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Abstract. Robot swarms have been proposed as a way to take advan-
tage of the scalability, robustness, and adaptability of natural large-scale 
multiagent systems in order to solve engineering challenges. However, 
accomplishing complex tasks while remaining flexible and decentralized 
has proven elusive. Our prior work on planner-guided robot swarms 
successfully combined a distributed swarm algorithm implementing low-
level behaviors with automated parallel planners and executives select-
ing high-level actions for the swarm to perform as a whole, but had only 
been tested in simplistic grid-world simulations. Here we demonstrate our 
approach on physical robots augmented with experiments in continuous-
space s imulation, showing that it is an effective and efficient mechanism
for achieving difficult task objectives to which swarms are rarely applied.
We also use a Large Language Model prompted with the planning domain
definition and a natural language goal statement to generate the formal
problem definition, enabling non-expert users to control the swarm.

Keywords: Multi-robot systems and real world robotics · Agent 
cooperation and negotiation · Human agent interaction

1 Introduction 

The field of swarm robotics prizes three cardinal virtues. The first virtue is 
scalability, thanks to potentially large numbers of inexpensive robots. The second 
is robustness, the ability to withstand the loss of members and to accommodate 
the addition of new ones. The third is adaptability, the appropriate response 
to changing conditions in the environment. These virtues take inspiration from 
natural systems such as ant colonies, flocks of birds, schools of fish, and so on. To
achieve these goals, swarm robotics designs have historically taken the form of
potentially large numbers of simple and usually homogenous robots, with limited
and typically local interaction and communication, and with loosely coupled or
entirely separated decision-making.
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Fig. 1. Planner-guided swarm architec-
ture. 

Fig. 2. Component relationships. 

However, the highly decoupled and distributed nature of a typical robot 
swarm, valued for these virtues, has also proven difficult to control. As the sur-
vey of Brambilla et al. [2] noted, “[d]ue to the lack of a centralized controller, it 
is in general very difficult to effectively control a swarm once it starts operat-
ing.” Because they are loosely coupled, swarms by design cannot easily coordi-
nate to do synchronized, interleaved, or nontrivial collaborative tasks. Rather, 
swarm robotics dogma often turns to emergent behavior, arguing that swarms can 
achieve complex macro-level behavior through the micro-interactions of many 
agents. But while it is feasible, through simulation, to predict the resulting 
macrophenomena arising from these interactions, a critical inverse problem— 
identifying which micro-behaviors will achieve a desired macrophenomenon — is
generally unsolved and perhaps unsolvable. Collective behavior involving syn-
chronization and coordination has proven elusive. In short: researchers have
succeeded in getting swarms to forage, patrol, distribute themselves, and form
shapes, but swarms have not shown promise in working together to build a house.

The tension here is between coordination and decentralization. The classic 
method for identifying, solving, and executing synchronized and collaborative 
robot tasks is to use a (normally centralized) task planner and executive with 
tight coupling. But when doing so, a swarm degenerates into a single-agent sys-
tem with multiple effectors (the swarm robots), hurting scalability due to net-
work complexity, and damaging robustness by relying on a single point of fail-
ure. Global knowledge held by every agent would not scale well and would limit
adaptability, and requiring long-distance communication among robots would
violate the swarm-style focus on having only local interactions.

We are interested in endowing swarm architectures with sophisticated col-
laboration and synchronization. To this end, we have developed planner-guided 
robot swarms as a novel solution to these problems. In our method, the mission 
for the swarm is specified in automated planning terms. Each agent has its own 
planner, and all use the same algorithm and inputs, yielding identical results. 
The swarm is treated as a set of one or more virtual agents, each composed of
many real ones and responsible for the parallel execution of the actions in the
plan steps. An a priori mapping of virtual agent actions to real agent behaviors
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is the bridge that leads to emergent behavior in service of the mission objectives. 
Our approach does not require tight synchronization among swarm members but 
is still robust to retrograde behavior a mong out-of-sync robots. The method also
seeks to ensure that their plans will ultimately synchronize and align (Fig. 1 and 
Fig. 2). 

2 Main Purpose 

In our early work in this area [8, 9], we assumed ideal and simplistic conditions 
in a trivial simulated grid-world, with predictable communications and none 
of the sensor noise or action failures associated with actual physical robots. 
In this work we remedy that deficiency, showing that potentially large groups 
of physical robots can collectively perform synchronized and planned actions. 
The robots are able to do these tasks while overcoming physical crowding and 
interference, significant difficulties in localization and wayfinding, and physical
challenges inherent in object detection, grasping, and manipulation. We further
show that the method scales and that it can adapt to dynamic changes in the
environment and in the nature of the robot swarm.

In this demonstration we exercise the planner-guided swarm approach in real-
world conditions with groups of physical robots, as well as the noise, localization 
and wayfinding difficulties, physical crowding, and interference that comes with 
them. The robots are nonetheless able to perform a coordinated and planned 
task using this technique. We also show via simulation that the method still 
exhibits qualities ascribed to sw arms, namely that it scales with the number of
agents, that it can deal with changes in the makeup of the swarm, and that it
can adapt to dynamic changes in the environment.

We also address a practical limitation in the architecture: the need for a 
human to specify the i nitial conditions and the goal conditions using Planning
Domain Definition Language (PDDL) [5]. Many potential use cases involve a 
non-technical user directing a robot swarm to accomplish some multistep task. 
Requiring that user to express the initial and goal states in formal PDDL would 
make the system more difficult to use and limit its possible reach. We show 
that a Large Language Model (LLM) can be used to convert the user’s natural
language description of the conditions into predicates for the planner to process,
thus expanding the potential applications of the system (Fig. 4 and Fig. 5). 

3 Demonstration 

We performed three experiments using physical robots and in simulation, all 
using a scenario called “Brick Layering”. The first was a baseline experiment 
that demonstrated that the method could scale to large numbers of agents (we 
tested up to 64). The second experiment showed that the method was robust 
to unexpected changes in the number of agents in the swarm, both tolerating
loss of agents and accepting new ones. The third experiment demonstrated that
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Fig. 3. Locobot with 
bric k. 

Fig. 4. Robots at work on a Brick Layering scenario. Red 
and yellow bricks are at their destinations in the top righ t; 
green and white ones are still in the field. (Color figure
online)

Fig. 5. Stages of the Brick Layering s cenario in simulation.

the method could deal with noise and unexpected state changes i n the robot
environment.

Our simulations were created with the MASON multiagen t simulation toolkit
[4] using two-dimensional continuous space. For the physical robot implementa-
tion we used the Trossen Robotics PX100, a r obot platform based on the open-
source LoCoBot design (Fig. 3). We positioned four AprilTag [6] two-dimensional 
barcodes on the sides of the experiment area to add visual localization assistance 
to the onboard odometry, and incorporated YOLOv5 object detection [3] trained 
on a custom set of images of colored Duplo bricks on the floor.

All code for the abstract swarm operations, including PDDL definitions, par-
allel planning, success token management, and completion criteria, was shared 
between the physical r obot and simulation implementations. We used our own
custom implementation of the GraphPlan algorithm [1] built using the PDDL4J 
planning toolkit [7](Fig. 6,Fig. 7 and Fig. 8). 

For the LLM exploration [10], we created a system prompt beginning with, 
“You are a PDDL expert. In your answers, only respond with PDDL code...” 
Then we supplied the PDDL domain definition along with a natural language 
description of the initial and goal states, e.g. “Write a PDDL problem definition
that starts with all areas being empty and ends with item1 in area4, item2 in
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Fig. 6. Scalability results 
with physical robots. 

Fig. 7. Robustness results 
with physical robots. 

Fig. 8. Adaptability results 
with physical robots. 

area3, item3 in area2, and item4 in area1.” Smaller LLMs did not usually produce 
usable output, but flagship models such as GPT and Claude were consistently
successful, and self-hosted CodeGemma performed well too.

4 Conclusions 

Implementing the planner-guided swarm algorithm on physical robots exposed 
many challenges that were not readily apparent when working in simulation. In 
the course of conducting the experiments, w e made a number of observations
relevant to practical swarm robot engineering.

Crowding and Interference. Robots are not point objects. With real robots, 
crowding is a much bigger problem than in simple simulations. In the physi-
cal world, crowding can become a dominant factor even with small numbers of 
agents (four in our lab). Robots frequently bump into each other, causing them 
to be nudged out of position, miss their destinations, and fail to pick up bricks. 
Furthermore, often two robots will detect the same brick, then spend time align-
ing, approaching, and targeting it, only to have one grab it and the other miss, or 
for both to miss due to an arm collision (which c an and does damage hardware).
We mitigated this problem to some extent by having each robot announce when
it’s about to attempt a pickup and delay arm movements if another is grabbing,
but this de facto mutex lock either works only occasionally due to timing issues,
or introduces long delays if timeout periods are extended.

Localization. The agents in our previous grid-world simulations needed no abso-
lute positioning knowledge because they navigated using pheromones and could 
sense when they were in a pickup or dropoff zone. Our real robots lack this, and 
so must rely on other, noisy localization methods (odometry and AprilTags in 
our work) to grab and drop bricks in the correct places and to prevent retro-
grade behavior (e.g. one removing bricks from where another has just correctly 
placed them). Similarly, without pheromones the robots need other mechanisms
for wayfinding and deconfliction. Lacking help from a pheromone gradient, they
employ arc-turn maneuvers to escape from head-on encounters. These motions
are usable but imperfect solutions to problems that don’t even exist in the grid-
world simulations.
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Delay. The physical robots experience inertial delays in their rotation and sig-
nificant delays due to repeated misses in grasping bricks and maneuvers to avoid 
interference among arms. Most importantly, the data pipeline that provides our 
real robot code with the image location of a brick runs with an approximately 
one-second latency. This small delay has implications for every aspect of the sys-
tem. While rotating to scan for bricks in the area, we maintain a first-in/first-out 
queue of historical pose measurements to pair with the delayed detection notifi-
cations so the robot can turn back to where it spotted a target. When preparing
to move the arm to pick up a brick, we need to insert delays to ensure the robot
has an up-to-date image with which to plan the arm motion.

In this demonstration, we built on our prior work with planner-guided robot 
swarms, showing the system running on physical robots and in continuous-space 
simulation for the first time. We demonstrated that the technique is scalable, 
robust, and adaptable in real swarm and multi-robot conditions, and that an 
LLM can e ase the work of specifying initial and goal conditions. This will help
pave the road from research to real-world applications for this powerful, general
approach to swarm engineering.
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