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Abstract

Genetic programming trees have a strong ten-
dency to grow rapidly and relatively independent
of fitness, a serious flaw which has received con-
siderable attention in the genetic programming
literature. Much of this literature has implicated
introns, subtree structures with no effect on the
an individual’s fitness assessment. The propaga-
tion of inviable code, a certain kind of intron, has
been especially linked to tree growth. However
this paper presents evidence which shows that
denying inviable code the opportunity to propa-
gate actually increases tree growth. The paper
argues that rather than causing tree growth, a rise
in inviable code is in fact an expected result of
tree growth. Lastly, this paper proposes a more
general theory of growth for which introns are
merely a symptom.

1 INTRODUCTION

An unforseen result of genetic programming’s tree-based
chromosome is bloat, the uncontrolled growth in the size
of individuals over the course of a run. This phenomenon
has been observed many times (for examples, see [7, 4, 2])
for both subtree crossover and various kinds of mutation.
Whereas a fixed-length chromosome permits an evolution-
ary run to last as long as time permits, genetic programing’s
tree bloat effectively puts a time limit on its search, by
slowing down both the breeding and evaluation of trees.
Bloating also fills memory, leading to swapping and mem-
ory exhaustion. Lastly, bloating slows the search process
by making it less likely to find good subtrees to modify.
In a very real sense, genetic programming is a race against
time, to find the best solution possible before bloat puts a
stop to the search.

2 INTRONS

Much of the code bloat literature in genetic programming
revolves around introns, extraneous regions in an individual
which neither add nor detract from its fitness, because they
are ignored or do nothing. This notion of introns stems
from microbiology. In real chromosomes, genes consist
both of regions which are expressed in final protein end-
products, and regions which are edited out somewhere in the
translation and transcription process. The expressed areas
of these genes are known as exons, whereas the ignored
regions are introns.

[1] defined introns in genetic programming as areas of code
that “are unnecessary since they can be removed from the
program without altering the solution the program repre-
sents”. This general definition has been used in a variety of
ways throughout the code bloat literature, and so it is very
important to provide a specific definition. The two most
common uses of the term are:

1. Introns are areas of code which can be trivially simpli-
fied without modifying the individual’s operation.

2. (A subset of #1) Introns are subtrees which cannot
be replaced by anything that can possibly change the
individual’s operation. Such code is associated with
an invalidator, a structure elsewhere in the individual
which is responsible for nullifying the intron’s effect.

Definition #1 is more common in the literature and so I will
use it as the meaning of “intron”. For definition #2 I adopt
the term “inviable code”. For those introns which are not
inviable code, I will use the term “unoptimized code”.

2.1 INTRONS AND THEORIES OF CODE BLOAT

Generally speaking, there are three theories which impli-
cate introns in code bloat: hitchhiking, defense against
crossover, and removal bias.



2.1.1 Hitchhiking

The earliest theory, hitchhiking [18] says that if introns (the
hitchhikers) are attached to parents of “important” code,
then crossover which preserves this active code is likely to
take some of these introns along with it and thus propagate
introns throughout the population.

2.1.2 Defense Against Crossover

In the second theory, defense against crossover, introns take
a more active role in driving code bloat. Here introns are
propagated because they act to make it difficult to destroy
an individual by increasing the number of crossover points
which have no effect on the individual. The makes com-
mon neutral crossover, whereby crossover has no effect
on the individual’s fitness. This general theory has been
cited, in one way or another, by a large chunk of litera-
ture: [4, 11, 10, 14, 3, 2, 8]. One surprising feature of
the defense-against-crossover literature is that while most
proponents of this theory argue that introns increase the
number of ineffective crossover points in an individual, in
reality the lion’s share of experiment and nearly all the-
oretical justification have dealt solely with inviable code.
While for tree-based genetic programming their theoretical
support appears applicable to inviable code only, [11, 2]
perform some experiments with introns in general, but only
in a non-tree genetic programming style for which unop-
timized code presents unique problems. As such, I think
it is fair to say that, for most of its experimental and the-
oretical foundation in the tree-based genetic programming
literature, defense-against-crossover is primarily an invi-
able code theory.

2.1.3 Removal Bias

A recent third theory, removal bias, eschews unoptimized
code entirely and focuses solely on inviable code [16, 8].
The theory first proposes that if an individual contains in-
viable subtrees, it is more likely to survive if it performs its
modifications within these subtrees. In this sense it is simi-
lar to defense against crossover. But removal bias suggests
an actual mechanism which prefers larger trees within these
inviable subtree areas. In order to guarantee preservation
of the individual, the subtree removed during modification
must be no larger than the inviable subtree area; hence there
is a penalty for removing large subtrees from the individual,
but no such penalty for inserting large subtrees.

2.1.4 A Non-Intron Code Bloat Theory

The chief non-intron bloat theory [8] is diffusion. Accord-
ing to this theory, in the space of all possible programs,
there are generally many more large-sized highly-fit trees
than there are small-sized ones. Since genetic programming

starts out with artificially small trees, code bloat can be de-
scribed simply as the system moving towards equilibrium.

2.2 TECHNIQUES FOR CONTROLLING BLOAT

The most common method for controlling code bloat is by
simply restricting trees to be a certain size or depth. [7]
has popularized setting a maximum tree depth at 17. Un-
fortunately this technique has been shown to have negative
effects when most trees reach the limit [5]. The second most
common method is parsimony pressure: adding a tree size
penalty as part of the individual’s fitness assessment. While
some approaches use a linear or constant function for par-
simony pressure (for example [17]), others add parsimony
pressure adaptively in response to tree growth metrics such
as the amount of introns, for example [3]. A third method
is code editing: physically deleting introns in programs.
[17, 3] report strong results with this approach. Still an-
other method is the inclusion of explicitly defined introns
([12, 15, 3], special nodes which increase the likelihood of
crossover at specific positions in the tree.

Lastly some researchers (notably [13]) have suggested a
form of hillclimbing: rejecting crossover results which de-
crease the fitness of an individual (or more strongly, do not
increase its fitness). If crossover fails this test, then the par-
ent is replicated into the new population in lieu of the child.
Recently [16, 8] have used this mechanism to argue for the
removal bias theory of tree bloat, arguing that the particular
success of the strong form in countering code growth is due
to its rejection of any crossover events which occur in invi-
able code areas. One weakness in this argument is that this
technique also acts to replicate large numbers of parents
into future populations. If some unrelated code bloat force
is causing children to be larger than their parents, then this
technique may be doing little more than artificially damp-
ening code growth by filling the population with parents
and ancestors, which would be generally smaller than their
descendants.

3 EXPERIMENTS

The two most prevelant intron theories of code growth (de-
fense against crossover and removal bias) both rely on a
similar thesis: that crossover in inviable subtree areas is a
driving force behind tree growth in general. In this paper I
present what I believe to be the first experimental evidence
against this claim. The experiments do the surprisingly ob-
vious: deny individuals the ability to cross over in inviable
areas.

[4, 3] proposed exactly this, calling it marking: identifying
inviable code areas and disallowing crossover within those
regions. Unfortunately, no code growth results were pre-
sented, and [3] later wrote off the technique, stating “the



marking method only avoids redundant crossover sites but
does not address the bloating phenomenon directly as it
leaves the redundant subtrees unchanged.” In fact, mark-
ing does significantly decrease the amount of inviable code.
But what is surprising is that marking does not appear to
affect tree growth, even in inviable code-heavy domains.

To test this I performed experiments in three canonical ge-
netic programming domains: Symbolic Regression, 11-
Bit Multiplexer, and 6-Bit Multiplexer. All experimental
runs lasted 64 generations, or until an ideal solution was
found, using a population of 512, and 7-tournament se-
lection. Subtree crossover was the sole breeding mecha-
nism used: rather than using the traditional node-selection
scheme (picking terminals 10% of the time), node selec-
tion was uniform. Additionally, unlike in may previous
experiments, no limit was placed on either the size or depth
of crossed-over trees. These restrictions were lifted in or-
der to better guage the true, unbiased dynamics of subtree
modification with respect to tree growth. Crossover was
performed as follows: two children are picked from the
population and crossed over. However, while the first child
is placed into the next generation, the second child is dis-
carded. In all other respects, the runs follow the domain
descriptions given in [7], without ephemeral random con-
stants. ECJ was the genetic programming system used [9].

3.1 MULTIPLEXER

One nice feature of Multiplexer is that it is possible, if ex-
pensive, to identify all inviable code, for example (and (not
a0) (and a0 inviable)). For 6-Multiplexer, inviable code is
very common. Because of the increased size and complex-
ity of its function set, inviable code is much less common
in the 11-Multiplexer problem.

For each Multiplexer domain, two sets of runs were per-
formed, each with fifty independent runs. In the first set,
runs were performed as described above. In the second set,
the crossover point in the first parent was specially chosen
through marking: a node was picked at random from the
set of viable nodes in the individual. Since the child of the
second parent was discarded, this meant that all children
would be generated from a crossover point chosen from
among viable nodes only.

The results of these experiments, shown in Figures 1
through 4, were surprising. After denying the ability
to cross over in inviable regions, code growth in 11-
Multiplexer increased to 120%. In 6-Multiplexer, code
growth increased to 150%. Tree depth similarly increased.
At the same time, the number of inviable nodes, as a per-
cent of each individual, dropped dramatically. Note that the
growth in neutral crossovers was unchanged. This is ex-
pected: an unusual feature of the Multiplexer domains is the

very high likelihood of performing neutral crossover which,
while dramatically changing the functional semantics of an
individual, does not change its overall score.

3.2 SYMBOLIC REGRESSION

Symbolic Regression inviable code takes three forms: mul-
tiplication or division by zero, multiplication, division, ad-
dition or subtraction with infinity/NaN, and decimation.

Multiplying and dividing by zero is by far the most com-
mon cause of inviable code in Symbolic Regression: for
example, (∗ always-returns-zero intron). Less obvious is how
to achieve operations involving infinity or NaN. Structures
returning infinity can be achieved with successive calls to
exp, as in (exp (exp (exp (exp (exp foo))))). Structures re-
turning NaN can be achieved with (sin infinity). However,
infinity and NaN dominate the return value of an individual;
as such when they appear, they give the individual the worst
possible fitness, and so cannot propagate.

Decimation is more insidious. In decimation, parents work
together to eliminate the effect of a child by dropping its
contribution below the precision of the data type. An ex-
ample of decimated inviable code for the Java double type
is (rlog (+ (sin inviable) (exp (exp 6)))). While most forms
of decimation are nearly impossible to identify directly,
their effect can be ascertained indirectly by tracking the
growth of crossovers with no change in fitness for which
decimation can be the only possible culprit. In this regres-
sion experiment, such tracking determined that decimation
never occurred prior to generation 15, and rarely occured
prior to generation 25.

Symbolic Regression differs from Multiplexer in that it is
extremely unlikely that crossover of semantically different
subtrees (that is, subtrees which return different values)
will result in identical fitness, except within inviable code
regions. This means that restricting semantically-identical
crossover can have a significant impact on the number of
neutral crossovers.

In order to gauge the effects of introns on tree growth in
Symbolic Regression, two sets of runs were performed,
each with fifty independent runs. In the first set, as usual,
runs were performed unemcumbered. In the second set,
three special crossover restrictions were performed. First,
the crossover point for the first parent was chosen through
marking. All inviable code was marked except for undis-
coverable decimated code. Second, once it had selected
two individuals for crossover, the system would try 500
times to find two semantically dissimilar subtrees to cross
over: that is, it would reject semantically identical subtrees
such as x and (+ (- x x) x). If it failed 500 times (which
rarely occurred, and only if both individuals were simply
the nonterminal x), the first parent was replicated in lieu of



its child. Applying this restriction, plus rejecting inviable
code crossover, meant that there were only two possible
causes left for neutral crossover: crossing over two trees
simply consisting of the terminal x (rare), and inviable code
due to unmarked decimation. This made possible the third
crossover restriction: countering the effects of unmarked
decimation by disallowing an individual to be selected if it
had the same fitness as its parent (caused by the arrival of
decimation).

The result is shown in Figures 5 and 6. Note that the
inviable code growth figures only indicate the growth in
markable inviable code. Once again, tree growth increased,
while inviable code decreased. Though not shown here
for lack of space, similar experiments were performed with
only marking, and with marking plus rejecting semantically
identical crossover, with similar growth results.

4 DISCUSSION

Proponents of intron theories point to the increase in invi-
able nodes, neutral crossvers, and tree growth and suggest
that the correlation among them is in fact causation: in-
viable code growth is driving tree growth. But these ex-
periments suggest a more likely relationship. Associated
with each inviable subtree is an invalidator, a chunk of code
responsible for making the subtree inviable. For example,
in (∗ 0 inviable), 0 is the invalidator. If invalidators were
randomly distributed, their effect on large trees would be
much higher than on small trees, since in large trees there
is a higher probability that an invalidator is proportionally
closer to the root. Thus if trees grow but invalidator dis-
tribution remains constant, then the percentage of inviable
code should grow naturally towards 100%. As each figure
shows, invalidators generally remain constant throughout
the run. Additionally, Figure 6 shows that even though
individuals with neutral crossover (caused by decimation)
were immediately terminated, decimation events continued
to rise. This suggests that growth in decimated inviable
code is also driven by overall tree growth. In other words,
these experiments suggest that tree growth is the cause of
inviable code growth.

Another possible source of tree growth is a possible increase
in neutral crossover due to unoptimized code propagation.
However the Symbolic Regression experiment shows that
such propagation can be entirely eliminated and code will
still grow.

If not introns, then what is causing these trees to grow? I
propose a more general mechanism behind tree growth. As
[6] have shown, for many genetic programming domains
there is a strong inverse correlation between the depth of
the crossover point in a tree and its effect on fitness. For
populations with high fitness, this suggests a relationship

between the depth of a crossover point and its likelihood to
destroy the individual. This bias towards deeper crossover
points has two effects on tree growth. First, it promotes
the use of larger trees, which have deeper crossover points.
Second, deeper-rooted subtrees are more likely to be small,
which biases the search towards tree growth in a general-
ization of the removal bias theory.

Inviable code growth is a natural result of this theory. An-
other expected result is pseudoinviable code, subtrees for
which crossover has a low probability of effecting an indi-
vidual in a significant way. Both [3] and [12] note the pos-
sible existence of pseudoinviable code. [15] have recently
performed experiments suggesting a strong relationship be-
tween pseudoinviable code and code bloat.

Other effects might be explained by this theory. [10]’s
inc-dec and [15]’s R2 experiments both present contrived
but important examples of code growth due to unoptimized
code, but not due to neutral crossover—rather, trees seem to
be simply filling up with junk. As it turns out these experi-
ments both appear to be arranged in such a way that deeper
crossover points are less likely to cause destruction of the
individual; however this effect deserves more examination.

The theory also suggests why restricted 6-Multiplexer was
so much less likely to find a solution. 6-Multiplexer is a
very simple domain with no formal subpotima, and so it
benefits from an incremental strategy. Crossing over in
deeper subtrees lowers the likelihood of changing an indi-
vidual significantly. But one effect of restricting inviable
subtree crossover is that subtrees closer to the root have a
higher likelihood of being chosen, resulting in more radical
semantic jumps; in effect, this underdampens the search.

5 CONCLUSIONS

Inviable code plays a central part in much of the code bloat
literature, with unoptimized code a distant second. Rela-
tively little work has been done on pseudoinviable code and
other less-absolute forms of code bloat. And all experi-
ments to date have suggested a strong positive relationship
between introns and code bloat. This paper presents ev-
idence to the contrary, showing that when inviable code
crossover is restricted, code bloat continues unabated, and
even increases. The paper then introduces a more abstract
mechanism behind code bloat to explain these surprising re-
sults, suggesting that the cause of bloat is both more general
and more complicated than previously thought.
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Figure 1: 6-Bit Multiplexer

Mean Number of Nodes

0 10 20 30 40 50 60
Generation

500

1000

1500

2000

2500

N
um

be
r

of
N

od
es

Best Fitness

0 10 20 30 40 50 60
Generation

5

10

15

20

25

30

B
es

tF
itn

es
s

Neutral Crossovers

0 10 20 30 40 50 60
Generation

100

200

300

400

500

N
um

be
r

in
P

op
ul

at
io

n

Inviable Nodes

0 10 20 30 40 50 60
Generation

0.2

0.4

0.6

0.8

1

P
er

ce
nt

O
fI

nd
iv

id
ua

l

Invalidators

0 10 20 30 40 50 60
Generation

0.05

0.1

0.15

0.2

0.25

P
er

ce
nt

of
In

di
vi

du
al

Figure 2: 6-Bit Multiplexer with Restricted Crossover
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Figure 3: 11-Bit Multiplexer
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Figure 4: 11-Bit Multiplexer with Restricted Crossover
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Figure 5: Symbolic Regression
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Figure 6: Symbolic Regression with Restricted Crossover


