Planner-Guided Robot Swarms

Michael Schader and Sean Luke

George Mason University, Fairfax VA 22030, USA
{mschader,sean}@gmu.edu

Abstract. Robot swarms have many virtues for large-scale task execution: this
includes redundancy, a high degree of parallel task implementation, and the poten-
tial to jointly complete jobs that a single agent could not do. But because of their
distributed nature, robot swarms face challenges in large-scale coordination, task
serialization or ordering, and synchronization. We investigate the use of a central
automated planner to guide a robot swarm to perform complicated, multistep
operations normally beyond the capabilities of purely decentralized swarms. The
planner orchestrates the actions of task groups of agents, while preserving swarm
virtues, and can operate over a variety of swarm communication and coordination
modalities. We demonstrate the effectiveness of the technique in simulation with
three swarm robotics scenarios.

Keywords: Coordination and control models for multi-agent systems - Knowl-
edge representation and reasoning in robotic systems - Swarm behavior

1 Introduction

Robot swarms have long been difficult to control. In 2004, Gerardo Beni coined the term
“swarm robotics” [1] and wrote, “Ultimately, after algorithms for task implementation
have been devised, the practical realization requires robustness and this is the result of
proper control. Swarm control presents new challenges to robotics engineers.” In 2012,
Brambilla et al [3] reviewed hundreds of papers in the field and concluded, that “[d]ue to
the lack of a centralized controller, it is in general very difficult to effectively control a
swarm once it starts operating.” Today there is still little ability to specify what a swarm
should accomplish and how to have it meet that requirement. A centralized element could
solve the control problem by providing a clear point of interface between a human speci-
fying goals and the swarm fulfilling them, and by monitoring and adjusting the swarm’s
behavior as conditions change. But it is not well understood how introducing a limited
amount of central control would affect those virtues that flow from decentralization.
We explore the notion of marrying a distributed behavior-based swarm with a cen-
tralized planner. Swarms permit parallelism, redundancy, and simple agent definitions,
while central planning provides coordination for nontrivial tasks involving sequencing
and heterogeneous behavior which are very difficult for swarms to do on their own.
This work sits at two different intersections within research and practice. First, in
autonomous robotics, there is a long-standing tension between deliberative approaches,
in which agents choose actions based on a model of the world around them, and reactive
methods, in which sensor input is closely coupled to behavior without extraneous

M. Schader et al.

intermediate layers. A planner-guided swarm, described here, is a hybrid architecture
combining planning (model-driven deliberation) with reactivity (robots with only local
knowledge following simple rules) to get the best of both worlds.

Second, in multi-robot systems, there is a dichotomy between centralized and de-
centralized architectures. Many multi-robot implementations in industry use a fully
centralized approach, with each robot directed in real time by a master controller. Swarm
robotics, on the other hand, focuses on independent agents executing simple behaviors
that add up to emergent results. A planner-guided swarm preserves the flexibility and
robustness of a swarm while adding a bit of centralized direction in order to achieve far
more complicated results.

In this paper we first survey the work done by other researchers on the challenge
of swarm control and show that no one has previously explored the addition of a
central planner to a decentralized swarm. Next, we describe the overall architecture
and individual components of our planner-guided swarm concept. We explain how this
architecture works with different communication modalities and is independent of the
internal design of the agents. Finally, we lay out three very different scenarios that we
used to test the capabilities of the system in simulation, and explain how the experiments
showed the value of our approach.

2 Previous Work

The most common method seen in the literature to program robot swarms is carefully
crafting finite state machines that run on each agent. For example, [10] used regular
languages to define Finite-State Automata (FSA) dictating agent behavior. [12] developed
a Probabilistic Finite State Machine (PFSM) that used a potential field to drive swarm
robot search behavior. [13] progammed swarms by generating behavior trees.

Considering fully decentralized methods, [16] pushed pure pheromone swarm
robotics to the limit by implementing the five tasks of classic compass-straightedge
geometry, suggesting an upper bound on what such a swarm can accomplish reason-
ably efficiently without the addition of at least some global knowledge and interaction.
[18] applied Embodied Evolutionary Robotics (EER) methods to the development of
swarm agent behavior that leads to desired emergent outcomes; tasks were limited to
navigation and foraging, and centralized planning was not considered.

Combining reactive and centralized ideas, [21] created a swarm control mechanism
in which a subset of the robots was given global information and special influence over
the others, occupying a midpoint between centralized and decentralized approaches.
[4] developed a decentralized framework for Multi-Agent Systems planning using
Hierarchical Task Networks (HTNs) but not emphasizing swarm concepts.

Others have focused on higher-level issues in lightly-centralized swarm design.
[6] examined the tradeoffs between microscopic (robot-level) and macroscopic (swarm-
level) design and engineering, proposing a hybrid solution. [8] built a top-down systems
engineering approach to planning and operating swarms of UAVs.

In the area of multi-agent coordination, [5] created a formal protocol for swarm robots
to exchange information about stigmergic values and activities, showing a potential
building block for a planning system to interface with pheromone swarms. [20] presented

Planner-Guided Robot Swarms

multiple biologically-inspired algorithms for coordinated motion on real robots using
pheromone-like signals to influence their behavior. [9] explored the use of response
thresholds in determining when agents in a swarm should change behavior.

Task allocation has been examined from several perspectives. [22] proposed the
use of a market-based mechanism for swarm robots to acquire task assignments, in
which self-interested agents participate in a virtual economy. [2] implemented virtual
pheromones in robots built on the Belief-Desire-Intention framework (BDI). [14] used
the Artificial Bee Colony (ABC) algorithm to assign tasks in a multi-agent system,
achieving results comparable to other methods but with greater efficiency.

[19] developed Termes, a swarm construction system. A compiler takes an architec-
tural specification (with some important constraints) as input and generates a specialized
plan for a swarm of robots to build it. They simplify as many aspects of the environment
as possible, using custom blocks that are placed in an iterative fashion. Once the plan is
loaded onto the robots, all interaction is stigmergic (by where blocks have been placed).

[7] developed AntLab, a centralized multi-robot system which decomposes problems
and directs varying numbers of robots to solve them. It is flexible in terms of what tasks it
performs and how it handles adding or removing robots from its set of workers. However,
it is not a swarm: the individual robots have their motions and activities planned in
advance by a central controller, and there is no communication among the robots.

3 Method

It is clear that classic swarm mechanisms can be used to accomplish certain tasks in the
real world. However the tasks explored in previous work, such as coverage, foraging, and
navigation, are generally simple and known to be well suited to decentralized solutions.
It is not clear how to elicit sophisticated behavior from a swarm in situations that require
coordinated, simultaneous activity.

The gap we identified in the literature is the lack of research into hybrid architectures
that separately address high-level and low-level behavior. Previous work explores meth-
ods to design and deploy swarm agent behaviors intended to achieve certain goals, but
without the ability to monitor and manage the swarm’s actions at runtime. Other work
features explicit central control of each individual agent in order to optimize its activity,
but sacrifices swarm characteristics such as redundancy and local-only communication
in the process. Our innovation is to split the swarm design work into high-level planning
and low-level behavior implementation, map planning actions to specific behaviors, and
build an architecture that manages emergent behavior to achieve desired ends.

The collection of agents used in our approach is truly a swarm, and we focus on
this subset of multiagent systems. The individuals are homogeneous, communicate only
locally, have a small number of simple behaviors, and exhibit emergent behavior that
advances the system toward a goal. They are guided by an external component that
adjusts behavioral parameters for groups of agents within the swarm. This guidance is
driven by the output of an automated planner. The plan domain and problem definitions
are written by a human controller, and the agent behaviors and the mapping from plan
actions to agent activity are developed for the situation at hand; all other aspects (agent

M. Schader et al.

Human Global Sensors I

Domain Problem

Global Readings —
y Swarm

Plan —
il Executive - s Stigmergic
Mark
Planner " " warm - World
("Orchestrator")
Revised Results,
Conditions Local i

Readings "

Actions, Results

Fig. 1: Planner-guided robot swarm architecture

internals, communication modality, monitoring mechanisms) are generalized and can be
used in any scenario.

The architecture of our approach is shown in Figure 1. The process begins with a
human creating a domain definition that describes how the world works in classical
planning terms, and a problem definition that lays out the initial and goal states. These
definitions are given to the planner, which devises a sequence of (potentially parallel)
actions that will achieve the desired result. The planner submits the plan to the executive
component, called the orchestrator, which maps the actions in the plan to specific
behaviors for the agents to perform. The orchestrator divides the swarm agents into
task groups, and then transmits the first set of instructions to them. The agents operate
according to the parameters they have been given, with overall progress emerging
from their activity. The agents may employ stigmergy (communication via changes
made to the world) and other swarm-type mechanisms to transmit information, such
as pheromones, direct interaction, and short-range communication. The orchestrator
monitors the swarm’s progress through any combination of data returned by the agents
and global sensors that track conditions in the world. When the orchestrator determines
that the current plan step has been completed, it issues the next set of instructions,
advancing until the plan has been completed and the goal state achieved.

3.1 Planner

A human creates Planning Domain Definition Language (PDDL) files that specify the
domain (the predicates available to evaluate the world and the actions the agent can take
to change it) and the problem (the initial and goal states) [17]. These files are fed into the
planner, which generates a plan in the form of a sequence of actions that will change the
world from the initial state to the goal state. These plans may be sequential or parallel.
This capability is exposed as the function MakePlan(domain, problem).

In our experiments we used the Blackbox planner [11]. It is well suited to our
purposes in that it accepts and emits standard PDDL, generates parallel plans with any
number of simultaneous actions, is available for each major operating system, and is
highly performant. Nothing in our method is dependent on the particulars of Blackbox;
any PDDL-based planner will do.

Planner-Guided Robot Swarms

3.2 Orchestrator

The orchestrator is the interface to the multi-agent swarm. To draw a comparison with
the classic three-tiered agent architecture, the orchestrator is the Executive, ensuring
that the output of the Deliberator (the planner) is executed and monitored properly.
This component transforms plans into sequenced actions that the agents can perform,
loosely oversees progress without explicitly conducting the individuals in the swarm, and
potentially makes plan and assignment adjustments if tasks are not being accomplished.

Agent Setup The orchestrator divides the set of agents into however many task groups
are called for in the scenario. This size of each group may be the same based on splitting
up the total number of agents, or may vary depending on how many are needed for each
task. The orchestrator tells each agent which task group it is in, and from then onward,
the agents know which group instructions to follow. In some situations it is useful to have
a task group that is not given any instructions, but rather serves as a communications
medium by having its agents wander around exchanging information with others that are
performing specific tasks.

Action to Behavior Translation The mapping of plan actions to agent behaviors is
determined at design time for the scenario. For each action listed in the domain definition,
the developer implements code that determines what parameters need to be given to the
agents to have them execute the appropriate behavior. For example, an action to open a
door might translate to the agent behavior of traveling to the correct button and pressing
it, while an action to build a wall could become a set of parameters instructing the agents
to wander looking for wall material and bringing it to a designated location.

Progress Monitoring After the orchestrator issues actions to the task groups, it monitors
for completion of the plan step. One way it can do this monitoring is via the agents,
counting the number reporting success or tracking other observations that the agents
bring back. An alternative method is to use global sensors: mechanisms that allow the
orchestrator to directly assess the state of the world in order to know when success has
been achieved. Upon learning of step completion, either through diffused knowledge
carried by the agents or through direct observation, it moves onto the next step. Ultimately,
the orchestrator recognizes when the goal state has been attained.

Regardless of the problem definition or the communication modality, the core algo-
rithm executed by the orchestrator is the same. While there is a step in the plan remaining,
we iterate as follows. First, for each action in the step, we convert this action into a
concrete agent behavior. Then the task is assigned to an available task group, and the
action completion criteria are added to conditions. Second, we wait until every condition
in conditions has been met.

3.3 Agents

The agents are the members of the swarm. They perform actions in the world based on
their programming and the guidance they receive from the orchestrator. When accom-
plishing the objective requires collaboration among the agents, it may be top-down, in
which the planner instructs different groups to take actions that complement each other,

M. Schader et al.

e.g. one pushes a button to open a door while another goes through it. Alternatively, it
may be bottom-up, in which the agents themselves interact to perform a function, such
as joining up to move an object. (See Section 4.3 for our experiment that included both.)

In our conceptual model, there are no restrictions on the internals of the swarm
agents. The only requirement is for them to receive behavior parameter information from
the orchestrator and adjust their activity accordingly. Our implementation uses state
machines to transition among various behaviors, with variables (such as destinations and
object types) that are set based on the orchestrator’s messages. Note that the orchestrator
has no knowledge of these internal states. Agents can also be built using a subsumption
architecture, or with complex deliberation, or with any other mechanism that allows
them to act on guidance from the orchestrator.

For each scenario (or real-world situation), we craft a planning description of the
domain (e.g. locations, objects, constraints) as well as the low-level behaviors of the
agents (such as move, pick up, put down). We then create a mapping of domain actions
to agent behaviors (“move block A to location 2” becomes “search for an A-type object,
pick it up, navigate to location 2, put it down”). Next we implement any needed success
criteria checks (“Is location 2 full of A-type objects?”). Finally, we specify the problem
in planning domain terms and send the swarm to do the job.

3.4 Communication modalities

The planner-guided approach depends on having some means of communication between
the orchestrator and the agents: the agents need to receive guidance based on the plan, and
they need to transmit status updates back to the orchestrator. There are several different
communication modalities typically used by swarms, so we have accommodated all of
them in our architecture and experiments (see Section 4.1):

1. Broadcast: The agents instantly learn the particulars of the action they need to
execute, and transmit their results directly back to the home base. This method is
fast and effective, but it depends on a permissive communications environment and
a one-to-many architecture with limited scalability.

2. Direct Interaction: Messages diffuse through the swarm by being exchanged when
individuals make physical contact with each other or the home base. A variant of
this is Local Interaction, in which messages are also sent peer-to-peer, but with a
relaxed proximity requirement (nearby rather than touching).

3. Pheromones: Information is embedded in the environment and sensed when agents
pass over it; this removes the need to be in the same place at the same time.

4 Experiments

We have developed three different scenarios in the course of this work, each emphasizing
different multiagent control challenges. Our intent is to show that the planner-guided
swarm approach is effective and scalable over a variety of situations, and with several
different communication mechanisms. (Future work will address other challenges such
as responding to unexpected events). The first scenario, Blocks World, demonstrates

Planner-Guided Robot Swarms

(a) The Swarm starts re- (b) The agents com- (c) All the agents have (d) Ultimately, the
arranging blocks so the plete Step 1, word gets moved onto Step 2 and blocks are rearranged
top ones end up on the back, and the next ac- are moving the blocks as specified and the
bottom tion spreads as directed task is completed

The blue and green dots represent agents on even- or odd-numbered steps. The gray/brown
shaded pieces make up the eight different blocks. The thin vertical lines are walls.

Fig. 2: Stages of the Blocks World scenario

complex sequencing; the second, MarsOne, shows a more realistic (albeit on Mars)
exploration and construction environment; and the third, Airlocks, is a locked-room
situation requiring both micro- and macro-level coordination and sequencing.

Each scenario is defined by a domain definition and problem definition formalized
in PDDL and shown in the Appendix (Section 6). We ran all the simulations using the
MASON multiagent simulation toolkit [15], collecting the number of steps needed to
succeed under each treatment.

4.1 Blocks World: Complex parallel manipulation in idealized space

The first scenario, Blocks World, provides us with a well-understood proving ground for
testing the integration of classical planning with a robotic swarm. The actions need to
be performed in a correct complicated sequence in order to succeed. Some steps of the
plan allow actions to be performed in parallel, offering a valuable speedup in completion
time. However, other steps have dependencies which don’t permit full parallelization,
and the swarm needs to handle this effectively. This challenge showed that we could
perform interleaved parallel and serial tasks with a swarm.

Blocks World is derived from the classic planning problem using labeled blocks that
can be placed on a table or on each other (Figure 2). In the swarm simulation, each block
consists of several objects that can each be moved by an agent. Walls separate the block
sources and destinations in order to force ordered planning to rearrange them efficiently.
The domain definition allows up to four actions to take place concurrently, equivalent to
having four hands grabbing, holding, and placing blocks in the environment. The initial
state features two stacks of four blocks each (ABCD and EFGH, from bottom to top).
The goal is to have two stacks in the same order, except with the bottom block of each
moved to the top position (BCDA and FGHE).

In this scenario, we use four task groups, correlating conceptually to four manipulator
arms that can move blocks simultaneously. The orchestrator translates each of the actions
defined in the domain (PICK-UP, PUT-DOWN, UNSTACK, and STACK) to an agent
directive. PICK-UP and UNSTACK are mapped to foraging-type behavior in which the
agent explored the area looking for the specified type of block. PUT-DOWN and STACK

M. Schader et al.

35000

— Phemm.one —— Interaction
— Interaction -
—— Broadcast -

— Interaction

5200
I
-

25000
I
Steps
4800

Steps
I
Steps
I

15000
I
8000
I
4400
I
—

I
I
-

6000
I
4000
I
—

75 150 300 40 50 70

5000
I

Agents Agents Agents

(a) Blocks World (b) MarsOne (c) Airlocks
Fig. 3: Mean steps to completion of scenario

are mapped to the inverse: seeking a destination and depositing the right type of block
there. The completion criteria are based on counting the number of blocks picked up or
deposited correctly for each action.

The agents are controlled by two parameters: which kind of block to seek, and where
to place the type of block they were holding. For example, “PICK-UP H” translates to
“find an item of type H and pick it up”, while “STACK H G” becomes “if holding an
item of type H, navigate to the site above the G blocks and drop it off”. The agents have
two states, Exploring and Carrying, and two parameters, what to find and where to put
it. While Exploring, they use whatever means are at their disposal to find the specified
item. Once they find it, they switch to Carrying, and work to bring their carried objects
to the destination. Upon reaching it, they drop off their items and resume Exploring. The
agents navigate collaboratively using pheromone gradients; each lays down a trail upon
leaving a site in order to help others find the same location.

We tested this scenario using three different communication mechanisms explained in
Section 3.4: Broadcast, Direct Interaction, and Pheromone Encoding. For each modality,
we varied the number of agents from 50 up to 400 to observe the effect on the average
number of steps needed to reach the goal state (Figure 3a). We performed 1000 runs
of each treatment and verified for statistical significance using the two-tailed t-test at
p = 0.05 with the Bonferroni correction.

As the Blocks World scenario with various communication mechanisms was run
with increasing numbers of agents, swarm performance improved until leveling off. This
was due to interference caused by having too many agents in a contained space. The
strong similarity of the curves for the three different information exchange modalities
indicates that performance is hardly affected by the means of transmission. This implies
that the planner-guided approach to swarm control is flexible and not dependent on any
particular communication architecture.

4.2 MarsOne: Simulated autonomous construction with dependencies

Compared to the first scenario, the second provides a more physically realistic environ-
ment with more meaningful objectives to accomplish. MarsOne is based on plans to
build a Martian colony in advance of human explorers by using autonomous robots (Fig-
ure 4). In the MarsOne domain, a ship contains equipment components for an antenna,

Planner-Guided Robot Swarms

Antenna Site
L]

Rock Field

Base Site ot . {

dcemaker Site

Fig. 4: Initial state of the MarsOne scenario

a machine that can produce ice blocks, and the modules for the base. Useful rocks are
strewn about the area, and a distant hill provides an ideal radio transmission point. As
per the problem definition, the planner-guided swarm is required to find the hill, bring
the antenna components to it and assemble them, emplace the base modules, build the
ice-making machine, collect the ice blocks it produces and use them to build a wall
around the base, and finally gather rocks and put them around the ice wall.

The actions and success criteria are more sophisticated and open-ended than in
Blocks World. For example, ice blocks can only be collected as they are produced, one
at a time; ice and rock must be placed into concentric rings in the right sequence. This
greater complexity only applies to the planner; the agents and the mapping to their actions
are as simple as those in Blocks World, with COLLECT and DEPOSIT-AT instructions
working like PICK-UP and PUT-DOWN in the previous scenario. Each action specifies a
type of object and a source or destination, e.g. “COLLECT base-parts ship”” means “find
the ship and pick up a base part”, and “DEPOSIT-AT base-parts base” means “if carrying
a base part, find the base and put it down there”. DEPOSIT-AT-SURROUNDING works
exactly like DEPOSIT-AT from the agents’ perspective; the distinction between the two
is needed to force proper sequencing by the planner (for the ice wall to surround the
base and the rock wall to surround the ice wall, the ice wall must be built first).

We tested this scenario using the Direct Interaction communications mechanism
and varied the number of agents from 75 up to 300 to observe the effect on the average
number of steps needed to reach the goal state (Figure 3b). We performed 1000 runs
of each treatment and verified for statistical significance using the two-tailed t-test at
p = 0.05 with the Bonferroni correction. This challenge showed whether the planner-
guided swarm approach could handle believable, less-idealized situations that were very
different from the more abstract world in the first scenario. Under testing, the swarm was
able to execute the planned steps and reach the goal state.

4.3 Airlocks: Mandatory coordination among partitioned task groups

The third scenario, Airlocks, has a sequence of rooms behind locked doors (Figure 5).
The agents needs to move rocks from the Room O starting area (on the far left), through
Room 1 and Room 2, into Room 3 (on the far right). These rocks are heavy and can only

M. Schader et al.

(a) Airlocks scenario initial state (b) Door 1 opened, rocks moved to Room 1

(c) Door 1 closed, Door 2 opened, rocks moved (d) Door 2 closed, Door 3 opened, rocks moved
to Room 2 to Room 3

Fig.5: Stages of the Airlocks scenario

be moved by pairs of agents working in unison. Each of the doors has a button that opens
it as long as an agent is holding the button. Once the button is released, that door closes.
Finally, only one of the three doors can be open at a time. Note that the agents in this
scenario can not rely on physical contact to transfer information, because closed doors
would partition the swarm into separate regions. For this reason, they have a short-range
transmission capability (a 3-square radius) that allows them to communicate through
closed doors. The domain definition captures the mutually exclusive relationship among
the door states; the problem definition simply states that the world begins with the doors
closed and the rocks in Room 0, and should end with the rocks in Room 3.

We tested this scenario using Direct Interaction and varied the number of agents from
40 up to 70 to observe the effect on the average number of steps needed to reach the goal
state (Figure 3c). We performed 1000 runs of each treatment and verified for statistical
significance using the two-tailed t-test at p = 0.05 with the Bonferroni correction.

The Airlocks scenario requires coordination among the agents at two different
levels. From the whole-swarm perspective, the opening and closing of each door has
to be synchronized with the movement of the agents through it, and with the state of
the other doors. From the individual perspective, agents need to coordinate with each
other to collaboratively transport the heavy rocks (using a grab-and-hold approach).
This challenge examined the planner-guided swarm’s ability to operate with mandatory
coordination requirements while executing a centrally-developed plan. Testing showed
that the swarm could solve this problem while scaling up successfully.

5 Conclusions and Future Work

The planner-guided swarms were highly effective at solving all three scenarios. These
different situations were handled with no change to the core algorithm of the orchestrator,
and only minor practical adjustments to the low-level agent behaviors. The swarm
performed similarly well when tested with various communications modalities, showing
that the concept is independent of any specific information exchange mechanism. These
experiments demonstrated the generality of the approach and its applicability to a wide
variety of environments.

As future work, we will explore solving the problem of retrograde behavior (some
agents being stuck on a previous plan step); ensure swarm robustness via task re-
allocation, adjusting communications strategies, and other methods; and demonstrate
that coordination under planning can be performed to accomplish tasks reliably and
efficiently. This work will show for the first time a flexible, reusable solution to the

Planner-Guided Robot Swarms

inverse problem of controlling emergent swarm behavior without sacrificing robustness
or low-level decentralization.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Beni, G.: From swarm intelligence to swarm robotics. In: International Workshop on Swarm

Robotics. pp. 1-9. Springer (2004)

. Bottone, M., Palumbo, F., Primiero, G., Raimondi, F., Stocker, R.: Implementing virtual

pheromones in bdi robots using mqtt and jason (short paper). In: Cloud Networking (Cloudnet),
2016 5th IEEE International Conference on. pp. 196-199. IEEE (2016)

. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the

swarm engineering perspective. Swarm Intelligence 7(1), 1-41 (2013)

. Cardoso, R.C.: A decentralised online multi-agent planning framework for multi-agent sys-

tems (2018)

. Chibaya, C.: An xset based protocol for coordinating the behaviour of stigmergic ant-like

robotic devices. In: Proceedings of the 2015 Annual Research Conference on South African
Institute of Computer Scientists and Information Technologists. p. 9. ACM (2015)

. Durand, J.G.D.S.: A methodology to achieve microscopic/macroscopic configuration tradeoffs

in cooperative multi-robot systems design. Ph.D. thesis, Georgia Institute of Technology
(2017)

. Gavran, 1., Majumdar, R., Saha, I.: Antlab: a multi-robot task server. ACM Transactions on

Embedded Computing Systems (TECS) 16(5s), 190 (2017)

. Giles, K.: Mission based architecture for swarm composability. Tech. rep., Naval Postgraduate

School Monterey United States (2018)

. Kanakia, A.P.: Response threshold based task allocation in multi-agent systems performing

concurrent benefit tasks with limited information (2015)

Kaszubowski Lopes, Y.: Supervisory Control Theory for Controlling Swarm Robotics Systems.
Ph.D. thesis, University of Sheffield (2016)

Kautz, H., Selman, B.: Blackbox: A new approach to the application of theorem proving to
problem solving. In: AIPS98 Workshop on Planning as Combinatorial Search. vol. 58260, pp.
58-60 (1998)

Khan, M.S., HASAN, M., Ahmed, T.: A new multi-robot search algorithm using probabilistic
finite state machine and lennard-jones potential function (2018)

Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control architecture
in the automatic modular design of robot swarms. In: International Conference on Swarm
Intelligence. pp. 30-43. Springer (2018)

Liu, H., Zhang, P., Hu, B., Moore, P.: A novel approach to task assignment in a cooperative
multi-agent design system. Applied Intelligence 43(1), 162-175 (2015)

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: Mason: A new multi-agent simulation
toolkit. In: Proceedings of the 2004 swarmfest workshop. vol. 8, pp. 316-327. Michigan, USA
(2004)

Luke, S., Russell, K., Hoyle, B.: Ant geometers. In: Proceedings of the European Conference
on Artificial Life 13. pp. 100-107. MIT Press (2016)

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: Pddl-the planning domain definition language (1998)

Pérez, I.E.: Distributed Embodied Evolutionary Adaptation of Behaviors in Swarms of Robotic
Agents. Ph.D. thesis, Université de Lorraine (2017)

Petersen, K.H., Nagpal, R., Werfel, J.K.: Termes: An autonomous robotic system for three-
dimensional collective construction. Robotics: science and systems VII (2011)

M. Schader et al.

20. Shirazi, A.R.: Bio-Inspired Self-Organizing Swarm Robotics. Ph.D. thesis, University of
Surrey (United Kingdom) (2017)

21. Trabattoni, M., Valentini, G., Dorigo, M.: Hybrid control of swarms for resource selection. In:
International Conference on Swarm Intelligence. pp. 57-70. Springer (2018)

22. Yusuf, F.: Multi robot task allocation using market based approach. Ph.D. thesis, Universiti
Tun Hussein Onn Malaysia (2015)

6 Appendix: PDDL Files

Blocks World domain and problem definitions

(define (domain BLOCKS-WORLD) (:requirements :strips :typing) (:types block)
5 Actions ending with "N” are expanded by a preprocesor into ’pick-up1”, "pick-up2’, etc.
(:predicates (on ?x - block ?y - block) (ontable ?x - block) (clear ?x - block) (handempty) (holding ?x - block))
(-action pick-upN :parameters (?x - block) :precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))
(:action put-downN :parameters (?x - block) :precondition (holding ?x)
:effect (and (not (holding ?x)) (handempty) (clear ?x) (ontable ?x)))
(-action unstackN :parameters (?x - block ?y - block) :precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (not (handempty)) (clear ?y) (not (clear ?x)) (not (on ?x ?y))))
(-action stackN :parameters (?x - block ?y - block) :precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (handempty) (not (clear ?y)) (clear ?x) (on ?x ?y))))

(define (problem REORDER) (:domain BLOCKS-WORLD) (:objects ab cd e f g h - block)
(:init (handempty) (clear d) (clear h) (ontable a) (ontable e) (ond c) (on h g) (oncb) (ongf) (onb a) (onfe))
(:goal (and (on a d) (on e h) (ondc) (on h g) (on ¢ b) (on gf))))

MarsOne domain and problem definitions

(define (domain MARS-ONE) (:requirements :strips :typing) (:types group thing site)
(:predicates (at ?t - thing ?s - site) (reachable ?s - site) (carrying ?g - group ?t - thing)
(surrounds ?t - thing ?s - site) (empty ?g - group) (discoverable ?s - site)
(produces ?s - site ?parts ?output - thing) (encloses ?outsite ?insite - site))
(zaction collect :parameters (?g - group ?t - thing ?s - site) :precondition (and (empty ?g) (reachable ?s) (at ?t ?s))
:effect (and (not (empty ?g)) (carrying ?g ?t) (not (at ?t ?s))))
(-action deposit-at :parameters (?g - group ?t - thing ?s - site) :precondition (and (carrying ?g ?t) (reachable ?s))
:effect (and (empty ?g) (not (carrying ?g ?t)) (at ?t ?s)))
(:action deposit-at-surrounding :parameters (?g - group ?t - thing ?outsite ?insite - site)
:precondition (and (carrying ?g ?t) (reachable ?insite) (reachable ?outsite) (encloses ?outsite ?insite))
:effect (and (empty ?g) (not (carrying ?g ?t)) (surrounds ?t ?insite) (not (reachable ?insite)) (at ?t ?outsite)))
(-action activate :parameters (?s - site ?parts ?output - thing)
:precondition (and (produces ?s ?parts ?output) (at ?parts ?s)) :effect (and (at ?output ?s)))
(:action discover :parameters (?g - group ?s - site) :precondition (and (empty ?g) (discoverable ?s)) :effect (and (reachable ?s))))

(define (problem BUILD-BASE) (:domain MARS-ONE) ; References to "groupN” are expanded into "group1”, "group2,” etc.
(:objects groupN - group rocks - thing scattered - site ship antenna icemaker base
ice-wall rock-wall antenna-parts icemaker-parts base-parts ice-blocks)

(:init (empty groupN) (produces icemaker icemaker-parts ice-blocks) (reachable ship) (reachable icemaker)

(reachable scattered) (reachable rock-wall) (reachable base) (reachable ice-wall) (at antenna-parts ship)

(at icemaker-parts ship) (at base-parts ship) (at rocks scattered) (discoverable antenna)

(encloses ice-wall base) (encloses rock-wall ice-wall))
(:goal (and (at antenna-parts antenna) (at base-parts base) (surrounds ice-blocks base) (surrounds rocks ice-wall))))

Airlocks domain and problem definitions

(define (domain AIRLOCKS) (:requirements :strips :typing)

(:predicates (opened-r1) (opened-r2) (opened-r3) (closed-r1) (closed-r2) (closed-r3) (in-r0) (in-r1) (in-r2) (in-r3))

(-action open-r1 :precondition (and (closed-r1) (closed-r2) (closed-r3)) :effect (and (opened-r1) (not (closed-r1))))
(zaction open-r2 :precondition (and (closed-r1) (closed-r2) (closed-r3)) :effect (and (opened-r2) (not (closed-r2))))
(:action open-r3 :precondition (and (closed-r1) (closed-r2) (closed-r3)) :effect (and (opened-r3) (not (closed-r3))))
(zaction close-r1 :precondition (opened-r1) :effect (and (not (opened-r1)) (closed-r1)))
(zaction close-r2 :precondition (opened-r2) :effect (and (not (opened-r2)) (closed-r2)))
(-action close-r3 :precondition (opened-r3) :effect (and (not (opened-r3)) (closed-r3)))
(:action move-to-r1 :precondition (and (in-r0) (opened-r1)) :effect (and (not (in-r0)) (in-r1)))
(:action move-to-r2 :precondition (and (in-r1) (opened-r2)) :effect (and (not (in-r1)) (in-r2)))
(:action move-to-r3 :precondition (and (in-r2) (opened-r3)) :effect (and (not (in-r2)) (in-r3))))

(define (problem MOVE-ROCKS) (:domain AIRLOCKS) (:init (in-r0) (closed-r1) (closed-r2) (closed-r3)) (:goal (in-r3)))

