
LfD Training of Heterogeneous Formation Behaviors

William Squires, Sean Luke
Department of Computer Science

George Mason University
4400 University Dr

Fairfax, Virginia 22030

Abstract

Problem domains such as disaster relief, search and rescue,
and games can benefit from having a human quickly train
coordinated behaviors for a diverse set of agents. Hierarchi-
cal Training of Agent Behaviors (HiTAB) is a Learning from
Demonstration (LfD) approach that addresses some inherent
complexities in multiagent learning, making it possible to train
complex heterogeneous behaviors from a small set of train-
ing samples. In this paper, we successfully demonstrate LfD
training of formation behaviors using a small set of agents
that, without retraining, continue to operate correctly when
additional agents are available. We selected training of forma-
tions for the experiments because formations: require a great
deal of coordination between agents, are heterogenous due to
the differing roles of participating agents, and can scale as the
number of agents grows. We also introduce some extensions
to HiTAB that facilitate this type of training.

Introduction

Multiagent Learning from Demonstration (LfD) promises
to allow a human to quickly train coordinated behaviors for
a diverse set of agents in an online manner with the goal
of producing combined behaviors that are more beneficial
than agents acting concurrently but without coordination. To
do this, Multiagent LfD typically draws on knowledge of
each agent’s sensors, behaviors, and of the problem domain.
This research applies to problem domains in which agents
or robots must be rapidly put to use, such as disaster re-
lief, search and rescue, and games where players control a
large and diverse set of agents. However, multiagent LfD
is very sparsely researched, in large part due to the inherent
complexities of multiagent learning due to the Curse of Di-
mensionality and what we refer to as the Multiagent Inverse
Problem.

The Curse of Dimensionality states that the number of
training samples required for effective machine learning in-
creases exponentially with the dimensionality of the feature
vector, which is likely exacerbated by heterogeneity due to in-
creased variety in sensors. The Multiagent Inverse Problem is
encountered when trying to learn the appropriate combination
of individual agent behaviors to achieve the desired macro-
level behavior: while we might have a function available that

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maps the individual behaviors to the macro-level behavior
(namely, a simulator), we do not have the needed function
that maps in the other direction. Such inverse problems are
normally overcome using offline optimization methods, such
as multiagent reinforcement learning or stochastic optimiza-
tion, but the high cost of generating training samples by a
human trainer makes these challenges much more daunting
problem for LfD.

The Hierarchical Training of Agent Behaviors (HiTAB)
LfD approach (Luke and Ziparo 2010) has addresses these
learning challenges. The Curse of Dimensionality is dealt
with through iterative behavior decomposition and manual
feature selection. The trainer first decomposes the problem
into a hierarchy of subproblems, such as breaking “play kid-
die soccer” into “play offense” and “play defense”, with
(for example) “play offense” further broken down to “ac-
quire ball”, “manipulate ball”, and “kick to goal”, and so
on. Training is done on the lowest-level behaviors, then the
next level, and so on. This allows HiTAB to project the full
joint space of features (sensor information) and actions of the
top-level behavior into many smaller behaviors, each with its
own much smaller subset of sensor features and actions, and
consequently fewer training samples.

HiTAB addresses the inverse problem similarly with the
introduction of a virtual controller agent hierarchy that allows
the trainer to manually decompose the coordination of behav-
iors among subordinate agent groups. That is, we manually
break the swarm into a hierarchy sub-swarms and sub-sub-
swarms etc., each headed by a virtual controller agent (a
boss). Then we can train small groups to do simple collec-
tive behaviors, then assign each a virtual controller (a boss),
then train small groups of bosses to do collective behaviors
involving directing their subordinates, and so on. Because
we are only training small groups of agents at a time, the gulf
between individual micro-level behaviors and the desired
emergent macro-level phenomenon is mitigated.

Our research goal is to extend HiTAB to train swarm-like
heterogeneous behaviors where the resulting behavior can
scale to very large numbers of agents. Further, the training
should be accomplished without knowing the precise number
of agents available for each heterogenous agent types in oper-
ation. Training complexity is reduced by including a minimal
number of agents to train the coordinated behaviors, with the
end result being a minimal controller hierarchy. However, in

The 2018 AAAI Spring Symposium Series

655



TH M M

G

T

H

M

M

G

T

H

M

M

G

T

H

M

M

G

Row
Column

Echelon
Left

Echelon
Right

Figure 1: Line Formations

operation the controller hierarchy may need to be grown to ef-
fectively utilize large numbers of agents. For example, a grid
formation might have a grid controller with some number of
subordinate line controllers that are determined by number
of available agents.

This paper presents work in progress toward this research
goal by training line formations of agents. Line formations
are heterogeneous due to differing roles of agents and require
considerable coordination to achieve the desired behavior.
Formations are also a well studied problem domain in multia-
gent learning where the effectiveness of the learned behaviors
can be visually confirmed. The formations we will learn are
shown in Figure 1, each one has a Head agent facing the goal
with all other agents forming the line of at some angle to the
goal.

Related Work

Heterogeneous Swarms and Hierarchies

Swarm research primarily focuses on the creation of behav-
iors in which the individual agents only interact with neigh-
boring agents or the environment. Because the interaction is
limited in this way, adding agents to the swarm scales with
regard to communication. However, this scaling comes at
the expense of global information which limits the level of
cooperation that can be achieved. Introducing heterogeneity
to swarms complicates the problem of having agents perform
cooperative behaviors using only local interaction and often
introduces a need for structured team organization not present
in homogeneous swarms.

In (Elston and Frew 2008) and (Pinciroli et al. 2010), het-
erogeneous swarms use a hierarchical structure to create
coordinated behaviors between an aerial agent and homo-
geneous sub-swarms. The hierarchy extends the capability
of the sub-swarm by leveraging global information relayed
to the sub-swarm by the aerial controller. In this case, the
sub-swarms still scale because the only additional commu-
nication is between the sub-swarm agents and the controller.
In (Soule and Heckendorn 2010), an evolutionary approach
was presented to learn a controller hierarchy that scales to
the available swarm agents with the introduction of force
functions that balance agents in the hierarchy or create a new
sub-swarms when needed.

Learning from Demonstration

Learning from Demonstration (LfD) is a supervised learning
method where training samples are generated through human

demonstration (Atkeson and Schaal 1997). LfD literature
may be broken into two the categories. In the first category,
learning plans or behaviors (Argall et al. 2009), the number
of training samples generated by the human demonstrator is
generally small since they are only generated when changing
behavior or operation. The second category, learning motions
or paths (Pastor et al. 2009), often have a large number of
samples available as they are generated each time the tra-
jectory changes. HiTAB falls into the first category and so
it is focused on effectively learning behaviors from a small
number of training samples.

Multiagent LfD produces additional very difficult chal-
lenges as previously discussed, and as a result is only lightly
researched. In (Chernova and Veloso 2010), robots were
trained to cooperatively sort colored balls into the appropri-
ate bin where the robots requested additional demonstration
when uncertain of correct action. Additional LfD multi-agent
learning involves learning from the joint demonstration of
multiple trainers. For example, in (Martins and Demiris
2010) an approach was developed where the individual se-
quence of actions for each robot are captured and then the
sequence of group behaviors is determined through analysis
of the individual action sequences over space and time. In
(Blokzijl-Zanker and Demiris 2012), robots learn to collabo-
ratively open a door by extracting a template for the behavior
and adapting it to doors in other settings. These methods
work well for small teams, but become dramatically more
complex as more robots are added.

Learning Formation Behaviors

Formations are a well studied problem in learning coor-
dinated multi-agent behaviors, many of them using motor
schema (Balch and Arkin 1998) or other potential field based
approaches. In (Das et al. 2002), formation control leverages
multiple controllers based on vision sensors on all agents.
More recent literature has focused on new potential field
methods of formation control for swarms (Barnes, Fields,
and Valavanis 2009). The formations is this paper, trained
as leader-referenced formations, are not intended as a better
method of formation control, but as an interesting test prob-
lem for heterogeneous multiagent LfD that can be extend to
swarm-like behaviors.

Background on HiTAB
HiTAB was introduced in (Luke and Ziparo 2010) originally
as a single-agent LfD method for training individual agent
behaviors that addresses domain space complexity. HiTAB
learns behaviors in the form of hierarchical finite-state au-
tomata (HFA), where the states are either atomic agent behav-
iors or lower level HFA learned earlier. The HFA are defined
through manual decomposition of the desired top-level be-
havior, and the lowest level in the HFA only have atomic
agent behaviors as states. For each HFA, the trainer manually
selects the required states (subbehaviors) and features, or
agent sensors, needed to determine the transition between
states. Because the states and features are manually selected
by the trainer, HiTAB is only learning the transition function
for the HFA. By default the learning is in the form of a C4.5
decision tree.

656



Behaviors and features may be parameterized and be
bound to a target, which is some object in the environment.
An example for a feature is DistanceTo(A), which is bound
the target ClosestAgent by the trainer to get the distance to
the closest agent. An example for a behavior is a trained
behavior Goto(A), which is bound to the target Home Base
resulting in a go to home base behavior. Parameters may also
be bound to a variable of the HFA so that the learned HFA is
parameterized, such as SpreadBetween(A,B) defined later in
this paper.

HiTAB also has a special atomic behavior called Done.
Done sets a Done flag, which is accessible through the Done
feature, and immediately transitions to Start and the flag
remains set unless it is specifically clear or the top-level agent
behavior is changed. This is useful when some behavior has
to be completed before another begins. Done is also special
in that it is also an atomic behavior for training controller
agents.

Individual Agent Training

When decomposition of the HFA is complete, features have
been selected, and parameters bound, the demonstrator can
then begin training. While in training mode the trainer tele-
operates the agent, changing behaviors at the appropriate
time. Whenever a behavior is changed, a training sample is
created containing the current behavior, the current feature
values when the behavior was changed, and the new behavior.
Behaviors that are meant to continue until the next behavior
change by the trainer will add an additional continuation
sample with the new behavior, the feature values, and the
new behavior again.

The trainer switches to testing mode when all training
samples have been created, causing the transition function of
the HFA to be learned. The trainer then observer the trained
behavior in operation and saves it to the behavior library if it
is working correctly. Otherwise, the trainer switches back to
training mode and provides additional samples and repeats
the test mode step.

Homogeneous Multiagent Training

In (Sullivan and Luke 2012), HiTAB was extended to homo-
geneous multiagent training with the introduction of virtual
controller agents responsible for coordinating a subordinate
group of agents. HiTAB again models the controller’s behav-
ior as an HFA, which is decomposed so that at the lowest
level the HFA only contain only the atomic behaviors of the
controller.

These atomic behaviors correspond to the top-level be-
haviors of each of the agents in the controller’s subordinate
group. As such, atomic controller behaviors manipulate the
subordinate agents rather than the controller itself, with a
transition in the controller HFA directing all subordinates to
change their behavior. Controller features are programmed
by the trainer to provide statistical information from the fea-
tures or states of the subordinate agents. As with individual
agents, behaviors and features may be parameterized.

To increase cooperation among the homogeneous individ-
ual agents, a hierarchy of controllers may be trained. For a
higher level controller the training method is the same, with

Controller

Agent 
Group 0

Agent 
Group 1

Agent 
Group N

Figure 2: Heterogeneous Controller

its the atomic behaviors being the trained behaviors of the
virtual controller agents in its subordinate group.

Heterogeneous Multiagent Training

In (Sullivan et al. 2015), HiTAB was further extended to
heterogeneous multiagent training, where virtual controllers
may have more than one subordinate agent group as shown
in Figure 2. The subordinate groups of a heterogeneous
controller each contain a different agent type. Again the
coordinating behavior is represented as an HFA, which is
decomposed so that the lowest level HFA has only the atomic
behaviors of the controller.

Each atomic behavior for heterogeneous controllers is now
a joint behavior, which is some permutation of trained behav-
iors of the subordinate agent groups. A continuation behavior
may be defined for one or more of the agent groups in the
joint behavior, meaning that all agents in that group should
continue the previously directed behavior. As in the homo-
geneous case, all agents within a single subordinate group
are running the same behavior. Depending on the number of
agent groups and the number of trained behaviors within sub-
ordinate agents, the number of joint behavior permutations
can be quite lengthy. Additionally, a given permutation of
behaviors may not be meaningful to the trainer in the con-
text of the training problem. For this reason it is left to the
trainer to define the joint behaviors for the controller, and
consequently presented with a meaningful and minimal set
of atomic behaviors during training.

Joint behaviors take the form Name(Behavior 0, Behavior
1, ..., Behavior N), where Behavior i is a trained behavior of
subordinate agent group i . For example, Init(Face(X), Sur-
round(X), MoveBetween(X, Y)) is a joint behavior named
Init that tells agents in group 0 to Face some target X, agents
in group 1 to Surround some target X, and agents in group
2 to MoveBetween two targets X and Y. If a continuation
is specified for an agent group, the subordinate behavior is
left blank (�), for example SpreadAgents(�, AdjustSepara-
tion(X, Y), SpreadBetween(X, Y)) has no behavior defined
for agents in group 0.

While the work in (Sullivan et al. 2015) provided a suc-
cessful demonstration of training heterogeneous controller
agents it falls short of the research under way in this work.
The controller hierarchy, shown in Figure 3, is two levels
deep where each agent group has a single agent. While this is
heterogeneous and mutliagent by definition, it did not demon-

657



Pioneer 3DX

Flockbot Flockbot

Group Controller

Flockbot Controller

Figure 3: Box-pushing Controller

strate training of heterogenous behaviors that scale to some
unknown number of agents in operation. Also, because each
group contained a single agent there was no need for feature
aggregation, which is necessary in many heterogeneous LfD
training problems.

Our Extensions to HiTAB

Group Features

Introduced in this work, a group feature applies an aggrega-
tor function to a feature value for all agents within an agent
group, or from agents in all subordinate groups if a group
isn’t specified. An aggregator function is a simple statistical
function such as Max, Min, Average, and Range. Group
features have the form Name(group, aggregator, feature).
For example, MostDistant(0, Max, DistanceTo(X)) defines a
group feature named MostDistant whose value is the maxi-
mum value of the DistanceTo(X) feature for agents in group
0. For basic agent groups, a group feature can be defined for
any feature of the basic agent or a feature common to all sub-
ordinate groups when a group is not specified. For controller
agent groups, a group feature can be defined for any group
feature of the subordinate controller. Because feature values
are passed up the hierarchy, this means that group features
may need to be defined in a lower level of the hierarchy even
though they aren’t needed for training coordinated behaviors
at that level.

Targets with Context

Targets referencing other agents in the heterogeneous setting
may require additional context that wasn’t necessary in homo-
geneous training. For example, the SpreadBetween behavior,
which moves an agent between one or more targets X and Y,
may require targets X and Y to actually be bound to agents
in groups 0 and 1 respectively. For the purposes of this work,
the following targets have been defined:

• Closest Agent - My Group is the closest agent within the
agent’s own group.

• Closest Agent - Group n is the closest agent in subgroup
n of the agent’s controller.

• Closest Agent - My Parent is the closest agent in all
subgroups of the agent’s controller.

• Second Closest Agent - My Parent is the second closest
agent in all subgroups of the agent’s controller.

T

H M

M

T

H M

M

G

T

H

M

M

T

H

M

M

G

G = Goal
H = Head
T = Tail
M = Mid

Figure 4: Column Formation

Joint Behaviors with Parameter Conflicts

Joint behaviors specify one behavior per subordinate group;
these behaviors may also be parameterized. When multiple
behaviors in a joint behavior are parameterized it is possible
that parameters with the same name are not to be bound to
the same target. In such cases the trainer can select one of the
conflicting behaviors and trivially train a new behavior bind-
ing the parameters in the heterogeneous setting. Such con-
flicts are described in the InitHT, MoveMids, and SpreadMids
joint behaviors in the Heterogeneous Controller Behavior
Training section.

For example, in MoveMids the MoveAwaySome(X,Y)
behavior has parameters that conflict with MoveBe-
tweenAvoid(X,Y), so it is trained for a Mid agent in the het-
erogenous setting by binding parameter A to Closest Agent -
My Group and parameter B to Closest Agent - Group 0. The
trainer then: starts training, selects the MoveAwaySome be-
havior, ends training, saves the behavior as CreateSpace,
and replaces MoveAwaySome(X,Y) in the joint behavior with
CreateSpace.

Training Column Formation Behaviors

In this work, training has focused on creating four line for-
mations: column, row, echelon right, and echelon left with
respect to some Goal in the environment. The controller
agent for these problems has three subordinate agent groups
to train according to the different agent roles in the forma-
tion: Head, Tail, and Mid agents whose agent groups are
indexed 0–2 respectively. Individual agents are initially dis-
tributed randomly in the environment as shown on the left in
Figure 4, and each line formation behavior coordinates the
agents through a series of steps to position and orient them
with respect to the Goal. The general steps to creating a line
formation are shown below.

1. Initialize by orienting the Head agent at the Goal and
positioning the Tail agent such that the angle between the
Goal and Tail from the perspective of the Head agent is
some value, depending on the formation.

2. Move Mid Agents between the Tail and Head agents

3. Spread Mid Agents between Tail and Head and adjust the
distance from the Tail to the Head to achieve the desired
agent spacing.

4. Orient Mid and Tail Agents like the Head agent.

658



Using this approach, the only difference in training be-
tween the four line formations is the Initialize step. The
desired result of the column behavior is show on the right of
Figure 4.

Individual Behavior Training

While the training of the individual behaviors is not the focus
of this paper, there are some important points to make about
training individual behaviors in light of the overall training
problem. First, training complexity in individual behaviors
is much preferred over training complexity in controller be-
haviors because we wish to maximize agent autonomy and
consequently minimize communication with the controller.
Second, training individual behaviors should should be pa-
rameterized to promote reuse. For example, the MoveBe-
tween behavior for Mid agents is trained to move the agent
between points A and B. The parameters A and B are bound
later to targets in the heterogeneous setting as described in
the next section. In total, we trained 26 individual behaviors
to support the line formation behaviors. The behaviors listed
below are the individual behaviors used in the definition of
joint behaviors for the controller.

• AlignFront(X): Orient the agent so that it is facing the
target X.

• GotoAvoid(X): Move the agent toward the target X while
avoiding objects or agents in its path.

• CircleAvoid(X): Move the agent in a circle around the
target X, with avoidance, in a clockwise direction. The
radius of the circle is set as the distance to X at the time
the behavior starts.

• CircleNegAvoid(X): Move the agent in a circle around the
target X, with avoidance, in a counter-clockwise direction.
The radius of the circle is set as the distance to X at the
time the behavior starts.

• MoveAwaySome(X, Y): When the distance to the target
X is below a threshold, move the agent a short distance
from the opposite direction of target Y, with avoidance.

• MoveCloserTo(X, Y): Move the agent in the direction of
target Y when the distance to target X is greater than some
threshold.

• MoveBetweenAvoid(X, Y): Move the agent onto the line
between two targets X and Y, with avoidance.

• SpreadBetween(X, Y): Move the agent equidistant be-
tween any agent in its group or one of the endpoints X and
Y if the agent has no other agent between itself and X or Y.

• AlignLike(X): Orient the agent in the same direction as
the target X.

The state machines used in training two of the more com-
plex individual behaviors are shown in Figure 5 with the
associated features defined below the corresponding state
HFA. The LineAssoc behavior is intended to run after an
agent has moved onto the line between two points (X, Y) and
it is assumed that there is at least one other agent on the line
and in the same agent group as the training agent. This behav-
ior ensures that the agent is associated with an endpoint if it

S

LineAssoc

Associate 
(CAMG)

Associate 
(X)

Increment 
Counter Goto (X)

Associate 
(Y)

Goto (Y)

Done

CA: Closer(X, CAMG)
CB: Closer(U, CAMG)
DS: DirectionSimilarity(X, CAMG)
C: Counter

CX

CY

DS~1 CX

CBDS~0 

DS~0 

DS~1 

S

SpreadBetween

Reset 
Status

Goto 
(Assoc)

Goto 
(CAMG)

Done

B: Between(Associated, CAMG)
S: Same(Associated, CAMG)

S=1

C>0.5 B~0 

! B~0 

LineAssoc 
(X,Y)

B~0 

B~0 

B~0 

B>0+e 

B<0-e 

GoAway 
(CAMG)

C<0.5

Figure 5: The LineAssociate and SpreadBetween HFA

is directly adjacent, meaning there is no other agent between
the agent and the endpoint, and otherwise associated with the
closest agent in its agent group. Once the association is made
the agent will remain in the Done state until the behavior is
changed. The DirectionSimilarity(A,B) feature returns the
cosine similarity between the vectors from the agent to A and
the agent to B. With all agents being on the line, DS returns
a value close to 1 when the closest agent and X are in the
same direction and close 0 otherwise. Training LineAssoc
was completed using 29 training samples.

The SpreadBetween behavior repositions an agent so that
it is equidistant between the associated object and the closest
agent in the same agent group. Because it is utilizing the
LineAssoc behavior, the associated object is either one of
the endpoints or another agent on the line between them.
The Between(X, Y) feature returns a value between -1 and 1
with the zero value occurring at the point equidistant from X
and Y. If X and Y are the same object, then zero is returned.
Training SpreadBetween was completed using 15 training
samples.

It is important to note that the Done behavior sets the
Done flag and immediately transitions to Start, which is why
additional transitions from Start to Done were trained. Also,
since a behavior can only be bound to one target a behavior
sometimes has to be trivially trained (with no transitions)
and saved under a different name. Thus the Goto/Goto2 and
Associate/Assoc2/Assoc3 behaviors.

Heterogeneous Controller Behavior Training

Heterogeneous controller agent behaviors use the same be-
havior decomposition, feature selection, and training method
as individual behaviors and homogeneous controllers. How-
ever, there are a few additional steps required by the trainer
for heterogeneous controllers.

1. Define joint behaviors from the trained individual behav-
iors of subordinate agents.

2. Perform trivial training of individual behaviors to eliminate
parameter conflicts and update joint behaviors to reference
the new behaviors.

3. Define group features

4. Bind joint behaviors to targets

659



5. Bind group features to targets
6. Train controller behavior FSA based on joint behaviors

and group features.
Before describing the joint behaviors and group features, it

is helpful to define a shorter and more descriptive notation for
the common targets for group features and joint behaviors.
• Goal (A): The goal is bound to the parameter A.
• Head (H): The Head agent is Closest Agent - Group 0.
• Tail (T): The Tail agent is Closest Agent - Group 1.
• Closest Mid (CM): The closest Mid agent is Closest Agent -

Group 2.
• Closest in Formation (CF): The closest agent in the forma-

tion is Closest Agent - My Parent.
• Second Closest in Formation (SCF): The second closest

agent in the formation is Second Closest Agent - My Parent.

Joint Behaviors Seven joint behaviors are defined as
atomic behaviors for the training of line formations.
• InitHT(AlignFront(X), GotoAvoid(X), �): To eliminate

a parameter conflict, Goto(X) is trained as Goto(H) for
the Tail agent and saved as GotoHead. The updated joint
behavior is InitHT(AlignFront(X), GotoHead, �).

• AlignTail(�, CircleAvoid(X), �).
• AlignTailNeg(�, CircleNegAvoid(X), �).
• TailDone(�, Done, �): Note that Done is a special non-

trained behavior that can referenced in a joint behavior.
• MoveMids(�, MoveAwaySome(X, Y), MoveBe-

tweenAvoid(X, Y)): To eliminate a parameter conflict,
MoveAwaySome(X, Y) is trained as MoveAwaySome(CM,
H) for the Tail agent and saved as CreateSpace. The
updated joint behavior is MoveMids(�, CreateSpace,
MoveBetweenAvoid(X, Y)).

• SpreadMids(�, MoveCloserTo(X, Y), SpreadBe-
tween(X, Y)): To eliminate a parameter conflict,
MoveCloserTo(X, Y) is trained as MoveCloserTo(CM,H)
for the Tail agent and saved as AdjustSeparation. The up-
dated joint behavior is SpreadMids(�, AdjustSeparation,
SpreadBetween(X, Y))

• AlignLikeHead(�, AlignLike(X), AlignLike(X)): There
is no parameter conflict in this case.

Group Features Five group features are defined for the
training and operation of the heterogeneous controller FSAs.
• TailAligned(0, Average, RelativeDirection(X, Y,Z)): Re-

turns the angle between vectors XY and XZ as measured
by the Head agent.

• MidsBetween(2, Max, DistanceBetween(X, Y)): Returns
the maximum distance from Mid agents to nearest point
on the line between X and Y.

• MidsDistributed(2, Max, DistanceTo(X)): DistanceTo re-
turns the distance from the Mid agents to X.

• TailProximal(1, Max, DistanceTo(X): Returns the dis-
tance from the Tail agent to X.

• MidsDone(�, Min, Done): Returns 1 if the Done flag is
set for all agents in the formation.

S Done

TailAligned

TailAligned
TailAligned

TailAligned

S Done

MidsBetween(H,T)

S Done

MidsDistributed(SCM)

S AlignTailCol 
(A)

AlignMids AdjustLine 

Done

Done

Done

Done,
TailAligned

S FinishCol 
(A)

MidsDoneTailProximal(H)

Done

FormCol

FinishCol

AdjustLine

AlignMids

AlignTailCol

SpreadMids 
(H,T)

MoveMids 
(H,T)

AlignTail 
(H)

AlignTailNeg 
(H)

TailDone 
(H)

AlignLikeHead 
(H)

InitHT 
(H)

Figure 6: Column Formation HFA

Training and Results

Training was successfully performed for each of the four line
formation behaviors. Training of the column formation be-
havior, FormCol, was completed by training the HFA shown
in Figure 6 from the bottom up as pictured. Joint behaviors
are represented by a hexagonal shape while trained behaviors
(and Done) are elliptical shapes. The targets of the behaviors
and features are noted in parentheses. The results of a run
of the behavior in the HiTAB simulator with 3 Mid agents
are shown in Figure 7 where the Home Base marker is se-
lected as the goal. Training of the entire controller HFA was
accomplished with a total of 36 training examples, the bulk
of which were used to train AlignTailCol (18) and FinishCol
(12).

Training the other formations is very similar by following
these steps steps below. The column formation only differs
in that the last two steps are not required.

1. Position Head near target and orient so that angle with
respect to the goal is that of the desired line formation.

2. Form the other agents in a line behind the head.

3. Orient the Head to face the goal.

4. Orient the other agents like the head.

Because there was some reuse of trained behaviors in col-
umn training the additional line formations only required 33
training samples each even with the two additional steps. The
goal of this work wasn’t to minimize the number of training
samples, but the totals indicate the efficacy of the manual

660



Home Base

Figure 7: Column Formation in HiTAB

behavior decomposition to address the inverse problem for
heterogeneous controller training.

After we trained the behaviors, we ran the learned behavior
with different numbers of middle agents. As expected, the
formation behavior with additional agents formed a longer
line. The Line formation behaviors have the limitation that
the controller hierarchy is fixed in size. So while this work
accomplished the goal of training heterogeneous line forma-
tions that scale as the number of Mid agents grows, it does
not (and cannot) grow the number of virtual controllers to
effectively use additional Head or Tail agents.

Training the behaviors is complicated a problem related
to behavior decomposition and feature selection. When we
decompose the behaviors, features are selected based on the
state transitions in the HFA and the way those features are
used in the learned transition function sometimes differ from
the expectation of the trainer because of the underlying ma-
chine learning method. As decision trees are the default
method to learn the transition function, the small number
of training samples often introduces some randomness in
choosing which feature is determined to have the most infor-
mation gain. This becomes more problematic when floating
point features are used since they will often have a different
value for all training samples. This can be overcome by de-
composing behaviors so that they have at most one floating
point feature. Using the Done behavior allows a higher level
HFA to use the Done feature in training rather than a floating
point feature. The decomposed HFA in Figure 6 and Figure 5
reflect this approach.

Conclusions and Future Work

This work demonstrates the training of complex heteroge-
neous multiagent behaviors using HiTAB. Specifically, we
trained heterogeneous virtual controllers which coordinated
subordinate agents to produce four different line formations.
Without retraining, the behaviors continue to operate cor-
rectly when the number of agents is increased. This training
required substantial effort on the part of the trainer to manu-

ally decompose the controller behavior, define joint behaviors
and group features, and finally to train the controller behav-
ior. However, the training required a very small number of
samples and no special purpose code.

For future work, we will focus on training heterogeneous
behaviors where controller agent groups may grow in size
based on the number of agents available in operation. This
is a complex problem since the hierarchy may be deep and
unbalanced with a decision to be made at each level to expand
the controller agent group. The basic agents then have to be
effectively distributed in the expanded controller hierarchy.

Two types of test problem have been identified to further
this research, N-deep formations and heterogeneous game
scenarios. First, N-deep formations require a greater degree
of coordination and will most likely present new challenges
in terms of contextual agent targets and group features for
controllers at level 2 and above in a controller hierarchy. As
previously described, a grid formation my require growth
of a controller agent group to expand the grid to effectively
include the available agents. This problem can be extended
to a line of grids, a wedge of grids, and so on.

Second, we will concentrate on heterogeneous game sce-
narios. While formations are an easily understood set of
challenge problems for heterogeneous behavior training and
have behaviors that can scale to the agents available, it is dif-
ficult to measure the effectiveness of growing the controller
hierarchy. We will create a game scenario where resulting
heterogeneous controller hierarchy can be grown to utilize
additional agents and there is also some goal that can be
measured. This will allow us to compare the effectiveness of
our hierarchy growing algorithm to other methods.

Acknowledgments

This research in this paper was conducted with the support of
research infrastructure developed under NSF grant 1727303.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Atkeson, C. G., and Schaal, S. 1997. Robot learning from
demonstration. In ICML, volume 97, 12–20.
Balch, T., and Arkin, R. C. 1998. Behavior-based formation
control for multirobot teams. IEEE Transactions on Robotics
and Automation 14(6):926–939.
Barnes, L. E.; Fields, M. A.; and Valavanis, K. P. 2009.
Swarm formation control utilizing elliptical surfaces and
limiting functions. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 39(6):1434–1445.
Blokzijl-Zanker, M., and Demiris, Y. 2012. Multi robot
learning by demonstration. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems-Volume 3, 1207–1208. International Foundation for
Autonomous Agents and Multiagent Systems.
Chernova, S., and Veloso, M. 2010. Confidence-based multi-
robot learning from demonstration. International Journal of
Social Robotics 2(2):195–215.

661



Das, A. K.; Fierro, R.; Kumar, V.; Ostrowski, J. P.; Spletzer,
J.; and Taylor, C. J. 2002. A vision-based formation control
framework. IEEE Transactions on Robotics and Automation
18(5):813–825.
Elston, J., and Frew, E. W. 2008. Hierarchical distributed
control for search and tracking by heterogeneous aerial robot
networks. In Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on, 170–175. IEEE.
Luke, S., and Ziparo, V. A. 2010. Learn to behave! rapid
training of behavior automata. In Proceedings of Adaptive
and Learning Agents Workshop at AAMAS 2010.
Martins, M. F., and Demiris, Y. 2010. Learning multi-
robot joint action plans from simultaneous task execution
demonstrations. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems:
volume 1-Volume 1, 931–938. International Foundation for
Autonomous Agents and Multiagent Systems.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning from
demonstration. In Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on, 763–768. IEEE.
Pinciroli, C.; O’Grady, R.; Christensen, A. L.; and Dorigo,
M. 2010. Coordinating heterogeneous swarms through min-
imal communication among homogeneous sub-swarms. In
International Conference on Swarm Intelligence, 558–559.
Springer Berlin Heidelberg.
Soule, T., and Heckendorn, R. B. 2010. A developmental
approach to evolving scalable hierarchies for multi-agent
swarms. In Proceedings of the 12th Annual Conference
Companion on Genetic and Evolutionary Computation, 1769–
1776. ACM.
Sullivan, K., and Luke, S. 2012. Learning from demon-
stration with swarm hierarchies. In Proceedings of the 11th
International Conference on Autonomous Agents and Multia-
gent Systems-Volume 1, 197–204. International Foundation
for Autonomous Agents and Multiagent Systems.
Sullivan, K.; Wei, E.; Squires, B.; Wicke, D.; and Luke,
S. 2015. Training heterogeneous teams of robots. In Au-
tonomous Robots and Multirobot Systems (ARMS).

662


