Scalable Heterogeneous Multiagent
Learning from Demonstration

William Squires and Sean Luke

Department of Computer Science
George Mason University
4400 University Dr
Fairfax, Virginia 22030
wsquires@gmu.edu, sean@gmu.edu

Abstract. We present a method of supervised learning from demonstration for
real-time, online training of complex heterogenous multiagent behaviors which
scale to large numbers of agents in operation. Our learning method is applicable
in domains where coordinated behaviors must be created quickly in unexplored
environments. Examples of such problem domains includes disaster relief, search
and rescue, and gaming environments. We demonstrate this training method in an
adversarial mining scenario which coordinates four types of individual agents to
perform six distinct roles in a mining task.

Keywords: Learning from Demonstration; Multiagent Learning; Heterogeneous

1 Introduction

In this paper we introduce an approach to scalable online learning from demonstration
of nontrivial, heterogeneous, stateful multiagent and swarm behaviors. The agents in
the swarms can coordinate at various levels, and the system can perform scalable load-
balancing within the swarm to assign subswarms of heterogeneous agents appropriate
for various tasks as called on by the experimenter. This work extends the learning from
demonstration method HiTAB, adding an approach to (for the first time) train arbitrarily
large, scalable agent swarm hierarchies with agent heterogeneity at every level.

There are many scenarios where training agent behaviors in real-time is highly
advantageous. Consider scenarios such as disaster recovery, search, and rescue, which
presents considerable challenges: programming and debugging custom behaviors on-
the-fly may not be reasonable to do in real-time; and this assumes that the robot handler
in the field has sufficient coding skills to achieve this at all. Furthermore, solutions
to complex scenarios such as these involve a wide-ranging set of agent capabilities
unlikely to be found in a single type of agent and therefore require the coordination of
heterogeneous agents to be successful, and this in turn presents a large and complex
design space. Finally, these scenarios can span large areas, which may necessitate the
need for many heterogeneous teams to work cooperatively.

In scenarios such as these it would be desirable to instruct (or if you like, coach) the
robots how to do various collective behaviors rather than program them. But learning
from demonstration in swarms has until recently proven very difficult for two reasons.

William Squires and Sean Luke

First, there is the obvious problem of the per-agent Curse of Dimensionality: complex
and stateful behaviors imply a high-dimensional learning space and thus a large number
of training samples, but this cannot be achieved if we wish training to be online. Less
obvious but just as problematic is the Multiagent Inverse Problem: even if we could
formally quantify the emergent macrophenomenon we wished the agents to achieve, in
order to learn, the agents require feedback regarding their individual behaviors. While we
potentially have a function which tells us the macrophenomena arising from individual
agents — that is, a simulator — we lack the inverse function which tells us the individual
behaviors needed to achieve a given macrophenomenon. Inverse problems like these are
classically solved with optimization (reinforcement learning, evolutionary algorithms),
and generally must be offline and/or in simulation given the samples involved; but our
scenario requires online learning.

HiTAB overcomes these two problems by manually breaking the task into a subtask
hierarchy to be trained bottom-up. Agent behaviors are decomposed into behavior
hierarchies, and swarms themselves are decomposed to small and manageable groups.
This decomposition allows us to project a complex high-dimensional problem space into
many spaces of much lower dimensionality; and it also allows us to overcome the inverse
problem by reducing the joint task so much that it becomes obvious what micro-behaviors
are need to achieve a given (much simpler and more immediate) macrophenomenon.

HiTAB has been applied to homogeneous agent behaviors with arbitrary numbers of
agents [15, 16, 6]; and to heterogeneous agents in small groups or with low heterogene-
ity [17, 14]. However, it has not to date been applied to training complex heterogeneous
multiagent behaviors at multiple levels, scaling to large groups, and coordinating agents
with distinctly different capabilities and functions. This is because such a problem would
demand nontrivial task allocation and heterogeneous swarm organization.

In this work, we consider an extension to HITAB which makes it possible to train
scalable, nontrivial heterogeneous swarms for the first time. Our approach augments
HiTAB with, among other things, automated swarm reorganization and task allocation
weighted by which heterogeneous capabilities are needed. We begin by discussing related
work, and then review the HiTAB training methods introduced in prior work, followed
by further extensions introduced in this work. We then introduce a virtual controller
hierarchy scaling algorithm which scales the hierarchy at runtime by creating additional
controllers based on the number of individual agents, and forming new sub-teams to
perform the learned controller behaviors in parallel. Next, we describe a mining scenario
created to challenge and highlight the ability of our training method, and then describe
how training was performed for the mining scenario. We then describe the experiments
performed and discuss the results of those experiments and future work.

2 Related Work

Multiagent Learning from Demonstration The literature for multiagent learning from
demonstration (LfD) outside of HiTAB is quite sparse, and primarily aims to address
the complexity of training multiple agents simultaneously. Confidence based LfD was
introduced in [4], where robots were trained to cooperatively sort colored balls into
the appropriate bin. When a robot was uncertain of the correct action it would request
additional demonstration from the trainer. Other work involves learning from the joint

Scalable Heterogeneous Multiagent Learning from Demonstration

demonstration by multiple trainers. In [10], an approach was developed where the
individual sequence of actions for each robot is captured and then the sequence of group
behaviors is determined through analysis of the individual action sequences over space
and time. In [2], robots learn to collaboratively open a door by extracting a template
for the behavior and adapting it to doors in other settings. These methods work well for
small teams but become dramatically more complex as more robots are added.
Multiagent LfD approaches may be combined with other learning techniques. In [3],
LfD is used as a shaping mechanism for the reward function for reinforcement learning
while [8] explores a hybrid approach mixing LfD with more traditional machine learning.

Hierarchies and Agents Hierarchies are a well-known organizational approach for
multiagent systems where agents higher in the tree collect increasingly global information
and provide instruction to their subordinates [7]. Communication is generally restricted
such that subordinate agents communicate information up to parent agents and do
not communicate directly with peers, which reduces communication-related scaling
problems while also reducing the state information each agent must track.

However, hierarchies can fail due to the loss of a single agent, resulting in multi-
ple single points of failure. These drawbacks are more pronounced when considering
hierarchies of real robots [11]. Because of this, most multi-robot coordination algo-
rithms favor decentralized approaches. However, hierarchies can provide a good middle
ground between centralized and decentralized coordination [13], and when considering
heterogeneous swarms coordination is difficult to achieve without hierarchy [1].

In [5] and [12], heterogeneous swarms used a hierarchical structure to coordinate be-
haviors between an aerial agent and homogeneous subswarms, extending their capability
by providing global information to direct their behavior. The subswarms were able to
scale with communication confined to be between subswarm agents and the aerial agent.
Multiagent HiITAB operates similarly with regard to the subswarms and communication,
but is more flexible in that each subswarm may be a different type of agent.

2.1 HiTAB

Individual Agent Training Below we provide a brief overview of prior work in HITAB
LfD training methods as an evolution from individual agent, to homogeneous multiagent,
and finally heterogeneous multiagent training. To train individual agents [9], the trainer
decomposes a behavior into a hierarchical finite-state automata (HFA). The HFA states
are agent behaviors, with the lowest level containing only atomic agent behaviors. The
HFA transitions represent changes in features in the environment. Behaviors and features
can be parameterized, for example GoTo(X) and DistanceTo(X) respectively.

The HFA is trained from the bottom up. At each level the trainer selects features
needed for training and binds parameters to fargets in the environment as needed, for
example GoTo(ClosestAgent) and DistanceTo(ClosestObstacle). The trainer teleoperates
the agent; changing the behavior at the appropriate time, each change generating a
training sample including the previous behavior and current feature values. When training
is complete the trainer observes the behavior and provides corrective training if needed.
Once the behavior works as expected, the behavior is saved for training higher-level FA.

William Squires and Sean Luke

Homogeneous Multiagent Training To train homogeneous multiagent behaviors [15],
first individual agent behaviors are trained, and then a virtual controller agent (or boss)
is trained to direct agents to perform their trained behaviors as its atomic behaviors. A
hierarchy of controller agent behaviors are themselves trained as compositions of these
atomic behaviors. When a controller changes to a new atomic behavior, all subordinate
agents in its subswarm switch to the corresponding trained behavior.

Heterogeneous Multiagent Training To train heterogeneous multiagent behaviors [17],
virtual controller agents have multiple types of homogeneous agent groups. An atomic
behavior in a controller agent corresponds not to a trained behavior learned by its
underlings, but to a set of top-level behaviors meant to work together. For example, in a
group of two agents of type A and one agent of type B, a coordinated behavior C might
consist of behavior A; for each of the A agents and behavior B; for the B agents. C would
correspond to an atomic behavior in the controller agent. When a controller changes to a
new atomic behavior, all subordinate agents switch to the appropriate behaviors in the
corresponding coordinated behavior set.

The features used by an individual agent to determine transitions in its HFA are nor-
mally hard-coded sensor capabilities: but what would be the features used by controller
agents? [14] introduced group features to allow a trainer to quickly define controller
features, without programming, by identifying a feature from a subordinate agent group
and an aggregator function; for example Min(A#(TheStore)). Since group features are the
features of a controller agent, a higher-level controller can use that feature in a group
feature of its own, allowing feature information to be passed up the hierarchy.

3 Our Extensions to HiITAB Training

We introduce two extensions to enable training of complex heterogeneous behaviors:

Composite Features Group features aggregate a feature from one subordinate group
or one that is common to all groups, but there are cases where training requires the
combination of distinct features from multiple groups. Composite features allow a trainer
to, without programming, define a feature that incorporates feature information from
multiple individual agent types. We do this by providing a feature name, a list of group
features, and an aggregation function that combines the group features into a single
value. For example, a controller coordinating driverless shuttles (group 0) and passengers
(group 1) needs a feature indicating to go to the parking lot if there are at least 10
passengers or there is more than one shuttle at the station; ReadyToShuttle is defined as
Min(TenOrMorePassengers,MultipleAtStation). Like group features, composite features
can be passed up the hierarchy as input to a group feature defined in the parent controller.

Targets with Hierarchy Context A target in HiTAB is a variable which generalizes a
behavior, so we can create general behaviors like “Go to X rather than concrete behav-
iors like “Go to the ball” or “Go to George”. We define a method for individual agent
training where the trainer can quickly define a set of agents within the hierarchy to use
as targets. For example, in Figure 1, training of agents under the Support controller may
need to reference some agent in the Infantry group of the Defense controller as a target.
Providing a level and a hierarchy subpath, the trainer can reference any set of agents in

Scalable Heterogeneous Multiagent Learning from Demonstration

Algorithm 1 Scale Hierarchy by Least Constrained Agent

1: procedure SCALEHIERARCHY (rootgroup, agentCnis[])

2: topCtlr+ CreateTopController(rootgroup)

3 ComputeRequirements(topCtir)

4: if = MeetsCtrIRqts(ropCtlr, agentCnts, MIN) then Abort()
5: AllocToController(7opCilr, agentCnts, MIN)

6: AllocToController(topCtlr, agentCnts, PREF)

7 AllocToController(topCtlr, agentCnts, MAX)

8: procedure ALLOCTOCONTROLLER(ctl, agentCnts[], mode)

9: for all grp in ctl do

10: for all agentType in agentCnts do

11: computedCnt<— ComputedGroupRqt(grp, agentType, mode)

12: myCnts[agentType]< Min(computedCnt, agentCnts[agentType])

13: AllocToGroup(grp, myCnts, mode)

14: agentCnts<— AdjustCounts(agentCnts, myCnts)

15: procedure ALLOCTOGROUP(grp, agentCnits[], mode)

16: if grp is a individualAgentType then agentCnit« agentCnis[individualAgentType]
17: else

18: newControllerCnt— 0

19: for all agentTypel in agentCnts do

20: cnt<— agentCnts[agentTypel |

21: ctlCnt+ cnt/ComputedControllerRqt(ctl, agentTypel, mode)

22: for all agentType2 in agentCnts do

23: cnt— agentCnis|agentType2)

24: ctlCniMin<— cnt/ComputedControllerRqt(ctl, agentType2, MIN)
25: ctiCnt— Min(ctlCnt, ctlCntMin)

26: newControllerCnt+ Max(ctlCnt, 1gtCnt)

27: while numControllers<newControllerCnt do CreateController(ciiType)
28: for all ctl in group do

29: myCnts+ ControllerCounts(ctl, agentCnts, mode)

30: AllocToController(ctl, myCnts, mode)

31: agentCnts<+ AdjustCounts(agentCnts, nyCnts)

32: procedure ADJUSTCNTS(agentCnits(], allocatedCnts[])
33: for all type in agentCnts do agentCnis[type]«—agentCnts[type]—allocatedCnis|[type]

34: procedure CONTROLLERCOUNTS(ctl, agentCnits[], mode)

35: for all rype in agentCnts do
36: tgtCnir<— ComputedControllerRqt(czl, type, mode)
37: myCnts[type]< Min(1gtCnt, agentCnis[type])

the hierarchy. The level defines the starting point of the hierarchy subpath, where level O
is the immediate parent controller and increases as we move up the hierarchy. The hier-
archy subpath is a string of the form subpath=group[agentNum(:subpath)],... defining a
list of agent groups under the controller, each having an agent number and an optional
nested subpath. Replacing group or agentNum with a wildcard character indicates all
groups or all agents respectively. In this way, an agent below the Support controller
would reference its formation leader with level=1 and subpath=1[*], corresponding to
any Infantry agent below the Defense controller.

William Squires and Sean Luke

| MultiMine I——->| Locating I———»(Spotter)
117

y 1410 1723
| Support |<-| Defense |<——| Mining l—»(Excavator)
111/ v 7506 T 1 23
(Infantry) (Spotter) (Shield) (Infantry)
012 R 012 111

Fig. 1. Mining Behavior Hierarchy. Rectangles are controller groups and rounded rectangles are
individual agent groups. Shown with min/preferred/max constraints.

4 Hierarchy Scaling

In this work we train complex behaviors with a relatively small number of agents and
then have those behaviors scale, without retraining, to solve large problems given a larger
number of individual agents. To do this, we consider the structure of the heterogeneous
team, where the size and number of subteams can be increased to improve redundancy
and parallelism. The trainer’s role in this is to consider an appropriate set of constraints
for each subteam by defining its minimum, maximum, and preferred sizes in operation.
In HiTAB, subteams are represented by the agent groups of a virtual controller agent,
each including a homogeneous set of individual or virtual controller agents. Given the
constraints for each agent group and some allocation of individual agents, we need
to adjust agent group sizes to scale the behavior. Scaling a single-level controller is
trivial, we simply add available agents to the individual agent groups of the controller
(as in [14]). But in a complex agent hierarchy, scaling also involves increasing the size
of virtual controller agent groups.

Adding virtual controllers is a difficult problem for the following reasons: First,
the number of agents in each agent group must satisfy the Minimum and Maximum
constraints defined by the trainer. We can only add a virtual controller if there are
enough individual agents to meet its combined Minimum constraints and we can only
add individual agents to an existing controller up to the combined Maximum constraints.
Second, agent types may appear in multiple agent groups of the hierarchy, each having
its own constraints for that role in the top-level behavior. And third, we do not know
in advance if some type of agent will be much more constrained than others. Below
we define a low-cost centralized algorithm to scale an agent hierarchy given the trainer-
defined constraints and some allocation of individual agents.

Scale Hierarchy by Least Constrained Agent Shown in Algorithm 1, the ScaleHierarchy
procedure takes a root group of controller agents that run the top-level behavior and an
array of individual agent counts. It begins by creating a dummy controller containing
the root agent group and then recursively computes the individual agent requirements
for the three constraint modes (Minimum, Preferred, and Maximum) for each group and
controller in the hierarchy. Then we call AllocToController for each constraint mode.

In AllocToController, for each agent group we determine how many of each type of
agent can be provided given a constraint mode. The agent count of each individual agent
type is up to the computed group requirement for that type and constraint mode. After
allocation to a group is complete, we adjust the individual agent counts to reflect what
was allocated and repeat for the next agent group.

Scalable Heterogeneous Multiagent Learning from Demonstration

The AllocToGroup procedure acts in one of two ways. For an individual agent group,
the group size is simply increased to the provided agent count. For a controller agent
group, we determine how many additional controllers can be added given the available
agents and the constraint mode as follows: For each individual agent type, typel, we
calculate how many controller agents can be created based on the number of typel
agents and the computed requirement of a controller for that agent type. Within that
loop, we check the remaining individual agent types, type2, to see how many controllers
can be created for that agent type using the Minimum constraint. That is, we create
additional controllers based on the least constrained agent type so long as the Minimum
requirements are met for the controller’s other individual agent types. If needed, the
controller count is reduced so the Minimum for the type2 individual agents is not violated.
After calculating the number of additional controllers, we add them to the agent group
and then AllocToController is called for each controller in the group. Adding the new
controllers at the head of the agent group ensures their Minimum requirements are met.

S5 The Mining Scenario

Demonstrating our learning approach requires a training scenario that is heterogeneous,
demands scalability to cover large areas, and requires complex interaction among het-
erogenous agents. We were unable to find a suitable match in our literature search, so
we invented an adversarial mining scenario. In this scenario, Excavator agents mine ore
from deposits that are located by Spotter agents. There are also a number of defensive
agent types that cooperate to protect the Excavator from adversary agents that seek to
stop the mining.

The agent types below are defined by setting attribute values for maximum health
and abilities for vision, attacking other agents, shielding attacks from other agents, and
what action to take when the agent reaches zero health:

Infantry This agent can attack other agents but cannot shield attacks.

Spotter This agent has zero-value attack and shield values, but has increased visual
range and a 360-degree field of view. If an Infantry agent is associated with a Spotter,
then it can attack a spotted target with 100 percent accuracy.

Shield This agent can shield other agents from attack, but cannot attack other agents.

Excavator This agent has a greater amount of health, no defensive abilities, and is able
mine ore from the ore deposits.

Archer This agent has similar settings to the Infantry agent, but is an adversary to
the agents above. When health reaches zero, these agents reappear at spawn points
randomly distributed in the environment.

Mining is disrupted when the Excavator agent reaches zero health, and resumes
when its health is restored (after 1000 time units). When other mining team agents reach
zero health, they are disabled for 300 time units, but stay in place to maintain the agent
allocations to the scaled hierarchy. Shield and Spotter agents are not attackable, but may
be damaged while other agents are being attacked.

William Squires and Sean Luke

SpreadEvenly (8) StayOnCircle (17) Realign (2)
Otherwise _(StayOnCircle f
Same & OnRight OnCircle

AOnCircle
Same&OnRight @ AlignRight
Same(ClosestVisible Inf, Closest Inf) OnCircle: Distance(E) - In Range

OnRight closest(E) - On Target AND OnRight(E) - On Target

Fig. 2. SpreadEvenly HFA. The samples required to train a behavior is shown in parentheses.
Hexagons are trained behaviors; ovals are atomic behaviors.

6 Training the Mining Scenario

To train the mining scenario, we first have to define an agent hierarchy that simplifies
training and defines the appropriate subteams. After that we train individual behaviors
and then the coordinating behaviors of the virtual controllers.

Defining the agent hierarchy Given the agent types defined above we chose to train the
mining scenario behavior using agent hierarchy shown in Figure 1. At the lowest level,
the Support controller includes the supporting agents of a defense team. To provide a
reference point for the training of the defensive formation behavior, we add the Defense
controller where a single Infantry agent acts as a formation leader for the Support agents
in the defense team. The Mining controller has Excavator agents that mine ore and
a number of Defense teams to protect them from attack. The Locating controller has
Spotter agents that search for available ore deposits for a Mining team. At the top level,
the MultiMine controller is a homogeneous controller of Locating teams that perform
the mining behavior in parallel. Note that two agent types have multiple roles in the
hierarchy, where the agents are trained for both roles and perform the appropriate role
based on their placement in the hierarchy during hierarchy scaling.

When defining the hierarchy, we also defined the constraints for Minimum, Preferred,
and Maximum agent counts for each agent group. These are shown in Figure 1 as three
integer values next to each agent group. For example, each Mining agent has a minimum
of four Defense agents, with five preferred and 6 at a maximum.

Agent Training The top-level mining behavior combines over 150 trained behaviors
for the individual and controller agents, so we will not describe all training here. We
provide examples below that are part of the behavior to form agents defensively around
Excavator agents, with final formation examples shown in Figure 4. The figure also
shows that the formation is scaled based on agent availability.

Much of the training fell into two categories: training individual agents to position
themselves with respect to other agents in the hierarchy and training controller agents to
coordinate individual agent behaviors. We describe one instance of each type of training
below, highlighting usage of our extensions in this work. Note that all references to
Infantry agents below are for formation leader agents in the second group of the Defense
controller. Finally, we briefly describe the adversary (Archer) behavior.

SpreadEvenly Infantry agents are trained to spread evenly in a circle around Excavator
agents below the Mining controller. When this behavior begins, the agents are already

Scalable Heterogeneous Multiagent Learning from Demonstration

SurroundExcavators (2) |""“|-93de"5 (2)
@-> InitlLeaders AlignlLeaders @—> PositionlLeader FlndPeerILeader
Min(ILeaderDone) < Max(DefenseOnPreCircle) =

AligniLeaders (2

@—> SpreadILeader AlignDefensive

Min(ILeaderBetween) > 0

Fig. 3. SurroundExcavators HFA. See also Figure 2.

positioned on a circle around Excavator agents and a peer Infantry agent is visible. The
HFA for the SpreadEvenly behavior is shown in Figure 2.

Realign positions the agent at the desired radius to the closest Excavator and orients
it so that the Excavator is directly to the right. StayOnCircle circles the closest Excavator
and realigns if the distance or orientation are not within acceptable limits, which can
happen if there are multiple Excavator agents to circle. Finally, SpreadEvenly moves
the agent around the circle until the closest visible peer is also the closest peer. Without
further coordination, the agents continue to circle at a relatively even distance because
they cannot all be at the stopping condition at the same time.

To train SpreadEvenly, we used two different targets with hierarchy context. The
Realign and StayOnCircle behaviors are trained with respect to an Excavator using
level=1 and subpath=1[*]. The SpreadEvenly behavior is trained with respect to peer
Infantry agents using level=0 and subpath=0[*:1[*]].

SurroundExcavators The Mining controller agent is trained to coordinate Infantry agents
to position evenly on a circle around its Excavator agents. The HFA is shown in Figure 3,
where the ellipses are joint behaviors and the features are group features.

InitlLeaders instructs Infantry agents to move to a radius around the closest Exca-
vator agent using PostionlLeader and, when they are all at the proper distance, they
are instructed to move around the circle until a peer is visible using FindPeerlLeader.
AlignlLeaders runs the SpreadEvenly behavior described above using SpreadlLeader
and, when all agents are roughly equidistant to their two closest peers, they are instructed
to orient outward from the Excavator using AlignDefensive. The top-level behavior
switches from InitILeaders to AlignlLeaders when all of the agents are in a Done state.

While no composite features were used in training SurroundExcavators, two were
used in other training to indicate when the defensive formation is complete and mining
can start. First, the DefenseAligned composite feature in the Support controller is the Max
of three group features indicating all support agents are on their respective circles around
the Excavator. This feature is passed up through the Defense and Mining controllers
as the SupAligned group feature. The DefenseAligned composite feature of the Mining
controller is the Max of SupAligned and the Max(AlignedRear) group feature indicating
all formation leaders are pointing away from the Excavators.

Archer Behavior The adversary agents are trained with the AtfackMined behavior, which
moves the agent randomly in the environment until it is within 150 units of an ore deposit
that is being mined. It then moves toward the closest ore deposit being mined and attacks
the Infantry and Excavator agents near the ore.

William Squires and Sean Luke

/:s\ —
» - - \:- v
- Ll Y t

/
: 1

VI

-

—— -
- \- g i
——— - YN‘- p -
, e - T ™ A
-
A ~ DS
"

NP

Fig. 4. Mining Formation for 4 and 6 defensive teams

7 Experiments

In our experiments we run the top-level mining behavior in environments of two sizes,
580x580 and 1080x1080 units, with 12 ore deposits. Deposits are randomly distributed
in grid locations in the environment and reappear in an open location randomly when
depleted. Archer agents are randomly distributed in the environment, with 160 in the
smaller environment and 555 in the larger environment to keep the density equal. When
an Archer dies it reappears at one of 18 spawn locations, which are randomly distributed
in grid locations at start time. Experiments are run with three allocations of mining
agents that result in one, two, and four mining teams respectively after hierarchy scaling.

Baseline Training We establish a baseline of comparison by training individual agent
behaviors for the mining task without a controller hierarchy. For this training we defined
an additional agent type, Seeker, to perform the ore seeking behaviors of the Spotter
agent. The individual agent behaviors were trained as follows: (1) A Seeker agent moves
randomly, goes to and attaches to a visible ore deposit with no attached agents, and then
repeats the behavior when mining begins on the deposit. (2) An Excavator agent moves
randomly until it is within 150 units of an attached Seeker agent, then goes to, attaches
to, and mines the ore deposit, and then repeats the behavior when the deposit is depleted.
(3) An Infantry agent moves randomly in the environment until within 150 units of
active mining, then goes to the mining location and attacks Archer agents, and repeats
the behavior when the deposit is depleted. (4) A Spotter agent moves randomly until it
sees an Infantry agent, then moves to and follows the Infantry agent while keeping it
between the nearest Archer agent and itself. (5) A Shield agent moves randomly until
it sees an Infantry agent, then moves to and follows the Infantry agent while trying to
shield it from the nearest Archer agent.

The agent allocations for experiments are shown in Table 1, where £ is the hierarchi-
cal behavior and b is the baseline behavior. At the beginning of each simulation mining
teams are randomly distributed, with agents in a 50x50 unit square. Though the baseline
agents are not true teams, we group them similarly to create a fair comparison at startup.
Each experiment was run for 100,000 timesteps. For each environment, we compared

Table 1. Agent Allocations
Allocation Infantry(h,b) Shield(h,b) Excav(h,b) Spotter(h) Seeker(b) Spotter(b)

One Team 8 5 1 7 5 2
Two Teams 16 10 2 14 10 4
Four Teams 32 20 4 28 20 8

Scalable Heterogeneous Multiagent Learning from Demonstration

Ore Mined at Time Step Ore Mined at Time Step
by Agent Allocation, Small Environment by Agent Allocation, Big Environment
12000 { === One Coord - === One Coord o
- One Swarm 7 b 8000 7 «weee One Swarm -
£ 100001 - —- Two Coord - = £ — = Two Coord e
E 8000 1 == Two Swarm ’/// % 6000 4 - Two Swarm - -~
I} = = Four Coord Pa S = = Four Coord z -~ %
£ 60009 -~ Four Swarm 77 e =t | £ 4000 -~ Four Swarm = ey
= = -
é 4000 - E
2000 A
3 2000 A 3
01 0

0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Time Step Time Step

Fig. 5. Mean results for small and large environments. Gray lines are 95% confidence intervals.

the average ore gathered at step 100,000 over 50 runs for the team configurations in the
two environments using two-tailed t-tests, p-value=0.01, with Bonferroni correction.

Figure 5 shows the mean results with the baseline results having dots indicating
the number of teams and the controller hierarchy having dashes indicating the number
of teams. In both environments the scaling resulted in a clear but slightly sublinear
improvement in results for additional mining teams. The virtual controller hierarchy
results in a clear improvement over the baseline behavior. The difference is even more
pronounced in the larger environment, with 2 hierarchy teams outperforming 4 baseline
teams, suggesting that the added communication and coordination provided by the virtual
controller agent hierarchy becomes more important as the environment grows.

In comparing the relative efficiency per team, the increase to four teams shows a
small drop in ore mined per team. We attribute this to the increased competition for ore
resources. This difference is more pronounced in the big environment, where the cost of
teams exploring the same area is higher. Training a top-level behavior to encourage teams
to explore other areas of the environment may help to address the decreased efficiency.

8 Conclusions and Future Work

In this work, we successfully trained a complex heterogeneous multiagent behavior
and showed that it scales without retraining. We also showed that the virtual controller
hierarchy offers a clear benefit over agents attempting to coordinate on their own. We
introduced the mining scenario as a means of demonstrating complex and scalable hetero-
geneous agent training. We also made further refinements to the HiTAB heterogeneous
multiagent learning method that were an important part of the mining behavior training.

The Scale Hierarchy by Least Constrained Agent algorithm successfully incorporated
additional agents, but in empirical testing we noted certain cases where the distribution
of available agents was not always balanced. Better hierarchy scaling algorithms could
be created to address this, but without applying our method to a greater number of
scenarios it is hard to tell if one algorithm would be suitable for all problems.

Finally, the current hierarchy scaling is based on central knowledge of the individual
agents and where they are in the environment. While this knowledge is available for a
simulation environment, we cannot assume this information is available for robots in a
large environment where they are likely to be initially separated from their team.

Future work will center around the creation of a distributed hierarchy scaling al-
gorithm and other methods that will allow the agent hierarchy to be built, scaled, and
balanced as agents find each other in the environment.

William Squires and Sean Luke

References

10.

11.

12.

13.

14.

15.

16.

17.

. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31(3), 345-359 (2013)
. Blokzijl-Zanker, M., Demiris, Y.: Multi robot learning by demonstration. In: Proceedings of

the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 3.
pp- 1207-1208. International Foundation for Autonomous Agents and Multiagent Systems
(2012)

. Brys, T., Harutyunyan, A., Suay, H.B., Chernova, S., Taylor, M.E., Nowé, A.: Reinforce-

ment learning from demonstration through shaping. In: Twenty-Fourth International Joint
Conference on Artificial Intelligence (2015)

. Chernova, S., Veloso, M.: Confidence-based multi-robot learning from demonstration. Inter-

national Journal of Social Robotics 2(2), 195-215 (2010)

. Elston, J., Frew, E.W.: Hierarchical distributed control for search and tracking by heteroge-

neous aerial robot networks. In: Robotics and Automation, 2008. ICRA 2008. IEEE Interna-
tional Conference on. pp. 170-175. IEEE (2008)

. Freelan, D., Wicke, D., Sullivan, K., Luke, S.: Towards rapid multi-robot learning from

demonstration at the robocup competition. In: Robot Soccer World Cup. pp. 369-382. Springer
(2014)

. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowledge

engineering review 19(4), 281-316 (2004)

. Le, H.M., Yue, Y., Carr, P, Lucey, P.: Coordinated multi-agent imitation learning. In: Proceed-

ings of the 34th International Conference on Machine Learning-Volume 70. pp. 1995-2003.
JMLR. org (2017)

. Luke, S., Ziparo, V.A.: Learn to behave! rapid training of behavior automata. In: Proceedings

of Adaptive and Learning Agents Workshop at AAMAS 2010 (2010)

Martins, M.F., Demiris, Y.: Learning multirobot joint action plans from simultaneous task
execution demonstrations. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1. pp. 931-938. International Foundation
for Autonomous Agents and Multiagent Systems (2010)

Parker, L.E.: Multiple mobile robot systems. Springer Handbook of Robotics pp. 921-941
(2008)

Pinciroli, C., O’Grady, R., Christensen, A.L., Dorigo, M.: Coordinating heterogeneous swarms
through minimal communication among homogeneous sub-swarms. In: International Confer-
ence on Swarm Intelligence. pp. 558-559. Springer Berlin Heidelberg (2010)

Soule, T., Heckendorn, R.B.: A developmental approach to evolving scalable hierarchies for
multi-agent swarms. In: Proceedings of the 12th Annual Conference Companion on Genetic
and Evolutionary Computation. pp. 1769-1776. ACM (2010)

Squires, W.G., Luke, S.: Lfd training of heterogeneous formation behaviors. In: AAAI Spring
Symposia (2018)

Sullivan, K., Luke, S.: Learning from demonstration with swarm hierarchies. In: Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume
1. pp. 197-204. International Foundation for Autonomous Agents and Multiagent Systems
(2012)

Sullivan, K., Luke, S.: Real-time training of team soccer behaviors. In: Robot Soccer World
Cup. pp. 356-367. Springer (2012)

Sullivan, K., Wei, E., Squires, B., Wicke, D., Luke, S.: Training heterogeneous teams of
robots. In: Autonomous Robots and Multirobot Systems (ARMS) (2015)

