Unlearning from Demonstration

Keith Sullivan and Ahmed ElMolla and Bill Squires and Sean Luke
Department of Computer Science, George Mason University, Fairfax, VA USA
ksulliv2@cs.gmu.edu, aelmolla@gmu.edu, wsquires@gmu.edu, sean@cs.gmu.edu

Abstract

When doing learning from demonstration, it is often
the case that the demonstrator provides corrective
examples to fix errant behavior by the agent or robot.
We present a set of algorithms which use this correc-
tive data to identify and remove noisy examples in
datasets which caused errant classifications, and ul-
timately errant behavior. The objective is to actually
modify the source datasets rather than solely rely on
the noise-insensitivity of the classification algorithm.
This is particularly useful in the sparse datasets of-
ten found in learning from demonstration experi-
ments. Our approach tries to distinguish between
noisy misclassification and mere undersampling of
the learning space. If errors are a result of misclas-
sification, we potentially remove the responsible
points and update the classifier. We demonstrate our
method on UCI Machine Learning datasets at differ-
ent levels of sparsity and noise, using decision trees,
K-Nearest-Neighbor, and support vector machines.

1 Introduction

Learning from Demonstration uses machine learning to teach
an agent, often a robot, how to perform a behavior by fol-
lowing examples provided by a human demonstrator. Often
this demonstrator is acting as a trainer, by which we mean
that the demonstrator is iteratively observing the current robot
or agent behavior and providing new corrective examples to
fix perceived errors in the behavior. This continues until the
trainer is satisfied with the current behavior.

Our work involves training robot and agent behaviors. For
example, one might train a soccer robot to acquire the ball,
approach it, pivot towards the goal, and kick the ball. Such
behaviors are distinguished by an extreme paucity of examples,
because the lion’s share of meaningful examples are collected
when the trainer wishes the robot to transition from some sub-
behavior to another (e.g., to go from approaching to pivoting).

This paucity of examples poses a challenge for machine
learning in a variety of ways, one of which is the profound
impact of just a few incorrect or noisy examples. Ordinarily a
machine learning experimenter would deal with this by adding
more and more examples to the dataset until the learned model
can correctly guess which examples are noise and which are

not. The sample sparsity may make this difficult to do. But
because we are training rather than simply applying machine
learning, we have another option. We may assume that the
corrective examples are largely expected to be accurate and use
this assumption to directly remove incorrect examples from
the dataset itself. Thus when iteratively training the agent, we
can not only add new examples but also remove incorrect ones,
thereby helping the agent learn an accurate model on a very
limited set of data. We refer to this notion as unlearning.!

In our work, the machine learner is a classification algo-
rithm, such as C4.5, K-Nearest-Neighbor (K-NN), or Support
Vector Machines (SVMs). The procedure we envision is as
follows. After the trainer has observed an errant behavior, he
provides a set of correcting examples. For each corrective
example, the agent queries the classifier to see if it is mis-
classifying this example. If it is, the agent identifies a set of
responsible misclassifying examples which are candidates for
possible eventual removal from the dataset. The corrective
example is added to the dataset and the model is rebuilt.

Unfortunately, not all misclassifications are due to incor-
rect examples which must be punished or removed. Many
misclassifications may come from an undersampled region,
resulting in a (correct) example inappropriately responsible
for classifying a large region. This is particularly problematic
when, as is the case for us, examples are scarce. We need to
be able to conservatively distinguish between noisy examples
and correct examples in the undersampled region.

In this paper, we present two techniques for identifying
noisy examples (versus correct but overgeneralizing ones)
and unlearning them. We also present methods for extracting
candidates for unlearning. Such methods rely on the specifics
of the classifier being used: we show methods for decision
trees, K-NN, and SVMs.

The paper is organized as follows: Section 2 reviews related
work and Section 3 presents our two methods to detect errors
within a constructed classifier. We present experiments in
Section 4 and offer conclusions and future work in Section 5.

2 Related Work

The learning from demonstration or training literature may be
divided roughly into two categories. First, there is a significant

'We know the same term is also used in the context of certain
neural networks, and hope that our usage does not cause confusion.



literature in training policies for path- or trajectory-planning,
such as [Bentivegna et al., 2004; Dinerstein et al., 2007,
Kasper et al., 2001; Nakanishi et al., 2004]. In this litera-
ture there is often a wealth of data: for example, if one were
training a helicopter trajectory, every slight modification of the
joystick might be used as a data point. Additionally, this liter-
ature relies on accurate human demonstrations for the initial
policy; [Grollman and Ballard, 2012] instead use only failed
demonstrations to initialize the robot’s policy. Researchers
typically use reinforcement learning to develop an optimal
policy starting from provided demonstrations. Convergence
rates can be improved using structured prediction to extract
knowledge from multiple demonstrations [Parker et al., 2007].

The other category consists of training task plans or behav-
iors, such as [Nicolescu and Mataric, 2002; Veeraraghavan and
Veloso, 2008; Goldberg and Mataric, 2002]. These models
tend to yield sparse datasets because the most interesting data
points lie on transitions between low-level actions or behav-
iors. For example, if we were training a robot to acquire the
ball, then kick it, the crucial data describes when to transi-
tion from acquisition to kicking. We can repeatedly sample
data points while in acquisition (“In this situation, keep on
acquiring”, “in this situation, keep on acquiring”, and so on),
but this data will far outnumber the transition data. Because
such models often deal with a fixed set of possible low-level
actions, classification is the usual learning paradigm.

Dealing with noisy data is a common issue in classifi-
cation problems [Gamon, 2004; Kalapanidas et al., 2003;
Nettleton et al., 2010]. However, such research has largely
focused on determining the nature of the noise rather than
correcting the data directly. More closely related to our work
is the idea of correcting a sample bias where the training and
testing data are drawn from different probability distributions
[Huang et al., 2006]. Majority voting among multiple clas-
sifiers has been used to identify errantly labeled data from
physical experiments [Furey et al., 2000], and classifiers have
been used to fill in missing data values [Lakshminarayan et
al., 1996; Jereza et al., 2010]. These techniques are closely
related to the notion of boosting (most famously [Freund and
Schapire, 1995]), where successive classifiers are trained on
data weighted such that misclassified samples are given more
consideration. Importantly however, unlike our work, these
approaches do not assume the presence of a separate corrective
dataset.

Another related area is incremental learning, where a clas-
sifier is built incrementally from currently available data or
from a subset of large dataset. Incremental learning allows
the construction of dynamic classifiers capable of adapting
to changing data. Incremental learning addresses situations
where not all data fits in memory, or where new data ar-
rives as a stream. [Syed er al., 1999; Fei-Fei et al., 2007,
Ross et al., 2008]. Note that this new data is not meant to
correct old data per se: it simply is newer information which
may require an incremental restructuring of the model.

Researchers have implemented incremental decision trees
[Gehrke er al., 1999], Bayesian inductive learning [Michal-
ski et al., 1986], and neural networks [Polikar et al., 2001].
Additionally, [Cauwenberghs and Poggio, 2001; Diehl and
Cauwenberghs, 2003] developed an on-line incremental and

decremental support vector machine. As training vectors are
encountered, an exact solution is computed using all the previ-
ously seen data combined with the new training vector. This
incremental approach continually partitions the data into three
sets, one of which is the support vectors. Ma et al extended
this approach to support vector regression [Ma e al., 2003].

3 Method

We present two methods to do unlearning, one which assumes
a distance metric in the feature space, and one which does not.

Let C be the current errant classifier model, and let G be the
data set from which C was constructed. We wish to identify
noisy examples in G and ultimately remove them. To help
us, we have a set E of corrective examples supplied by the
demonstrator. For each e € E, if C is misclassifying e, both of
our methods will identify a set M of candidate examples which
were responsible for this misclassification. This set is com-
puted by calling a candidate-gathering algorithm appropriate
to the particular kind of classifier used. The methods then de-
cide which misclassifying examples m € M, if any, should be
removed from G or should be downgraded for possible future
removal. After possibly removing examples, the methods then
add e to G and rebuild C.

Each of these methods must distinguish between noisy ex-
amples and overgeneralizing but correct outliers. They both
take different approaches based on the same two heuristics.
First, a misclassifying candidate m is more likely to be noisy
if it is highly similar to a corrective example e. On the other
hand, if it is an overgeneralizing outlier example, it is likely to
be misclassifying e from afar. This is our similarity heuristic.
Second, if multiple misclassifying candidates are clustered
near one another, they are less likely to be noise: rather e
is probably a special case. This is our strength in numbers
heuristic.

The first method, metric unlearning, assumes the presence
of a metric distance measure and uses this to gauge measures
of similarity, which it then applies to both heuristics. Of
course, a reasonably scaled metric distance measure may not
be available depending on the features involved. The second
method, non-metric unlearning, makes no assumptions of dis-
tance: it simply lowers the “score” of misclassifying examples,
ultimately removing examples whose scores have dropped be-
low zero. Further, when using K-NN as our classifier, we
have the additional opportunity to be even more conservative
about not removing valid examples, by using a technique to
reduce M to only those examples which are not likely to be on
a “border” delimiting two different classes.

3.1 Metric Unlearning

The metric unlearning method begins by scaling the corrective
example e and the misclassifying candidates m € M so that
their ranges go from O to 1 inclusive (see Algorithm 1). This
makes the strong assumption that classifier features have been
prescaled so that distance measures are appropriate. Next,
the candidate m* € M most similar to e is identified. We
then construct a bounding hypersphere around the points in
M where the centroid is the numerical average of the feature
vector and the radius is the maximum distance between the
centroid and all examples in M.



Algorithm 1 METRIC-UNLEARNING (C,E,G,7,8)

Algorithm 2 NON-METRIC UNLEARNING (C,E,G, @)

1: foralle € E do
2: ¢’ < Scale e to [0, 1]

3: M < GATHER-EXAMPLES(C,e,...)
4: M’ + Scale allm € M to [0,1]
5: m* 4 argmax,, )y SIMILARITY (m, €')
6: ¢ < centroid of all points m’ € M’
7: r < max,, ¢p DISTANCE(n?, ¢)
8: if r = 0 and SIMILARITY (m*, ') > y then
9: Delete m* from G
10: else if DISTANCE(¢', ¢) < r then
11: M" — M —{m*}
12: ¢ < centroid of all points m” € M"
13: I < max,,»cp DISTANCE(m”, c)
14: if r = 0 and SIMILARITY (m”, ¢’) < 8 then
15: Delete m* from G
16: else if DISTANCE(¢/, ¢) > r then
17: Delete m* from G

18: Addeto G
19: Recompute C from G

There are two possible situations. If there is only a single
misclassifying candidate (and so the radius of the bounding
hypersphere is zero), then the candidate m* is deleted from G
if it is sufficiently similar to e (using the threshold constant 7).

If there is more than one misclassifying candidate, we must
test to see if strength in numbers is relevant. The goal is to
determine if the nearby point m* should be viewed as distinct
from the other points M, or if all of M are best seen as acting
as a group to misclassify e. Our (weak) test is as follows. We
build a hypersphere around all points in M. If e is outside this
hypersphere, we view all of M as a group. If e is within the
hypersphere, we then build a second hypersphere consisting
of all candidates except for m*. If there are multiple such can-
didates besides m* (i.e., the second hypersphere has non-zero
radius), then we delete m* if e is outside the second hyper-
sphere, with the heuristic belief that m* and e are significantly
separated from the other points in M. If there is only one
such candidate m” € M other than m* (and thus the second
hypersphere radius is zero), we have less to go on. In this case,
we delete m* if e is not so similar to m” that m” and m* may
be considered clustered together. The threshold § determines
this level of similarity. Finally we add e to G and rebuild the
classifier C.

The scaling is simply based on user-defined minimum and
maximum values. Note that this algorithm uses two different
measures of similarity. Because the scaling is user-defined,
we try to use a conservative scale-free measure (cosine simi-
larity) when possible: this is the function SIMILARITY. When
computing hyperspheres, we cannot be scale-free, and so we
fall back on the metric distance, DISTANCE, for comparison
to hypersphere centers.

3.2 Non-metric Unlearning

Our non-metric approach simply punishes examples when they
contribute to an incorrect classification (see Algorithm 2). Ev-
ery time an example contributes to an incorrect classification,
its score (initially 1.0) is reduced. If the score falls below 0.0,

1: foralle € E do

2: M <+ GATHER-EXAMPLES(C,e,...)
3 for all m € M do

4 mscore <_ mSC()rE - a/‘M|

5 if mge0re < O then

6: Delete m from G

7 Addeto G

8 Recompute C from G

then the example is removed. This approach allows examples
to misclassify a few times before they are removed.

Following the strength in numbers heuristic, we wish to
punish misclassifying examples less when there are multiple
other examples which are also misclassifying the corrective
example. Accordingly, we modify the score reduction by
dividing it by the number of misclassifying examples. The
value 0 < ¢ < 1 indicates the amount of score reduction when
there is just a single misclassifying example: it should be set
small enough that a misclassifying example is given a few
chances before outright removal.

How do we apply the similarity heuristic? Only indirectly.
If we have added a few corrective points E, in a certain region,
and they did not reduce a misclassifying example m to the
point of removal, is m still a threat? If m was distant from
these points, it is not likely to affect regions around them any
more (recall that the various e € E have been since added to
G). But if m very close to the points E, perhaps amongst them,
it might have more of an impact.

3.3 Classifiers

Each of the previous two methods calls a function called
GATHER-EXAMPLES(C, e, ...) whose purpose is to return
all examples m € M responsible for causing the classifier C to
misclassify the corrective example e. The implementation of
this function varies from classifier to classifier. While the meth-
ods likely work with any classifier, we focus on three common
classification algorithms: decision trees (C4.5), K-Nearest
Neighbor (K-NN), and support vector machines (SVMs).

All three implementations work in largely the same way.
First, the algorithm determines if e is indeed misclassified
by C. If it is, then the algorithm returns, as M, those exam-
ples originally used to build C which are responsible for the
misclassification.

K-Nearest Neighbor Algorithm 3 presents our approach for
K-Nearest-Neighbor. In K-NN, a point’s class is determined
by voting from among the K nearest examples to the point in
the space. We determine D, the plurality of this vote, that is,
those examples which had voted for the incorrect class.

If a point lies near the boundary between two classes, it
may be misclassified simply because of the sparsity of the
space, and the resulting plurality will all be valid examples
properly lying on their side of the boundary. We wish to avoid
returning these examples and potentially deleting them. Thus
we go through an additional procedure to attempt to identify
boundary examples. Specifically for each d € D we perform



Algorithm 3 GATHER-K-NN-EXAMPLES (C,e, 1)

Algorithm 5 GATHER-SVM-EXAMPLES (C, e, T)

1: M+ {}
2: class < K-NN-CLASSIFY(C,e)
3: if class is incorrect then

4 D < Plurality of K-NN-CLASSIFY(C,e¢)

5 for alld € D do

6: Q < Plurality of (K+1)NN-CLASSIFY(C,d)
7 if < u members of Q have class class then

8 M+ MuU{d}

9: return M

a K-Nearest-Neighbor classification on the point represented
by d, using a value of K one larger than normally performed
in the classifier. If a sufficient number t of neighbors support
the original class of d, then d is likely a border example rather
than an isolated and potentially noisy example. We return all
members of D which fail this test.

Decision Trees For decision trees, we modified the standard
C4.5 decision tree algorithm to store the examples which were
used to construct each leaf. The construction of M starts by
identifying the leaf node L in which e was misclassified (see
Algorithm 4). If the decision tree is not well-pruned, this node
may have very few incorrect examples from which to form M,

and so we have chosen to move up one level to the parent of L.

All misclassifying examples found in leaf nodes rooted by the
parent are added to M.

Algorithm 4 GATHER-DECISION-TREE-EXAMPLES (C,e¢)

M+~ {}
2: class + DECISION-TREE-CLASSIFY(C,e)
3: if class is incorrect then

4: L < leaf node in C used to classify e
5: if L is the root node then
6: P+ L
7: else
8: P + parent of L
9: D + examples used to form subtree rooted by P
10: for alld € D do
11: if class of d matches class then
12: M+~ MuU{d}
13: return M

Support Vector Machines The examples responsible for
misclassification in a support vector machine are, of course, its
support vectors. However, in a sparse problem there may not
be many of them: and furthermore, there may be other points
just outside the SVM’s margin which would also misclassify
the corrective point were certain support vectors removed. For
this reason we have chosen to increase the margin of the SVM
classifier and extract those misclassifying points falling within
this larger margin (see Algorithm 5). This in some sense has a
similar goal to choosing the parent of the leaf in the previous
decision tree algorithm. The size of the margin increase is
defined by the variable 7, which we have set to 2.

1: M+ {}
2: class <~ SVM-CLASSIFY(C,e)
3: if class is incorrect then
4 w <— width of margin in C
5 C’ < C with margin whose width is w X T
6: D < examples within margin of C’
7: foralld € D do
8 if class of d matches class then
9 M+ MU{d}
10: return M

4 Experiments

We conducted experiments to compare the metric and non-
metric unlearning methods against simply leaving the noisy
data in the data set and relying on the learning algorithm to
compensate for it. We also compared against perfect noise
reduction (by just eliminating all the noisy data). We expected
the unlearning methods to do better than leaving the noise in,
but worse than the perfect noise reduction.

Our experimental procedure was as follows. We randomly
shuffled, then split the data into three pieces: a set of un-
changed data (70%), a set of corrective data (20%), and a set
of testing data (10%). From the corrective data we generated
an equal sized set of error examples. Examples in the error
set were the same as the corrective set but with the addition of
Gaussian noise to the feature vector and random relabeling to
an incorrect label. We trained a classifier using the unchanged
data and error data, then performed unlearning using the cor-
rective data, and finally tested for generality on the testing
data. We repeated this splitting, correction, and generalization
testing process 1000 times for each experiment.

Our goal was to compare methods using simple and small
datasets and a variety of classification algorithms (similar in
quality to those found in learning from demonstration).

e Dataset. We conduced experiments using smaller datasets
drawn from the UCI Data Repository. We chose Iris,
Glass, and Wine.

e (lassification Algorithm. We did experiments using C4.5,
K-NN, and SVMs. For K-Nearest Neighbor we chose
K=1 and K=3. For the support vector machine we used a
radial basis function kernel using an exponent of 0.5. For
decision trees we examined both unpruned and pruned
trees: the pruning algorithm we chose was Pessimistic
Error Pruning. While PEP does not have as good perfor-
mance as many other pruning algorithms in the literature,
it has the distinct advantage of not requiring a separate
“pruning set” of data. This was desirable because in real-
world use we do not expect to have enough data examples
to provide a separate pruning set.

e Degree of Noise. While the amount of noise (and cor-
rective data) was fixed to 20%, we varied the degree of
noise, in terms of variance of the Gaussian curve. The
variance was 1) (max — min), where min and max are the
minimum and maximum legal values of the feature and
was set to 1/5, 1/20, and 1/100 (we also tested with other
in-between 1 values, with similar expected results).



Noise =1/5 Noise = 1/20 Noise = 1/100
Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
I-NN

Iris 0.9553 0.9131 0.9307 0.9255 0.9553 0.8002 0.8901 0.8601 0.9553 0.7519 0.9461 0.8490
Glass 0.6921 0.6707 0.6810 0.6822 0.6921 0.6441 0.6816 0.6705 0.6921 0.5653 0.6887 0.6421
Wine 0.9533 0.9370 0.9464 0.9442 0.9533 0.7998 0.9506 0.8722 0.9533 0.7566 0.9520 0.8488

3-NN

Iris 0.9537 0.9409 0.9468 0.9492 0.9537 0.8887 0.9361 0.9295 0.9537 0.8539 0.9370 0.9331
Glass 0.7008 0.6734 0.6895 0.6980 0.7008 0.6615 0.6927 0.6971 0.7008 0.6193 0.6866 0.6828
Wine 0.9615 0.9524 0.9607 0.9594 0.9615 0.8895 0.9511 0.9472 0.9615 0.8548 0.9462 0.9408

Decision Tree (Unpruned)

Iris 0.9459 0.8705 0.8915 0.8877 0.9459 0.8029 0.8497 0.8535 0.9459 0.8014 0.8765 0.8616
Glass 0.6701 0.6379 0.6577 0.6572 0.6701 0.6355 0.6544 0.6514 0.6701 0.6306 0.6591 0.6492
Wine 0.9332 0.8321 0.8638 0.8636 0.9332 0.7375 0.8103 0.7956 0.9332 0.7206 0.8365 0.8079

Decision Tree (Pruned)

Iris 0.9427 0.9135 0.9213 0.9226 0.9427 0.8761 0.9081 0.9094 0.9427 0.8799 0.9250 0.9213
Glass 0.6711 0.6330 0.6520 0.6529 0.6711 0.6274 0.6460 0.6426 0.6711 0.6301 0.6501 0.6496
Wine 0.9340 0.8591 0.8811 0.8846 0.9340 0.8185 0.8749 0.8715 0.9340 0.8093 0.8892 0.8844

Support Vector Machine

Iris 0.9102 0.3886 0.4280 0.9070 0.9102 0.7389 0.8649 0.8705 0.9102 0.7374 0.8695 0.8668
Glass 0.3346 0.3311 0.3163 0.3393 0.3346 0.3329 0.3313 0.3284 0.3346 0.3249 0.3259 0.3350
Wine 0.9329 0.3906 0.3991 0.9350 0.9329 0.6400 0.8828 0.8861 0.9329 0.6544 0.8834 0.8867

Table 1: Results for @ = 100%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.

e Data Sparsity. While the Wine, Glass, and Iris data
sets are already fairly small (between 100 and 250 data
points), our learning from demonstration research tends
to use even smaller sets. Thus we experimented with
three data set sizes: the full (w = 100%) data set, an @ =
50% sized set, and a @ = 25% sized set. For the last two,
the set was reduced by removing random data points.

We were curious as to how sensitive our algorithms are to
their parameters and so performed some informal parameter
tuning. In the non-metric unlearning algorithms, we varied
a from O to 1 in steps of 0.1, while in the metric unlearning
algorithm, we varied y over 0.5, 0.75, and 1.0 while 3 ranged
from O to 1 in steps of 0.1. Additionally, we varied u from O
to 5 in steps of 1. In general, 7 has little effect on classification
accuracy. However, for unpruned decision trees on the Wine
dataset, increasing 7 results in decreased accuracy. Addition-
ally, B appears to have minimal effect, but this is probably
due to the infrequency of the second hypersphere containing
a single point. In the non-metric algorithms, accuracy either
stays constant or increases as ¢ increases from 0 to 1. For
K-NN, setting ¢ = 2 results in the best performance with no
statistically significant impact as y increases to 5.

Based on these trends, for metric unlearning, we fixed
¥ =0.5 and B = 0.5 while for non-metric unlearning we set
a = 0.9. For K-Nearest Neighbor, we set 4 = 2, and, as men-
tioned earlier, for Support Vector Machines we set T = 2.
Table 1 shows the results. For each algorithm and dataset, we
compared against simply adding a point (which we call the
“naive” approach) and running our unlearning algorithms. Bold

numbers indicate a statistically significant increases over the
naive approach, while underlined numbers indicate the statisti-
cally higher performance between the metric and non-metric
unlearning algorithms. All statistical tests were at the 95%
confidence level with the appropriate Bonferroni correction.

In general, the unlearning algorithms perform better than the
naive approach, with metric unlearning slightly outperforming
non-metric algorithms. However, in all cases, the unlearning
algorithms failed to completely remove the error points.

Next, we investigated how these trends hold up with smaller
datasets by changing the experimental procedure: at the start
of each iteration, we randomly shuffled the data and then used
the top w%. Table 2 shows the results for @ = 50% and Table
3 shows the results for @ = 25%.

We see the same trends as before: unlearning performs
better than the naive approach, with metric unlearning per-
forming slightly better than non-metric unlearning. But as the
dataset shrinks, unlearning algorithms start to perform closer
to the naive approach due to the fewer available points and
associated information for our unlearning algorithms.

5 Conclusions

We presented two algorithms to correct errant classifiers as-
suming a paucity of examples. This paucity is common in
learning from demonstration environments. Our approaches
use two heuristics, similarity and strength in numbers, to po-
tentially remove noisy examples and protect correct examples
which have overgeneralized the space. Our algorithms per-
formed well compared to simply adding additional datapoints.



Noise =1/5 Noise = 1/20 Noise = 1/100
Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric

I-NN

Iris 0.9471 0.8982 0.9176 0.9194 0.9471 0.7839 0.8969 0.8534 0.9471 0.7458 0.9445 0.8430
Glass 0.6532 0.6257 0.6437 0.6502 0.6532 0.5911 0.6345 0.6346 0.6532 0.5383 0.6543 0.6004
Wine 0.9471 0.9190 0.9351 0.9343 0.9471 0.7871 0.9482 0.8724 0.9471 0.7556 0.9462 0.8546

3-NN

Iris 0.9533 0.9356 0.9470 0.9474 0.9533 0.8744 0.9323 0.9304 0.9533 0.8435 0.9313 0.9280
Glass 0.6418 0.6177 0.6374 0.6412 0.6418 0.6052 0.6412 0.6338 0.6418 0.5721 0.6358 0.6236
Wine 0.9514 0.9437 0.9509 0.9465 0.9514 0.8814 0.9377 0.9343 0.9514 0.8530 0.9373 0.9305

Decision Tree (Unpruned)

Iris 0.9396 0.8531 0.8776 0.8765 0.9396 0.7714 0.8404 0.8337 0.9396 0.7681 0.8591 0.8370
Glass 0.6241 0.5875 0.6075 0.6003 0.6241 0.5756 0.5966 0.5988 0.6241 0.5695 0.6034 0.5938
Wine 0.8896 0.8036 0.8420 0.8348 0.8896 0.7275 0.7987 0.7769 0.8896 0.7045 0.8191 0.7810

Decision Tree (Pruned)

Iris 0.9421 0.9024 0.9175 0.9145 0.9421 0.8634 0.9096 0.9058 0.9421 0.8512 0.9190 0.9204
Glass 0.6311 0.5905 0.6094 0.6093 0.6311 0.5777 0.6009 0.6040 0.6311 0.5634 0.5987 0.6006
Wine 0.8873 0.8324 0.8621 0.8543 0.8873 0.7906 0.8480 0.8446 0.8873 0.7722 0.8483 0.8514

Support Vector Machine

Iris 0.6733 0.5751 0.6700 0.6733 0.6733 0.5235 0.6350 0.6401 0.6733 0.5321 0.6424 0.6304
Glass 0.3411 0.3000 0.2833 0.3431 0.3411 0.3056 0.3611 0.3333 0.3411 0.3372 0.3330 0.3280
Wine 0.4557 0.3865 0.4505 0.4973 0.4557 0.3923 0.4462 0.4209 0.4557 0.3873 0.4273 0.4106

Table 2: Results for @ = 50%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.

Noise =1/5 Noise = 1/20 Noise = 1/100
Dataset U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric U+C U+C+E Metric Non-Metric
1-NN

Iris 0.9336 0.8792 0.9134 0.9052 0.9336 0.7882 0.9072 0.8438 0.9336 0.7256 0.9318 0.8294
Glass 0.6038 0.5892 0.6097 0.5977 0.6038 0.5442 0.5945 0.5997 0.6038 0.5040 0.6092 0.5650
Wine 0.9345 0.9045 0.9227 0.9222 0.9345 0.7735 0.9407 0.8548 0.9345 0.7382 0.9293 0.8393

3-NN

Iris 0.9378 0.9202 0.9354 0.9314 0.9378 0.8474 0.9174 0.9238 0.9378 0.8328 0.9182 0.9232
Glass 0.5897 0.5755 0.5950 0.5927 0.5897 0.5577 0.5953 0.5953 0.5897 0.5172 0.5772 0.5768
Wine 0.9465 0.9273 0.9330 0.9417 0.9465 0.8560 0.9240 0.9270 0.9465 0.8462 0.9228 0.9203

Decision Tree (Unpruned)

Iris 0.9350 0.8410 0.8758 0.8602 0.9350 0.7552 0.8354 0.8180 0.9350 0.7296 0.8392 0.8250
Glass 0.5947 0.5177 0.5400 0.5662 0.5947 0.5083 0.5483 0.5302 0.5947 0.4865 0.5360 0.5297
Wine 0.8503 0.7687 0.8068 0.8025 0.8503 0.6875 0.7755 0.7565 0.8503 0.6845 0.7900 0.7578

Decision Tree (Pruned)

Iris 0.9326 0.8700 0.9016 0.8958 0.9326 0.8064 0.8790 0.8838 0.9326 0.8144 0.9040 0.8972
Glass 0.5637 0.5268 0.5552 0.5548 0.5637 0.5182 0.5488 0.5488 0.5637 0.5013 0.5438 0.5440
Wine 0.8415 0.7880 0.8215 0.8248 0.8415 0.7292 0.8043 0.7958 0.8415 0.7362 0.8140 0.8087

Support Vector Machine

Iris 0.4682 0.3853 0.4389 0.4556 0.4682 0.3772 0.4124 0.4220 0.4682 0.3750 0.4164 0.4226
Glass 0.3422 0.3375 0.3403 0.3447 0.3422 0.4500 0.4000 0.3278 0.3422 0.3366 0.3399 0.3397
Wine 0.3905 0.3618 0.3776 0.3968 0.3905 0.3945 0.3923 0.3888 0.3905 0.3832 0.3904 0.3823

Table 3: Results for @ = 25%. Bold numbers indicate statistically significant difference between the naive approach (U+C+E)
and unlearning, while underlined numbers indicate a statistically significant difference between metric and non-metric unlearning.
The column U+C represents a perfect dataset and serves as an upper bound on unlearn performance.



References

[Bentivegna et al., 2004] Darrin C. Bentivegna, Christo-
pher G. Atkeson, and Gordon Cheng. Learning tasks from
observation and practice. Robotics and Autonomous Sys-
tems, 47(2-3):163-169, 2004.

[Cauwenberghs and Poggio, 2001] Gert Cauwenberghs and
Tomaso Poggio. Incremental and decremental support vec-
tor machine learning. In NIPS, 2001.

[Diehl and Cauwenberghs, 2003] C. P. Diehl and Gert
Cauwenberghs. SVM incremental learning, adaptation and
optimization. In NIPS, volume 4, pages 2685-2690, 2003.

[Dinerstein et al., 2007] Jonathan Dinerstein, Parris K. Eg-
bert, and Dan Ventura. Learning policies for embodied
virtual agents through demonstration. In IJCAI, pages 1257—
1252, 2007.

[Fei-Fei et al., 2007] Li Fei-Fei, Rob Fergus, and Pietro Per-
ona. Learning generative visual models from few training
examples: An incremental Bayesian approach testing on

101 object categories. Computer Vision and Image Under-
standing, 106(1):59-70, 2007.

[Freund and Schapire, 1995] Yoav Freund and Robert E.
Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In Second Eu-

ropean Conference on Computational Learning Theory,
pages 23-37, 1995.

[Furey et al., 2000] Terrence S. Furey, Nello Cristianini,
Nigel Duffy, David W. Bednarski, Michél Schummer, and
David Haussler. Support vector machine classification and
validation of cancer tissue samples using microarray ex-
pression data. Bioinformatics, 16(10):906-914, 2000.

[Gamon, 2004] Micheal Gamon. Sentiment classification on
customer feedback data: noisy data, large feature vectors,
and the role of linguistic analysis. In International Confer-
ence on Computational Linguistics, 2004.

[Gehrke et al., 1999] Johannes Gehrke, Venkatesh Ganti,
Raghu Ramakrishnan, and Wei-Yin Loh. BOAT—
optimistic decision tree construction. In International

Conference on Management of Data, volume 28, pages
169-180, 1999.

[Goldberg and Mataric, 2002] Dani Goldberg and Maja J
Mataric. Maximizing reward in a non-stationary mobile
robot environment. Autonomous Agents and Multi-Agent
Systems, 6, 2002.

[Grollman and Ballard, 2012] Daniel H. Grollman and
Aude G. Ballard. Robot learning from failed demonstra-
tions. International Journal of Social Robotics, 4(4):331 —
342, Nov 2012.

[Huang et al., 2006] Jiayuan Huang, Alexander J. Smola,
Arthur Gretton, Karsten M. Borgwardt, and Bernhard
Scholkopf. Correcting sample bias by unlabeled data. In
NIPS, 2006.

[Jereza et al., 2010] José M. Jereza, Ignacio Molinab, Pedro J.
Garcia-Laencinac, Emilio Albad, Nuria Ribellesd, Miguel
Martine, and Leonardo Francoa. Missing data imputation

using statistical and machine learning methods in a real
breast cancer problem. Artificial Intelligence in Medicine,
50(2):105-115, 2010.

[Kalapanidas et al., 2003] Elias Kalapanidas, Nikolaos
Avouris, Marian Craciun, and Daniel Neagu. Machine
learning algorithms: A study on noise sensitivity. In First
Balkan Conference in Informatics, 2003.

[Kasper er al., 2001] Michael Kasper, Gernot Fricke, Katja
Steuernagel, and Ewald von Puttkamer. A behavior-based
mobile robot architecture for learning from demonstration.
Robotics and Autonomous Systems, 34(2-3):153-164, 2001.

[Lakshminarayan et al., 1996] Kamakshi Lakshminarayan,
Steven A. Harp, Robert Goldman, and Tariq Samad. Impu-
tation of missing data using machine learning techniques.
In KDD, 1996.

[Ma et al., 2003] Junshui Ma, James Theiler, and Simon
Perkins. Accurate on-line support vector regression. Neural
Computation, 15:2683-2703, 2003.

[Michalski ef al., 1986] Ryszard S Michalski, Igor Mozetic,
Jiarong Hong, and Nada Lavrac. The multi-purpose incre-
mental learning system AQ15 and its testing application to
three medical domains. In AAAI, 1986.

[Nakanishi et al., 2004] Jun Nakanishi, Jun Morimoto, Gen
Endo, Gordon Cheng, Stefan Schaal, and Mitsuo Kawato.
Learning from demonstration and adaptation of biped loco-
motion. Robotics and Autonomous Systems, 47(2-3):79-91,
2004.

[Nettleton et al., 2010] David F Nettleton, Albert Orriols-
Puig, and Albert Fornells. A study of the effect of different
types of noise on the precision of supervised learning tech-
niques. Artificial Intelligence Review, 33:275-306, 2010.

[Nicolescu and Mataric, 2002] Monica N. Nicolescu and
Maja J. Mataric. A hierarchical architecture for behavior-
based robots. In AAMAS, pages 227-233. ACM, 2002.

[Parker et al., 2007] Charles Parker, Prasad Tadepalli, Weng-
Keen Wong, Thomas Dietterich, and Alan Fern. Learning
from demonstrations via structured prediction. In AAAI,
2007.

[Polikar et al., 2001] Robi Polikar, Lalita Upda, Satish S.
Upda, and Vasant Honavar. Learn++: An incremental
learning algorithm for supervised neural networks. /IEEE
SMC, Part C, 31(4):497-508, Nov 2001.

[Ross et al., 2008] David A Ross, Jongwoo Lim, Ruei-Sung
Lin, and Ming-Hsuan Yang. Incremental learning for robust
visual tracking. International Journal of Computer Vision,
77(1-3):125-141, 2008.

[Syed et al., 1999] Nadeem Ahmed Syed, Huan Liu, and
Kah Kay Sung. Handling concept drifts in incremental
learning with support vector machines. In KDD, 1999.

[Veeraraghavan and Veloso, 2008] Harini Veeraraghavan and
Manuela M. Veloso. Learning task specific plans through
sound and visually interpretable demonstrations. In 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2599-2604. IEEE, 2008.



