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Abstract. Agent-based modeling (ABM) has many applications in the
social sciences, biology, computer science, and robotics. One of the most
important and challenging phases in agent-based model development is
the calibration of model parameters and agent behaviors. Unfortunately,
for many models this step is done by hand in an ad-hoc manner or is
ignored entirely, due to the complexity inherent in ABM dynamics. In
this paper we present a general-purpose, automated optimization system
to assist the model developer in the calibration of ABM parameters and
agent behaviors. This system combines two popular tools: the MASON
agent-based modeling toolkit and the ECJ evolutionary optimization
library. Our system distributes the model calibration task over very many
processors and provides a wide range of stochastic optimization algorithms
well suited to the calibration needs of agent-based models.

Keywords: Agent-based Models - Model Calibration - Evolutionary
Computation

1 Introduction

In an agent-based model, many agents (computational entities) interact to give
rise to emergent macrophenomena. Agent-based models (ABMs) are widely used
in computational biology, social sciences, and multiagent systems. An important
step in developing an agent-based model is calibration, whereby the model’s
parameters are tuned to produce expected results. Agent-based models can be
challenging to calibrate for several reasons. First, agents often have numerous
and intricate interactions, producing complex and difficult to predict dynamics.
Second, the agents themselves may be imbued with behaviors that need to be
tuned: and thus the parameters in ABMs may not just be simple numbers but
computational structures. Finally, ABMs are often large and slow, which reduces
the number of trials one can perform in a given amount of time.

Despite its importance, ABM calibration is often done by hand using guesswork
and manual tweaking, or the model is left uncalibrated because the model’s
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complexity makes it too difficult for the modeler to perform the calibration!
For example, in [6] approximately half of the surveyed models performed no
calibration at all.

In this paper we consider the task of automated agent-based model calibration.
We marry two tools popular in their respective fields: the MASON agent-based
simulation toolkit [10], and the ECJ evolutionary optimization library [20]. MA-
SON is an efficient ABM simulation tool which can be serialized and encapsulated
in a single thread, making it a good choice for massively distributed model opti-
mization, and ECJ has facilities critical to ABM optimization: it can perform
distributed evaluation on potentially millions of machines, and it has a wide
range of stochastic optimization facilities useful for agent-based modeling.

We will begin with an introduction to the ABM model calibration problem
and discuss previous work in model calibration and optimization. We will next
provide some background on ECJ and MASON, then present our approach to
massively distributed ABM calibration, including examples that provide insight
into the breadth of the approach.

2 Agent-Based Modeling and MASON

Agent-based models are often used to simulate large groups of interacting entities,
such as flocks of birds, swarms of robots, warring nations, people flowing through
airport checkpoints, and so on. In particular, an ABM describes the interactions
among the agents, and the complex macrophenomena that arise as a result.

MASON and GeoMASON  MASON is a popular, high-performance, open-
source ABM library. MASON maintains a real-valued discrete event schedule that
stores agents waiting to respond to time-based events, and one or more fields, that
is, representations of spatial relationships between arbitrary objects (possibly
including agents themselves). Basic provided fields include continuous spaces,
various kinds of grids, and networks. MASON comes with extensive optional GUI
visualization facilities for agents, objects, and fields in 2D and 3D.

GeoMASON augments MASON with Geospatial Information Systems (GIS)
facilities in the form of vector and raster geospatial data, including spatially
organized fields, visualization, and data manipulation utilities. GeoMASON can
model agents that use earthbound objects and features such as networks of roads
or rivers, vegetation, and topology, and is often used to study both social behavior
and its response to natural processes such as rainfall and erosion.

3 Model Calibration and Evolutionary Optimization

Testing a model for correctness involves several steps. First, the model is verified,
that is, it is debugged. Second, the model is calibrated, where its parameters are
iteratively adjusted to minimize error between its output and some standard
provided by the modeler. This standard can be many things, such as: the opinions
of a domain expert observing the model, published benchmark values, or a sample
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of real-world data. Finally, the model is validated by comparing its results to a
much more significant body of real-world data.

We focus here on model calibration. This is essentially an optimization task:
the modeler repeatedly tries new settings of parameters until he finds ones that
minimize error. Model parameters are of several kinds, only some of which are
used in the calibration process. Consider the following four parameter types:

1. Parameters fixed to constants because their values are known beforehand.

2. Parameters fixed to constants because they are part of the canonical theory
that the model developer is trying to demonstrate.

3. Parameters whose values are unknown, or can only be guessed at.

4. Parameters for which we wish the model to be insensitive. These are important
but less common.

The calibration task is largely concerned with the third and fourth kinds, and
particularly the third one: tuning parameters with unknown or unknowable values.
Unfortunately, these parameters may exhibit significant nonlinearity, complex
linkage with other parameters, and stochasticity. All this may demand many
repeated tests of the model, but ABM models can take a long time to run. For
this reason, automated calibration of agent-based models is desirable.

Historically model developers have resorted to linear and nonlinear gradient-
based optimization approaches, even as simple as gradient descent. These tech-
niques can fail with agent-based models for two reasons. First, such models
may have large numbers of local optima. Second, these models may not yield a
gradient, either because it is unknown or because the space is not metric: for
example, a parameter might be a tree or an edge in a graph. Nominal categorical
values (such as race or religion) may cause related problems.

The classical approach to optimization of data of this kind is to use a stochastic
optimization procedure such as hill-climbing, simulated annealing, or an evo-
lutionary computation method such as a genetic algorithm. The evolutionary
computation family is particularly attractive because it is efficiently and massively
distributed. This allows us to optimize a model by running many trials in parallel.

ECJ ECJ is an open-source stochastic optimization toolkit which emphasizes
evolutionary computation techniques [20] and is one of the most popular tools
in the evolutionary computation community. ECJ can run in a single process
and can be distributed across a very large number of machines. ECJ has a many
optimization features, such as customizable representations of candidate solutions
(individuals), facilities for massively distributed model evaluation, and a wide
range of optimization algorithms, some of which we will highlight later.

4 Related Work

Because of their complexity, many ABMs are calibrated by simply fixing the
parameters in advance using known real-world parameters. But whenever the
quality of a model’s overall behavior can be assessed, such as using the opinion
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of a domain expert (as in [7]), or via comparison to real-world output, we might
instead optimize one or more model parameters to fit it. When a model has (< 3)
free parameters, researchers often optimize them with ad-hoc manual tuning, or
by reviewing the outcome of an exhaustive parameter sweep (grid search) [1].

Automated model calibration will require an optimization algorithm. Evo-
lutionary algorithms and related stochastic optimization algorithms are well-
established approaches to calibrating free parameters for many kinds of models,
and have been used to tune models of neuron behavior [19, 23], agriculture [12],
and textile folding [13], among many others. In the ABM community evolutionary
algorithms have been used to calibrate a number of models [4, ch. 10]. Many are
based on an ad-hoc variation of the genetic algorithm [2, 16, 15]. ABMs often also
have multiple conflicting objectives that need to be optimized simultaneously.
Some authors have applied multi-objective evolutionary algorithms [18, 14], but
have rarely used state-of-the-art methods (such as NSGA-III or MOEA /D). These
techniques make it increasingly possible to tackle complex and high-dimensional
problems, but take effort to implement properly.

Only a handful of software tools are available that allow researchers to ap-
ply optimization techniques to ABMs without needing to implement their own
calibration framework from scratch. The BehaviorSearch module in NetLogo
supports simple multithreaded optimization of model parameters via a few classic
metaheuristics — hill climbing, simulated annealing, and a genetic algorithm [22],
and a few basic solution representations. This tool can only be applied to the
small, computationally inexpensive models typical of NetLogo, and cannot be
distributed across machines, nor applied to noisy objective functions. The Open-
MOLE framework (https://openmole.org) can distribute parallel simulations of a
model across several kinds of clusters, either following a master-worker paralleliza-
tion model or with island models. OpenMOLE supports models implemented in
arbitrary languages and offers a Scala-based scripting language so that the cali-
bration can be controlled from within a unified GUI. Its optimization algorithms
are limited to classic GAs and NSGA-II, but it offers a few advanced features,
such as a strategy for handling noise in the objective function.

The field of evolutionary computation has grown to encompass many tech-
niques that perform considerably better than traditional GA-style algorithms
or are applicable to a wider variety of tasks. A notable example is CMA-ES,
which performs efficient vector-space optimization [5]. The wider EA family also
includes many techniques for evolving complex computational structures, such
as programs and neural networks [9, 21].

Some general-purpose evolutionary algorithm frameworks exist that offer
massively distributed algorithms and configuration options useful for optimizing
computationally expensive ABMs. The Evolving Objects (or EO) framework has
long filled this role for C++ programmers [8]. The ECJ framework we use here
has traditionally filled a similar role for Java programmers.
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Fig. 1: Automated model calibration workflow using distributed ECJ and MASON.

5 Approach

As agent-based models become more common and more detailed, an automated
approach to calibration will be increasingly needed. We envision the automation
process to work as follows. The modeler first builds the simulation, then assigns
values to those parameters he knows or wishes to be fixed. A distributed system
then optimizes the remaining parameters as best it can against criteria specified
by the modeler. The modeler then examines the results: if they are poor, this could
be due to bugs in the model, or insufficient model complexity to demonstrate the
modeler’s hypothesis, or a hypothesis that is wrong. Accordingly, the modeler
revises the simulation and resubmits it to the system to be recalibrated.

To do this procedure, we merged ECJ and MASON to take full advantage of
their technical characteristics. To merge them, it was necessary to make changes
to both. Without going into implementation details: first, ECJ was modified
so that MASON simulations could be used in the evaluation procedure of a
candidate solution. Second, MASON was modified to be able to receive the values
of model parameters from outside (that is, from an ECJ process) and to provide
the modeler with a way to develop a score function for the simulation (which
would then be used by the optimization algorithm).

Figure 1 shows the general workflow of the system. We first define one
ECJ process to be the master. This process performs the top-level optimization
algorithm. When this process has one or more candidate solutions (individuals)
ready to be assessed, they are handed to a remote worker process. Each candidate
solution is simply a set of those agent parameters and behaviors that we wish to
test: the worker does this by creating a MASON simulation using those parameters
and behaviors, running it some number of times, and assessing its performance.
The worker then returns the assessments as the fitness (quality) of its tested
solutions, and the master uses these results in its optimization procedure.

The modeler can completely customize this procedure if need be, and we
demonstrate one such scenario in Section 6.3. But if the modeler’s optimization
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Fig. 2: Scalability Analysis, Refugee model

needs only involve global model parameters—as is typical for many ABM
calibration scenarios — then we provide a simple alternative. The modeler specifies
which parameters of interest to optimize, then selects from a few optimization
options, and MASON does the rest: it defines the candidate solution representation
as a fixed-length list of the parameters in question, builds the fitness mechanism,
creates the evolutionary process, prepares the workers to run the proper simulation
and default settings, then sends the candidates to remote workers.

6 Experiments

We begin with a large and nontrivial model drawn from GeoMASON’s con-
tributed model library, which we use to demonstrate speedup results for two
different approaches to distribution. Then we highlight different capabilities of
evolutionary optimization applied to model calibration using proofs of concept
with a much simpler (and faster!) model drawn from MASON’s demo suite.
Finally, we demonstrate the distributed optimization of agent behaviors using
genetic programming style parse trees.

6.1 Speedup Demonstration

We first show the efficiency of our distributed model calibration facility on
a nontrivial ABM scaled horizontally across a cluster of machines. For this
demonstration, we use the Refugee model drawn from the contributed models in
the GeoMASON distribution. This model can take several minutes to run. Refugee
explores the pattern of migration of refugees in the Syrian refugee crisis. The
model demonstrates how population behavior emerges as the result of individual
refugee decisions. The agents (the refugees) select goal destinations in accordance
with the Law of Intervening Opportunities and these goals are prone to change
with fluctuating personal needs.

We calibrated the model using a simple genetic algorithm from ECJ and
assessed candidate solutions by comparing the number of arrivals in each city
against real-world data gathered from UNHCR and EU agency databases.
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Setup  We calibrated over four real-valued parameters in the model. The model
ran for 10,000 steps. We used a genetic algorithm with a tournament selection of
size 2, one-point crossover, and Gaussian mutation with 100% probability and a
standard deviation of 0.01. We ran the models on a cluster of 24 machines, each
with Dual Intel Xeon E5-2670@2.60GHz, 24 GB, Intel 82575EB Gigabit Ethernet,
Red Hat Enterprise Linux Server 7.7 (Maipo), OpenJDK 1.8.0. Running on these
machines were some N < 276 MASON worker processes.

Results ~ We performed strong and weak scalability analysis. Strong scalability
asks how much time is needed for a fized size problem given a variable number of
workers. Weak scalability asks if an increasingly difficult problem can be handled
in the same amount of time with a corresponding increasing number of workers.
All the scalability results are statistically significantly different from one another
(p < 0.01) as verified by a one-way ANOVA with a Bonferroni post-hoc test.

To do strong scalability analysis we fixed the problem to ten generations,
each with 32 individuals, for a total of 320 evaluations. The number of workers
was varied from 1 to 32. For 1 to 8 workers we gathered the mean result of ten
experiments; for 16 and 32 workers (which ran faster), we gathered the mean
result of 20 experiments. Figure 2a displays the speedup results. The strong
scalability efficiency (as a percentage of the optimum) came to 71.88% using 32
workers to solve the problem.

To do weak scalability analysis, we varied the problem difficulty by adjusting
the population size such that, regardless of the number of workers, each worker
was respousible for four individuals (and thus four simulation runs) per generation.
In all cases, the results reflect a mean of ten experiments. For each optimization
process the number of generations was fixed to 10 and the population size
varied in {4, 8,16, 32, 64, 128,256,512}, and thus the number of workers varied as
p € {1,2,4,8,16,32,64,128}. Figure 2b shows the weak scalability results. The
weak scalability efficiency (as a percentage of the optimum) was 83.18.

The previous experiment involved a generational evolutionary optimization
algorithm: the entire population of individuals had to be evaluated on the remote
workers before the next generation of individuals was constructed. We next
considered an asynchronous evolutionary algorithm to improve efficiency when
the model runtime varied greatly. An asynchronous evolutionary algorithm only
updates the population a little bit at a time, rather than wholesale, and doesn’t
need to wait for slowly-running models.

The approach works as follows: there are some N workers and a master with
a population of size P. The master first creates random individuals, then assigns
each to an available worker. When a worker has completed its assessment, the
individual is returned and added to the population, and the worker becomes
available for another task. When the population has been fully populated, the
master switches to a steady-state mode: when a worker is available, the master
applies the evolutionary algorithm to produce an individual which is then given to
the worker to asses. When an individual is returned by a worker, the master selects
an existing individual in the population to be replaced by the new individual.
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Fig. 3: Evolutionary Optimization Examples

Setup ~ We compared the generational genetic algorithm from Section 6.1 against
an asynchronous evolutionary algorithm using a steady-state genetic algorithm.
When replacing an individual in the population, the steady-state algorithm
selected the least fit individual. In our experiment, there were 128 workers, and
the population size was 128: the generational approach was again run for ten
generations, while the asynchronous approach was run until it had evaluated 1280
individuals. We performed twenty experiments per treatment. To simulate varying
runtimes in the Refugee model, when a model was to be tested we changed the
number of simulation steps at random. 1/4 of the time we halved them, 1/4 of
the time we left them as normal, and 1/2 of the time we doubled them.

Results  Asynchronous Evolution had a mean runtime of 293.77 seconds; while
Generational Evolution had a mean runtime of 437.77 seconds. These results were
statistically significantly different (p < 0.01) as verified by a one-way ANOVA
with a Bonferroni post-hoc test.

6.2 Evolutionary Optimization Examples

So far we have shown speedup results to demonstrate performance: next, we turn
to simple examples of some of many evolutionary algorithms approaches afforded
by our facility, to illustrate capabilities of the system and justify their value in an
ABM. Accordingly, the remaining demonstrations will be mere proofs of concept,
and so will not be accompanied by statistical analysis.

Demonstration 1: Different Evolutionary Algorithms  We begin with a demon-
stration of some different evolutionary algorithms to show breadth. We turn to
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the Flockers model, a standard demo model in the MASON library. This model
is a simulation of the well-known Boids algorithm [17], where agents develop
collective realistic flocking or swarming behaviors.

Flockers has five classic parameters (avoidance, cohesion, consistency, mo-
mentum, and randomness) that together define the behaviors of its agents. We
optimized over these parameters and assessed the model performance as the
mean number of flockers within an agent’s neighborhood, averaged over three
trials. This is not a hard problem to optimize: the calibration facility need only
maximize cohesion. To show the optimizers at work, we fixed every individual
in the initial population to represent the opposite situation (minimal cohesion,
maximal values for other behaviors).

We ran for 30 generations using a population size of 276, spread over 276
separate workers. We compared three different evolutionary algorithms: the
genetic algorithm as described before; a so-called “(46,276)” evolution strategy;
and a CMA-ES estimation of distribution algorithm with standard parameters.
Figure 3a shows the performance of these three algorithms on this simple agent-
based model: as expected, CMA-ES performs extraordinarily well.

Demonstration 2: Multi-Objective Optimization — Next, we demonstrate our
system’s ability to optimize problems with multiple conflicting objectives. The
classic approach finds a set of solutions that have advantages or disadvantages
relative to one another with respect to these objectives. A solution A is said to
Pareto-dominate another solution B if A is at least as good as B in all objectives
and better than B in at least one objective. The optimal Pareto Nondominated
Front is the set of solutions not Pareto-dominated by any other solution.

We extended the Flockers model by introducing an “infection” into the
population. Healthy flockers have the same behavior as shown in the previous
example, but infected flockers will, with some probability, infect their neighbors
or be cured. Our new second objective was to maximize the number of healthy
flockers. To do this, flockers must stay as far away from each other as possible,
putting our new objective in direct conflict with the first one.

We used the NSGA-II [3] multi-objective evolutionary algorithm with four
workers and 100 generations, having 24 individuals per generation. Figure 3b
shows the improvement in the Pareto front over time for a typical run.

An Aside: Coevolution  Though we do not provide demonstrations of them, it
is worth mentioning two other capabilities of our system, which may be of value
to an agent-based modeler.

In Section 3 we mentioned that one might wish to calibrate a model to be
insensitive to one or more global parameters (parameter type 4 in that Section).
For example, we might wish agents to perform migration the same way regardless
of rain or shine. One attractive evolutionary optimization approach is competitive
coevolution. Here we optimize the population A against a second foil population
B of parameter settings simultaneously being optimized to trip up the first
population. Thus while A is trying to be insensitive to B, B is searching for
corner cases to challenge A.
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A related technique, called cooperative coevolution, is a popular way to tackle
high-dimensional problems. When the number of parameters to optimize is
high, the joint parameter space is exponentially too large to efficiently search.
Cooperative coevolution breaks the space into N subspaces by dividing the
parameters into N groups, each with its own independently optimized population.
Individuals are tested by combining them with ones from the other populations to
form a complete solution. The fitness of an individual is based on the performance
of various assessed combinations in which it has participated. This reduces the
search space from O(a™) to O(aN), but assumes that the parameters in each
group are largely statistically unlinked with other groups.

6.3 Optimizing Agent Behaviors

Agent-based models are unusual in that not only do they have (typically global)
parameters which must be calibrated but agents with behaviors that may benefit
from calibration as well. Agent behaviors are essentially programs which dictate
how the agents operate in the environment and interact with one another. Unfor-
tunately, it is often the case that the modeler does not know what the proper
behavior should be for a given agent, or only understands part of the behavior
and needs to fill in the blanks with the remainder.

Because we are calibrating agent behaviors and not global model parameters,
the modeler must do more than just specify a set of model parameters to calibrate
and an optimization algorithm to use. He must also specify the nature of the
representation of these agent behaviors (in our case below, an array of four
parse-trees), and must also write glue code which, when given an individual,
evaluates its parse trees in the simulation proper.

The evolutionary algorithm community has developed optimization techniques
for a variety of agent behavior representations. Out of the box, we can support
policies (stateless sets of if—then rules that determine actions to take in response
to the current world situation), finite-state automata (as graph structures),
neural networks (via NEAT), and untyped or strongly-typed “Koza-style” genetic
programming (or GP) [9]; and provide hooks for a variety of other options.

In this example, we will focus on GP. Here, individuals take the forms of
forests of parse trees populated by functions drawn from a modeler-specified
function set. Functions may have arguments, types, and arbitrary execution order
(like Lisp macros). Parse trees typically impact on behavior through side effects
among their functions, or by returning some final result via the root of the tree.

Our example is drawn from the Serengeti model [11], in which four “lion”
agents must capture a “gazelle” in a real-valued toroidal environment. The gazelle
uses a simple hard-coded obstacle-avoidance behavior to elude the lions, and can
move three times as fast as any single lion. The lions can sense the gazelle and
each other. Each lion uses a GP parse tree that, when evaluated, returns a vector
indicating the direction and speed the lion should travel at that timestep. Thus
the behaviors to be calibrated consist of four different parse trees, one per lion.

We used a GP facility closely following the approach in [11], including its
function set (we restricted ourselves to the “name-based sensing” and “restricted
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breeding” variants as described in the paper). We ran the GP algorithm as
described, but with a population size of 5760 spread over 276 workers: each
worker thus had 20 individuals per generation. Assessment of an individual’s
parse trees was performed over 10 random trials. Figure 4 shows the mean
best-so-far performance of calibrated agent behaviors over 30 runs.

7 Conclusions

We have argued for the importance of automated model calibration for agent-
based models. This will become only more pressing as these models increase
in complexity and runtime, which will require the use of massively distributed
evolutionary optimization tools. We have developed a tool of this kind which
combines the popular MASON and ECJ libraries and have shown how their
combination can produce a powerful, fully-featured model calibration facility
with special capabilities of interest to the agent-based modeler. This preliminary
work will be more tested and expanded with other functionalities, like a GUI,
also including different types of simulation frameworks besides MASON.
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