A Demonstration of Neural Programming
Applied to Non-Markovian Problems

Gabriel Catalin Balan and Sean Luke

George Mason University, Fairfax, VA 22030
gbalan@cs.gmu.edu, sean@cs.gmu.edu

Abstract. Genetic programming may be seen as a recent incarnation
of a long-held goal in evolutionary computation: to develop actual com-
putational devices through evolutionary search. Genetic programming is
particularly attractive because of the generality of its application, but it
has rarely been used in environments requiring iteration, recursion, or
internal state. In this paper we investigate a version of genetic program-
ming developed originally by Astro Teller called neural programming.
Neural programming has a cyclic graph representation which lends itself
naturally to implicit internal state and recurrence, but previously has
been used primarily for problems which do not need these features. In
this paper we show a successful application of neural programming to
various partially observable Markov decision processes, originally devel-
oped for the learning classifier system community, and which require the
use of internal state and iteration.

1 Introduction

Early evolutionary computation work (famously [1]) centered not on optimizing
the settings for multidimensional parameter spaces but on using simulated evo-
lution to develop mechanisms which perform computational functions. This goal
has resurfaced in different forms over time, including the evolution of classifier
systems, neural networks and automata, and most recently, genetic program-
ming. The impetus for GP has from the beginning been “computer programs”
which ideally can “perform iteration and recursion”, “define intermediate val-
ues and subprograms”, etc. ([2], p. 2). In keeping with this motivation, many
GP methodologies have encorporated forms of iteration, recursion, and internal
state. This notwithstanding, nearly all of genetic programming concerns itself
with relatively simple feed-forward functions, and given the lack of even rudi-
mentary iteration or internal state in common GP problems it seems strange to
refer to GP as genetic programming at all.

As discussed later, much of the work in computational mechanisms involv-
ing iteration and internal state, and many illustrative problem domains, have
recently been in learning classifier systems. Extensions to classifier systems such
as XCS have of late added basic facilities to learn agent policies for partially-
observable Markov decision processes, whose non-Markovian features require
internal state. But classifier systems are of limited generality. Our interest is in

evolving programs as graph structures with at least basic iteration and internal
state, in forms sufficiently general to be used for a wide variety of tasks.

Most work in recurrent GP has so far centered around methods where a sin-
gle node in a graph is currently in control at any one time, and control passes
forward to a single successor node. An exception to this pattern is Astro Teller’s
neural programming (NP) architecture [3] which activates all nodes in the graph
simultaneously, letting data flow synchronously in parallel to successor nodes.
Teller’s model has appealing features which we believe could provide interesting
advantages over a single state model: data parallelism, more natural use of func-
tions rather than state transitions, and the promise of more graceful degradation
under modification. However Teller did not use his model in non-Markovian envi-
ronments requiring internal state and iteration, choosing instead to demonstrate
its functionality with problems to which a traditional GP representation may
be easily applied. In this paper we will demonstrate, as a proof of concept only,
that the NP model may be used in non-Markovian environments.

The test problems we chose in this paper are “Woods” problems common to
learning classifier systems. We chose these problems for our test cases specifically
because they are not problems for which neural programming is likely to be
well-designed, particularly because our neural programming representations can
be of any size. These problems are custom-tailored for discrete, policy-oriented
single-state systems such as XCS: but we will demonstrate neural programming’s
efficacy on these problems. In future work we hope to test neural programming
on continuous environments for which we think it is likely to be a much better
match, such as two-pole balancing with no provided velocity information.

The rest of the paper is organized as follows. First we discuss relevant previ-
ous work in GP and learning classifier systems, including the Woods problems.
We then describe our version of neural programming and how we apply it to
these problems. Last, we present the experimental work and results.

1.1 Genetic Programming and Neural Programming

Though some early work attempted to add mapping, iteration, or recursive op-
erators to genetic programming [2], these aims have never caught on in the
community, with a few important exceptions ([4,5]). Iteration operators and
internal memory are generally rare in GP. Recursion is easily achievable with
automatically defined functions (ADFs), but ADFs are primarily used to add
modularity rather than recursive function calls.

Angeline [6] proposed a variation on the ADF theme, called multiple interact-
ing programs (MIPs) nets, which replaced recursion with forward data flow: trees
generated values which were then fed into “parent” trees: cycles in parenthood
were permitted. Like neural programming, MIPs nets allowed for parallelism.

The alternative method, using a single active state at a time, is presented
in [7]. Here, nodes in a cyclic call graph contain both actions (side effects) and
conditional branches. The graph structure was later replaced with a sequence of
linear genetic programming instructions [8]. Similarly [9] allowed GP programs
with single active states to be augmented with forward and backward edges,

Mutate-ERC (20%) changes all ephemeral random constants.

Mutate-Nodes (20%) replaces a random number (from 1 to 3) of nodes with ones of identical
arity, so that the graph’s topology is not affected.

Mutate-Edges (25%) changes the source nodes of a random number (from 1 to 3) of edges.

Mutate-Result-Node (20%) randomly designates a new result node.

Crossover (10%) swaps fragments between two graphs. First, each graph randomly chooses a num-
ber N, where N is the number of nodes to be kept and the remaining M are to be crossed over.
N may differ for the two graphs. The values of N are chosen with the constraints that both
graphs may not crossover all, nor zero, of their nodes, and that no crossover may result in a
graph of less than 2 or more than 40 nodes. A BFS traversal is then performed on each graph,
starting with the result node, until N nodes have been traversed. The subgraph consisting of
the M nodes not in the traversal is swapped with its counterpart in the other individual. Nodes
with broken inputs have new input edges attached from randomly-chosen sources.

Randomize (5%) replaces the individual with a brand-new individual. First, between 2 and 40
nodes are generated and placed in an array: terminals (zero-arity nodes) are selected 1/3 of
the time, and nonterminals 2/3 of the time. Nodes needing inputs are connected to neighboring
sources chosen at random from up to 20% of the array length in either direction.

Table 1. Genetic operators, with probabilities of occurrence and descriptions.

forming cycles. [10] incorporated time delays to prevent infinite execution loops
in the graph. This work also showed the effectiveness of the method using non-
Markovian multiagent problems.

In Teller’s neural programming (NP) [3], the representation is a graph of
nodes similar to tree-based GP nodes. Each node takes input from other nodes,
applies a function to its inputs, and outputs the result. Cycles are permitted
and are common. In NP, all the nodes execute their functions simultaneously
and synchronously based on the data each received in the previous time period.
Since there is no single state, there is also no “start node”, and so nodes must
all have initial default values they output until they begin receiving data from
other nodes. Just as in tree-based GP, NP nodes may also have zero inputs, and
ephemeral random constants are permitted.

Our implementation of NP differs from the original in a few important ways.
First, NP had an ADF mechanism, but in our experiments we will not use it.
Second, NP’s nodes were normally not restricted in arity: as many or as few
nodes as necessary could feed them data. In our implementation this is not the
case — we will enforce a fixed arity in a fashion similar to tree-based GP nodes.
Third, NP originally featured a credit assignment mechanism used to determine
which edges and nodes should be more susceptible to genetic modification. This
mechanism was relatively easy to use for Teller’s original signal-classification
applications, but in the Woods problem it is somewhat problematic and we have
discarded it. Last, neural programming graphs were augmented with one or more
fixed “output nodes” whose values indicated the output of the program. We do
not use a fixed output node, but instead allow the system to designate any node
in the graph to also be the “result node” whose output is the output of the
program. Each time step, the current value of the result node may change as
data continues to flow through the graph.

Graph-structured representations inevitably require exotic genetic operators.
Table 1 contains the description of the operators we used. We iteratively picked

Ambiguous Perfect solution
Environment|classes|states|max length|average length

Woods101 1 2 4 2.9
Maze7 1 2 7 4.3
MazeF4 1 2 7 4.5
El 9 20 4 2.81

E2 5 36 5 2.979196
MazelO 3 7 8 5.05

Table 2. The characteristics of the Woods mazes. Shown are the number of ambiguous
states and the number of equivalence classes they fall into; and the maximum and
average path lengths of perfect solutions.

one operator by its probability, then applied it once to selected individuals,
resulting in one or (for Crossover) two children. Individuals were selected using
tournament selection of size 5. Population initialization used the Randomize
operator described in Table 1.

2 The Woods Environments

In a simple version of the Woods problem [11, 12] an agent navigates a grid-based
maze trying to find food. The grid cells are either obstacles (“woods”), food (the
goal), or are empty. An agent can only sense the contents of cells in its immediate
8-neighborhood, and may only transition to one of the eight neighbors in that
timestep. If an agent attempts to transition to a woods cell, it fails to do so and
remains at its current location. The goal is to guide the agent to the food in the
minimal number of steps regardless of initial position.

Many woods problems are Markovian: a set of behaviors may be learned
for the agent which guide it to the food each time based solely on the current
sensor values. In other problems, different cells yield identical sensor values but
require different actions, and so the agent must rely to some degree on internal
memory. This situation is referred to as the perception aliasing problem, and the
associated environments are said to be non-Markovian.

Non-Markovian environments have long been studied by the learning classi-
fier system literature. Early work [14] allowed rules to write to a global internal
state. Wilson [15] more formally suggested adding internal memory condition and
action segments to rules, allowing the storage of information in bit-registers. Bit
registers have since been used to extend other models ([16,17]). Relatively few
such papers allow more than a fixed, and usually very small, number of registers.
An alternative approach is to allow the action part of a rule be a sequence of
actions rather than a single action [18].

Work in these problems has also been done using Pitt-approach rule systems
[13], extending the mechanism to finite-state automata. Some work has also been
done in performing pareto optimization to minimize the amount of internal state
necessary [19].

Fig. 1. The non-Markovian Woods environments used in this paper. The notation is
consistent with [13]: black cells are obstacles and F is the goal state. Each figure also
shows one (possibly suboptimal) solution to the problem: a cell is numbered with the
steps necessary to reach the goal from that cell using this solution. (a) Woods100 shows
the solution represented by the neural program in Figure 2. (b) Woods101, (c) Maze7,
(d) MazeF4, (e) E1, (f) E2, and (g) MazelO show solutions discovered by the NP system
in the paper; cells marked [] are one step longer than an optimal solution. (g) shows
an optimal solution for Mazel0 suggested by Samuel Landau.

Delay (v1) Outputs its input.

To8 (v1) Rounds its input to point to the nearest of the eight canonical directions.

‘Wall Filter / Empty Filter (v;) Returns its input if the input points to a wall / empty cell.
Otherwise, returns the vector {0,0}.

‘Wall Radar / Empty Radar () Cycles through vectors pointing towards the neighboring walls /
empty cells in trigonometric order, outputting each in turn. After every complete cycle, outputs
one {0,0} vector.

Wall Sum / Empty Sum () Returns the sum of those vectors from the eight directions that point
to walls / empty spaces.

Add (v1,v2) Adds two vectors together.

Sub (v1,v2) Subtracts two vectors.

Accumulator (v1) Accumulates the vectors inputted over time. Equivalent to an Add node with
one input connected to its own output.

Time Weighted Accumulator (v;) Accumulates the vectors inputted over time, each multiplied
by the time step. The output at time t is 32/21 @ x input;/ SI_1 4.

Vector ERC () An ephemeral random 2D constant.

Rotation ERC (v;) Rotates its input vector clockwise by an angle equal to km/8, where k is an
integer ephemeral random constant in the range 1...15.

If-Equal (v1,v2,vs3,v4) Returns vs if v1 = va, else vg

If-Greater (vi,v2,v3,vs) Returns vg if |v1| > |vz], else vy

If-Dot (v1,v2,vs,vs) Returns vg if vy - v2 > 0, i.e. <(v1,v2) € [—7/2,7/2], else vy

Table 3. The Function Set for the Woods Problem. Each function is followed by the
inputs to the function, and a function description. All functions operate on 2D real-
valued vectors. If a node has not yet received input, its output is the vector {0,0}.

The Woods problems studied here are shown in Figure 1. Characteristics of
these environments (number of ambiguous states, number of classes those states
fall into, and maximum and average path lengths of perfect solutions) are shown
in Table 2.

2.1 Application of Neural Programming to the Woods Problem

To move the agent around a Woods maze, we chose to have the neural program
output a vector rather than move the agent via function side effects. All functions
in the function set (shown in Table 3) operated on 2D continuous vectors and
returned vectors.

Each time we needed to move the agent one square, we first determined if
the agent was right next to food. If so, we hard-coded its movement directly
to the food. If not, we evaluated the neural program graph to determine where
the agent should go. First, the graph was stepped m times to “prime” it. Then
the graph continued to be stepped until the result node outputted a vector in a
valid direction (that is, one not pointing into woods and not {0,0}), and moved
the agent to the eight-neighbored square in the direction of that vector. If after
M > m steps the result node still did not yield a valid direction, the agent was
not moved. The particular sizes of M and m chosen are problem-specific, and
are indicated as (m, M) in the discussion for each experiment.

Fitness assessment may be done in a variety of ways. We chose to run the
neural program with the agent placed in each empty square, then averaged the
lengths of the paths it took to find the food. An agent might never reach the food,
so path length is limited to a problem dependent cutoff threshold maz-walk.

Empty Radar
Sub (2, 0)
Sub (2, 3)
Wall Sum

W= O
*

Fig. 2. Two views of a neural program solving the Woods100 maze. The table at right
lists the four program nodes (0-3), and indicates the nodes provided as input. The
result node is marked with a *. The figure shows the equivalent graph structure.

(1,1) (2,1) (3,1) position
0]1(2[3]|4|5[6|7]|8]|9]10{11]|12|13|14|15|16(17|18|time step
0 Empty Radar(O{1{0|1|0|1|0|1|1]|0f1|1|0|1|l0|1]|0O|1]|O
— — — — | — — [— — —
1 Sub(2,0) 01 |1({1[1|3|3|5|5|7|6|5|7[6|7|6|7|6]|T7
— | === = === === === ===
2 Sub(2,3) 0]0|1({2[3|4(5|6|6|6|6|6|6[6|6|6|6|6]|6
=== === = === = === = —
3 Wall Sum ojr{1f{1f{1f1{rfojo0jojojojofojofojofojo
— |||+

Table 4. Value traces for all nodes of the graph in Figure 2 operating in the Woods100
maze starting at position (1, 1). The agent is primed six times prior to making an action.
The action is read from the result node shown in light gray. Cells contain the output
vectors for each node in polar coordinates: size and heading.

An Ezxample Consider the neural program shown in Figure 2. The table to the
right shows the four nodes of the program, each labelled with an index 0-4. Node
1 is labelled with a *, indicating that it is the result node. The figure to the left
shows the recurrent call-graph of the neural program.

This neural program will be run with an (m, M) value of (6,12). Table 4
shows its trace moving from position (1,1) to (3,1) in the Woods100 maze. In
this example, before each action the neural program is primed six times, after
which it happens to be outputting a valid vector and needs no further stepping.
Figure 1(a) shows the path lengths of the solution followed by this program were
it to be started in any particular empty location.

3 Experimental results

We have tested the described system on six non-Markovian environments:
Woods101, Maze7, MazeF4, E1, E2 and Mazel0 (the Woods100 maze is trivial).
These environments vary widely in difficulty.

We implemented NP using ECJ ([20]). Unless specified otherwise, all exper-
iments evolved populations of 1000 individuals for 100 generations each. Each

Priming Random Search Evolutionary Search
Problem | (m, M) |Evals| Mean | Stdev |#Ideals| Mean | Stdev |#Ideals
Woods101| (6,6) |500K|3.47999(0.18735 3.42399(0.35945 2
Woods101| (6,12) |100K|4.08200(0.44524 3.40599(0.36500 2
Maze7 (17,34) |100K |7.67333(0.83944 5.97777(1.04424 3
MazeF4 (11,22) |100K| 8.21 |[1.17649 6.97600(1.45301 0
E1l (11,22) |100K|3.22914(0.47751 2.9245410.11119 12

(

(

E2 11,22) |500K |3.17666|0.03885 3.08416(0.03668 0
Mazel0 12,24) 100K |19.8344|2.42619 13.0622|5.05325 0

o|o|o|o|o|o|o

Table 5. NP vs. Random search.

individual was one neural program containing between 2 and 40 nodes. For all
environments but the last one, maz-walk was set to 10.

This is the first time a generalized graph-based GP method has been tried
on these problems. Even if it were not, few examples from the GP literature dis-
cussed earlier provide useful statistics to compare against. The method described
here, as we imagined, is generally far outperformed by the learning classifier lit-
erature, though it fares well against the Pitt-approach rule system results. This
is to be expected though: these problems are custom-tailored for LCS systems.
Our method is hobbled by searching a wide range of internal states and a more
general-purpose architecture. This reduces us to demonstrating proof of concept.
We do so by comparing the search method against random search for the same
representation.

Thus we compare the best-of-run fitness values of 50 runs with the best values
found in 50 runs of random search with an equal budget of evaluations, using
an ANOVA at 95% confidence. Note that by random search we mean generating
random individuals every generation, and not just performing uniform selection.
Figure 5 shows the results. In every case we outperform random search, except
for the easy 500K Woods101 problem, for which the difference is statistically
insignificant. We also find ideal solutions in several cases, whereas random search
finds none.

3.1 Woodsl101

The Woods101 environment, studied in [16,21], is a very simple maze with only
one pair of perception aliased states — see Figure 1(b). This means that learning
classifiers and finite-state automata only require two internal states to solve
the problem. We found optimal programs in two runs set at (5,10). The most
compact was:

0* If-Equal (1, 0, 2, 3) 3 Sub (4, 5)
1 Wall Filter (0) 4 If-Dot (4, 3, 0, 1)
2 Empty Radar 5 Wall Sum

3.2 Maze7

The Maze7 environment (Figure 1(c)) was discussed in [22, 21] and again contains
only one pair of aliased positions. However, one of the paths must pass through
both ambiguous states. While the longest solution path for the Woods101 envi-
ronment is 4, the longest solution path in Maze7 is 7, and the average is 4.3. Thus
Maze7 is considered more challenging than Woods101. One discovered perfect
solution, set at (17,34), was:

0* Space Filter (1) 4 Delay (6)
1 If-Dot (2, 3, 2, 1) 5 Empty Radar
2 Empty Radar 6 Time Weighted Accumulator (7)
3 Rotation ERC [37/8] (4) 7 If-Greater (6, 5, 7, 5)
3.3 MazeF4

The MazeF4 environment (Figure 1(d)) is a rotation of Maze7 plus an extra
non-ambiguous empty space. The optimal solution has an average path length
of 4.5 and a maximum of 7 steps. In the fifty runs of our experiment we did not
discover an optimal solution; but in other experiments we discovered several,
including the following (8,16) program:

0* If-Dot (1, 2, 3, 4) 9 Wall Radar

1 Space Filter (5) 10 Vector ERC [-0.9425225, 0.3341425]
2 Space Filter (6) 11 Sub (12, 13)

3 Empty Radar 12 If-Equal (14, 3, 15, 0)

4 If-Dot (7, 8, 8, 4) 13 Vector ERC [-0.6436193, 0.7653458]
5 Add (9, 9) 14 IfDot (12, 13, 16, 15)

6 Rotation ERC [77/8] (10) 15 Rotation ERC [—7/8] (3)

7 Delay (11) 16 Time Weighted Accumulator (16)

8 Empty Radar

3.4 E1 and E2

The E1 and E2 environments were introduced in [18]. While the other mazes
studied in this work consist of narrow corridors only, the E1 and E2 environments
feature wide-open areas. E2 is an empty environment with a food cell in the
center. There are 36 perceptually aliased positions belonging to five different
perception classes. The optimal solution in E2 is 2.97916 steps on average and
5 steps maximum. We discovered no optimal solutions for E2. The closest, an
(11,22) program, is only suboptimal by two steps. E2 is shown in Figure 1(f)
marked with the suboptimal steps. The program is below:

0* Time Weighted Accumulator (1) 9 If-Greater (3, 45, 13, 14)
1 If-Greater (2, 3, 2, 4) 10 Delay (15)

2 To8 (5) 11 Wall Radar

3 Time Weighted Accumulator (6) 13 Space Filter (1)

4 Empty Radar 14 Accumulator (18)

5 Empty Radar 15 Empty Sum

6 Sub (7, 8) 18 Sub (19, 15)

7 Add (9, 10) 19 Vector ERC [0.0, -1.0]

8 Rotation ERC [r/2] (11) 45 Vector ERC [1.0, -1.0]

E1 (Figure 1(e)) is a significantly easier version of E2, with only 20 aliased
positions belonging to nine classes. For a more intuitive depiction of the percep-
tion classes, see [13]. The average optimal path length is 2.81, and the maximum
is 4. We found twelve optimal solutions for E1, including the following (11,22)
program:

0* Accumulator (1) 4 Empty Radar
1 If-Greater (2, 3, 4, 1) 5 Add (5, 4)

2 Add (5, 0) 6 Wall Filter (5)
3 If-Greater (2, 0, 6, 3)

3.5 MazelO

This environment was introduced in [17]. There are seven perceptually aliased
positions split into three classes, not counting ambiguous cells that require the
same action. Although only one bit of memory is theoretically enough to solve
the problem, it has proven prohibitively difficult [23]. The average optimal path
length is 5, and the maximum is 8. Because the optimal solution contains an
eight-step path, our customary maz-walk threshold of 10 steps used so far is too
small, and so we increased it to 25.

We did not find an optimal program for this problem. Our best solution, with
an average optimal path length of 6.16 steps, was the following (13,26) program:

0* If-Equal (1, 2, 3, 1) 6 Sub (3, 12)

1 To8 (3) 7 If-Greater (3, 8, 12, 8)

2 To8 (4) 8 Empty Radar

3 If-Dot (5, 6, 7, 8) 9 Wall Sum

4 If-Dot (9, 9, 10, 1) 10 Empty Radar

5 Rotation ERC [57/8] (12) 12 Vector ERC [0.99563, 0.09339)]

Figure 1(g) shows the path lengths for this solution, while Figure 1(h) shows
the path lengths for an optimal solution.

4 Conclusions and Future Work

One of neural programming’s most interesting and attractive features is the cyclic
nature of its representation. Surprisingly, previous work in NP [3] does not rely
on this feature at all; indeed recurrence in the graph is more or less relegated to
providing modularity and iterative improvement of an existing solution. In this
paper our goal was to demonstrate that NP could also make use of its recurrence
to solve problems requiring internal state.

In order to demonstrate the generality of the mechanism, we chose a problem
which we knew beforehand that NP was not suited to. We tested NP on vari-
ous non-Markovian problems more commonly used for policy-learning methods
such as learning classifier systems. These problems ranged widely in difficulty.
Accordingly, as expected, our success rates are lower than those reported in the

LCS community and the number of evaluations required are higher. Still, in
most of the problems we were able to find optimal solutions; in the remainder
we found near-optimal solutions.

In future work, our next goal is to demonstrate the efficacy of NP in a very
different environment for which LCS or FSAs are not suited but NP is: one
requiring recurrent mathematical calculation and internal state: for example, a
problem solvable only by partial differential equations. One such problem do-
main that we are planning to tackle is a two-pole balancing problem with only
positional information provided.

Another area of future work we hope to pursue is how to add recursion and
expandable internal state to the neural programming paradigm in a way which
is tractable. While we may argue for the generality of the neural programming
method in terms of application (similar to the variety of problems to which GP is
applied), and while NP can perform iteration and use finite amounts of internal
state, nonetheless we have not investigated how to get NP to solve problems
requiring a stack. Last, we hope to investigate the application of more traditional
GP methods (ADFs with indexed memory, etc.) against such problem domains
as the one described. Genetic programming has always held an implied promise
of discovery of arbitrary computer programs to solve problems and we hope this
work might further this effort.

Acknowledgments

We thank Keith Sullivan for his help in the paper preparation, and the reviewers
for their helpful suggestions.

References

1. Fogel, L.: Intelligence Through Simulated Evolution: Fourty Years of Evolutionary
Programming. Wiley Series on Intelligent Systems (1999)

2. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, MA (1992)

3. Teller, A.: Algorithm Evolution with Internal Reinforcement for Signal Under-
standing. PhD thesis, Carnegie Mellon University (1998)

4. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming III
- Darwinian Invention and Problem Solving. Morgan Kaufmann (1999)

5. O’Neill, M., Ryan, C.: Under the hood of grammatical evolution. In Banzhaf, W.,
Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.:
Proceedings of the Genetic and Evolutionary Computation Conference. Volume 2.,
Orlando, Florida, USA, Morgan Kaufmann (1999) 1143-1148

6. Angeline, P.J.: Multiple interacting programs: A representation for evolving com-
plex behaviors. Cybernetics and Systems 29 (1998) 779-806

7. Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-evolution in graph
GP. In Poli, R., Nordin, P., Langdon, W.B., Fogarty, T.C., eds.: Genetic Program-
ming, Proceedings of EuroGP’99. Volume 1598., Springer-Verlag (1999) 15-28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Kantschik, W., Banzhaf, W.: Linear-graph GP — a new GP structure. In Foster,
J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B., eds.: Proceedings of
the Fifth European Conference on Genetic Programming (EuroGP-2002). Volume
2278 of LNCS., Kinsale, Ireland, Springer Verlag (2002) 83-92

Green, F.B.: Performance of diploid dominance with genetically synthesized signal
processing networks. In Béck, T., ed.: Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA97), San Francisco, CA, Morgan Kauf-
mann (1997) 615-622

Katagiri, H., Hirasawa, K., Hu, J., Murata, J.: Network structure oriented evolu-
tionary model-genetic network programming-and its comparison with genetic pro-
gramming. In Goodman, E.D., ed.: 2001 Genetic and Evolutionary Computation
Conference Late Breaking Papers, San Francisco, California, USA (2001) 219-226
Wilson, S.W.: Knowledge growth in an artificial animal. In: Proceedings of the In-
ternational Conference on Genetic Algorithms and Their Applications, Pittsburgh,
PA (1985) 1623

Wilson, S.W.: The animat path to AI. In Meyer, J.A., Wilson, S.W., eds.: Pro-
ceedings of the First International Conference on Simulation of Adaptive Behavior
(From animals to animats). (1991) 15-21

Landau, S., Sigaud, O., Picault, S., Gérard, P.: An experimental comparison be-
tween ATNoSFERES and ACS. In Stolzmann, W., Lanzi, P.L., Wilson, S.W., eds.:
IWLCS-03. Proceedings of the Sixth International Workshop on Learning Classifier
Systems. LNAI, Chicago, Springer (2003)

Holland, J.H.: Escaping brittleness: The possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In Michalski, R.S., Carbonell,
J.G., Mitchell, T.M., eds.: Machine Learning: An Artificial Intelligence Approach:
Volume II. Kaufmann, Los Altos, CA (1986) 593-623

Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2
(1994) 1-18

Cliff, D., Ross, S.: Adding Temporary Memory to ZCS. Adaptive Behavior 3
(1995) 101-150

Lanzi, P.L.: An analysis of the memory mechanism of XCSM. In Koza, J.R.,
Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H.,
Goldberg, D.E., Iba, H., Riolo, R., eds.: Genetic Programming 1998: Proceedings
of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin,
USA, Morgan Kaufmann (1998) 643-651

Metivier, M., Lattaud, C.: Further comparison between ATNoSFERES and XCSM.
In Stolzmann, W., Lanzi, P.L.., Wilson, S.W., eds.: Proceedings of the Fifth Inter-
national Workshop on Learning Classifier Systems, Springer (2002) 143-163

Kim, D., Hallam, J.C.T.: An evolutionary approach to quantify internal states
needed for the woods problem. In Hallam, B., Floreano, D., Hallam, J.C.T., Hayes,
G., Meyer, J.A., eds.: From Animals to Animats, MIT Press (2002) 312-322
Luke, S. ECJ 11: A Java EC research system.
http://cs.gmu.edu/~eclab/projects/ecj/ (2004)

Lanzi, P.L., Wilson, S.W.: Toward optimal classifier system performance in non-
markov environments. In: Evolutionary Computation. Volume 8. (2000) 393-418
Lanzi, P.L.: Adding Memory to XCS. In: Proceedings of the IEEE Conference on
Evolutionary Computation (ICEC98), IEEE Press (1998)

Landau, S., Picault, S., Sigaud, O., Gérard, P.: Further comparison between
ATNoSFERES and XCSM. In Stolzmann, W., Lanzi, P.L., Wilson, S.W., eds.:
IWLCS-02. Proceedings of the Fifth International Workshop on Learning Classi-
fier Systems. LNAI, Granada, Springer (2002)

