 80.8% | 81.0%
Spatial 764% | 7197% | 7T70% | T72%
Biased Spatial 85.6% | 882% | 88.4% | 87.0%
Spatial2 67.1% | 698% | 71.5% | 70.0%
Biased Spatial2 824% | 809% | 81.7% | 82.7%

TABLE III

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, PENALTY DOMAIN WITH PURE STRATEGY REPRESENTATION

Penalty
-10 -100 -1000 | -10000
Traditional 88.2% | 89.4% | 90.3% | 88.4%
Biased Traditional | 93.2% | 93.5% | 91.9% | 93.4%
Spatial 993% | 989% | 99.3% | 98.9%
Biased Spatial 99.7% | 994% | 993% | 994%
Spatial2 935% | 93.1% | 948% | 92.6%
Biased Spatial2 94.6% | 958% | 962% | 942%

of any method generally outperformed the unbiased version of
that method. In the Climb domain, Spatial was significantly
better than Traditional; Spatial was no better than Spatial2
for Penalty=-3000 at the properly adjusted confidence level of
99.95%, but it was superior using only 99.914% confidence.
For all three methods, biasing significantly improved perfor-
mance — Biased Spatial in particular converged to the global
optima in about 90% of the runs, significantly better than all
five other methods.

Spatial was better than both Traditional and Spatial2 in
the Penalty domain. Except for significant improvements of
Biased Traditional over Traditional when Penalty=-10 and
Penalty=-10000, biasing was not effective at improving results
at the 99.95% confidence level (though it did not damage
results either). We performed three additional tests using all
4000 runs for each of the methods (1000 for each value of the
penalty); the increased number of observations allowed us to
establish that biasing was effective at significantly improving
the performance of Traditional and (with only 99.89% confi-
dence) Spatial2.

In the Two Peaks domain, Spatial was again better than
Spatial2, which was better than Traditional. Enhancing the
techniques with the proposed biasing mechanism resulted in
significant improvements for Traditional (with only 99.4%
confidence for 128 discretization level), and for Spatial2 (only
for a discretization level of 8). All other differences were
statistically insignificant.

In the Rosenbrock domain, Spatial was better than Tradi-
tional (with confidence level 99.95% for discretization level
equals 128, and only with confidence levels 99.9% and 99.85%
for discretization levels 8 and respectively 16) and Spatial2
(with confidence level 99.95% for discretization levels of
64 and 128, and only with confidence levels 99% for dis-
cretization level 8). Additional nonparametric tests using all
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TABLE IV
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, TWO PEAKS DOMAIN WITH PURE STRATEGY REPRESENTATION
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TABLE VI
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, CLIMB DOMAIN WITH MIXED STRATEGY REPRESENTATION

Discretization Level (Number of Actions) Penalty
16 32 64 128 -30 -300 | -3000 | -30000
Traditional 51.6% | 50.8% | 49.6% 49.0% Traditional 25% 20% 19% 21%
Biased Traditional | 68.5% | 65.8% | 59.2% 59.4% Biased Traditional | 100% | 100% | 100% 100%
Spatial 86.5% | 91.2% | 89.3% 85.6% Spatial 67% 28% 27% 26%
Biased Spatial 84.1% | 88.9% | 87.9% 86.6% Biased Spatial 100% | 100% | 100% | 100%
Spatial2 72.0% | 73.2% | 69.3% 66.5% Spatial2 50% 26% 25% 27%
Biased Spatial2 78.6% | 74.7% | 72.5% 68.4% Biased Spatial2 99% 99% 99% 99%
TABLE V TABLE VII

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, ROSENBROCK DOMAIN WITH PURE STRATEGY

REPRESENTATION
Discretization Level (Number of Actions)
16 32 64 128

Traditional 82.5% | 33.6% | 37.9% 16.5%
Biased Traditional | 87.1% | 48.8% | 51.9% 21.9%
Spatial 84.3% | 40.8% | 45.4% 22.1%
Biased Spatial 86.6% | 56.6% | 82.0% 39.8%
Spatial2 782% | 33.5% | 41.2% 16.4%
Biased Spatial2 745% | 42.0% | 67.3% 22.8%

4000 runs established that Spatial was significantly better than
Traditional and Spatial2 with 99.95% confidence. The methods
in combination with biasing usually performed better than
alone; biasing never decreased significantly the performance
of a method.

D. Searching for Mixed Strategies

Though using a pure strategy representation provides a clear
connection to theory and emphasizes the problem properties
in which we are interested, using such an encoding in these
simple problems results in very small search spaces. It would
be nice to consider larger problems with similar properties.
We accomplished this by encoding a “mixed strategy” (to
again use game theory parlance) in each individual. More
specifically, individuals consisted now of a probability dis-
tribution over the available actions. When evaluating such
individuals with a collaborator (another mixed strategy), 50
independent interactions were performed, each consisting of
a joint action chosen at random according to the individuals’
mixed strategies. The joint reward for the two individuals was
computed as the average reward over the 50 joint rewards.
Observe that using mixed strategies creates a potentially more
difficult problem domain than using pure strategies for reasons
of both search space size and the stochastic nature of the fitness
result.

Results Summary: The results suggest that the mixed
strategy representation induces a significantly more complex
search space than the pure strategy representation: mixed
strategies usually have a non-zero probability of exploring
different actions that may incur penalties. For this reason,
we argue that the slope around the optimal peak has an
abrupt gradient that may explain the decrease in performance.
Consistent with the previous experiments involving the pure

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, PENALTY DOMAIN WITH MIXED STRATEGY REPRESENTATION

Penalty
-10 -100 | -1000 | -10000
Traditional 100% 99% 99% 99%
Biased Traditional | 100% | 100% | 100% 100%
Spatial 100% | 99% 99% 98%
Biased Spatial 100% | 100% | 99% 99%
Spatial2 99% 99% 98% 98%
Biased Spatial2 100% | 100% | 100% 99%

strategy representation, the results indicate that biasing never
decreases the performance of a method, but it rather improves
it significantly in many domains.

Results Specifics: Traditional and Biased selected parents
via tournament selection with size 2; breeding involved one-
point crossover, followed by mutation by adding random
Gaussian noise (mean 0 and standard deviation 0.25) with
probability % for each of the distribution values (where L is
the number of actions in the problem domain), followed by
renormalization of the distribution. We performed an exten-
sive sensitivity study to set the parameters of the spatially-
embedded coevolutionary algorithms. We found that lower
mutation rates worked better (following crossover, we added
Gaussian random noise to each gene with probability 0.2 for
the Climb and Penalty domains, and only with probability ﬁ
for Two Peaks and Rosenbrock). When using the Traditional
and the Spatial2 methods, each population contained 20 indi-
viduals for Climb and Penalty, and 100 individuals for the Two
Peaks and Rosenbrock domains (as noted, Spatial used twice
the population size but an equivalent number of evaluations).
The parents were selected using tournament selection with
size 2 and with a neighborhood radius of 1 for Climb and
Penalty. Given the larger population sizes for Two Peaks
and Rosenbrock, parents were selected from neighborhoods
of radius 3; the sensitivity study also indicated a tournament
selection size of 5 for the Two Peaks domain, and of 3 for
the Rosenbrock domain. Runs lasted for 200 generations in
the Climb and Penalty domains, and for 1000 generations in
the Two Peaks and Rosenbrock domains. We performed 1000
runs for each treatment to obtain statistical significance.

The mixed representation introduces an intriguing problem:
what does the optimal collaborator for a mixed strategy look
like, and how can it be learned? Our estimate for the optimal
collaborator is done exactly as was done in the pure-strategy
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TABLE VIII
PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, TWO PEAKS DOMAIN WITH MIXED STRATEGY
REPRESENTATION

Discretization Level (Number of Actions)

16 32 64 128

Traditional 0% 0% 0% 0%
Biased Traditional | 100% | 100% | 100% 100%
Spatial 0% 0% 0% 0%
Biased Spatial 100% | 100% | 100% 100%
Spatial2 0% 0% 0% 0%
Biased Spatial2 100% | 100% | 100% 100%

TABLE IX

PERCENTAGE OF MPS-CEA RUNS THAT CONVERGED TO GLOBAL
OPTIMUM, ROSENBROCK DOMAIN WITH MIXED STRATEGY
REPRESENTATION

Discretization Level (Number of Actions)

16 32 64 128

Traditional 62% 12% 0% 0%
Biased Traditional | 100% | 100% 99% 82.9%

Spatial 93% 38% 3% 0%
Biased Spatial 100% | 100% | 100% 84.3%

Spatial2 85% 25% 1% 0%
Biased Spatial2 100% | 100% | 100% 79.8%

case: after selecting the action i (chosen from the individual’s
mixed strategy distribution), we then select j based on j’s
historical success when paired with i. To update this history
information, we use only the first joint reward (of the total
of 50) from each evaluation of a pair of individuals. To
do otherwise would give the estimation procedure an undue
advantage

Tables VI-IX present the percentages of runs that converged
to the global optimum when using the mixed strategy rep-
resentation in the Climb, Penalty, and the discretized Two
Peaks and Rosenbrock domains. As the evaluation of an
individual is averaged over 50 interactions, we considered that
a run converged to the global optimum if the fitness of the
best individuals (one per population) in the last generation
was within 10% of the value of the global optimum — to
exceed this threshold, each of the mixed strategies should have
probability close to 1 for picking the action corresponding to
the global optimum, as the joint reward for any other pair of
actions was less than this threshold.

In the Climb domain, both Spatial and Spatial2 significantly
outperformed Traditional. However, enhancing any of them
with our biasing method resulted in convergence to the global
optimum in almost every run. The Penalty domain was again
easier then Climb — most runs found the global optimum.

The Two Peaks domain was consistently too difficult for
either Traditional, Spatial and Spatial2, but all of them found
the global optima in 100% of the runs when in combination
with biasing. The Rosenbrock domain was relatively easier for
coevolution, especially at low discretization levels. Traditional
was again significantly worse than Spatial2, which in turn was

3We also performed experiments using all 50 joint rewards to improve the
optimal collaborator estimate, and the results improved further — all methods
in combination with biasing found the global optimum in most cases.
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significantly worse than Spatial. However, the performance of
all methods was significantly superior when in combination
with biasing.

VII. CONCLUSION

Coevolutionary algorithms offer great potential for concur-
rent multiagent learning domains. Their ability to focus on
decomposed partitions of a larger, structured joint problem
space make them very natural algorithms to consider for such
problems. Despite this, pathologies resulting from the game-
theoretic nature of CEAs, namely their propensity toward
relative overgeneralization, interfere with finding solutions that
correspond to optimal collaborations of interacting individuals.
Some basic changes in the algorithm are necessary to correct
this problem.

Our approach to address this problem was to alter the CEA
such that the fitness of an individual was based partly on
the result of interaction with other individuals, and partly on
an estimate of the best possible reward for that individual if
partnered with its optimal collaborator. This form of bias drew
its inspiration from similar methods in reinforcement learning
literature, and its justification from a limited theoretical analy-
sis. We used a novel visualization method to help demonstrate
the efficacy of the method from a theoretical viewpoint.
Empirically, we explored the sensitivity of the method to the
degree of bias, offering a mechanism to mitigate this sensitivity
by probabilistically combining these two parts of the fitness
evaluation. Finally, we provided early experimental evidence
that our biasing method has merit, even as the biasing estimate
is also learned during the search.

This work clearly reflects the early stages of studying
biasing methods for coevolutionary algorithms. In more dif-
ficult problems, rote learning methods will be impractical
and more complex learning methods must be employed to
establish trustworthy and computationally efficient estimates
of optimal collaboration. Moreover, we have provided no
general understanding about how to adjust 6 dynamically.
Finally, a comprehensive investigation of when such methods
are likely to succeed or fail has not, as yet, been undertaken.
We intend to pursue each of these. Regardless, preliminary
empirical evidence suggests that biasing CEAs toward optimal
collaboration may be beneficial in practice.
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