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The field of swarm robotics prizes three cardinal virtues. The first virtue is
scalability, thanks to potentially large numbers of inexpensive robots. The second
is robustness, the ability to withstand the loss of members and to accommodate
the addition of new ones. The third is adaptability, the appropriate response
to changing conditions in the environment. These virtues take inspiration from
natural systems such as ant colonies, flocks of birds, schools of fish, and so on. To
achieve these goals, swarm robotics designs have historically taken the form of
potentially large numbers of simple and usually homogenous robots, with limited
and typically local interaction and communication, and with loosely coupled or
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Abstract. Robot swarms have been proposed as a way to take advan-
tage of the scalability, robustness, and adaptability of natural large-scale
multiagent systems in order to solve engineering challenges. However,
accomplishing complex tasks while remaining flexible and decentralized
has proven elusive. Our prior work on planner-guided robot swarms
successfully combined a distributed swarm algorithm implementing low-
level behaviors with automated parallel planners and executives select-
ing high-level actions for the swarm to perform as a whole, but had only
been tested in simplistic grid-world simulations. Here we demonstrate our
approach on physical robots augmented with experiments in continuous-
space simulation, showing that it is an effective and efficient mechanism
for achieving difficult task objectives to which swarms are rarely applied.
We also use a Large Language Model prompted with the planning domain
definition and a natural language goal statement to generate the formal
problem definition, enabling non-expert users to control the swarm.
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Fig. 1. Planner-guided swarm architec- Fig. 2. Component relationships.

ture.

However, the highly decoupled and distributed nature of a typical robot
swarm, valued for these virtues, has also proven difficult to control. As the sur-
vey of Brambilla et al. [2] noted, “[d]ue to the lack of a centralized controller, it
is in general very difficult to effectively control a swarm once it starts operat-
ing.” Because they are loosely coupled, swarms by design cannot easily coordi-
nate to do synchronized, interleaved, or nontrivial collaborative tasks. Rather,
swarm robotics dogma often turns to emergent behavior, arguing that swarms can
achieve complex macro-level behavior through the micro-interactions of many
agents. But while it is feasible, through simulation, to predict the resulting
macrophenomena arising from these interactions, a critical inverse problem—
identifying which micro-behaviors will achieve a desired macrophenomenon — is
generally unsolved and perhaps unsolvable. Collective behavior involving syn-
chronization and coordination has proven elusive. In short: researchers have
succeeded in getting swarms to forage, patrol, distribute themselves, and form
shapes, but swarms have not shown promise in working together to build a house.

The tension here is between coordination and decentralization. The classic
method for identifying, solving, and executing synchronized and collaborative
robot tasks is to use a (normally centralized) task planner and executive with
tight coupling. But when doing so, a swarm degenerates into a single-agent sys-
tem with multiple effectors (the swarm robots), hurting scalability due to net-
work complexity, and damaging robustness by relying on a single point of fail-
ure. Global knowledge held by every agent would not scale well and would limit
adaptability, and requiring long-distance communication among robots would
violate the swarm-style focus on having only local interactions.

We are interested in endowing swarm architectures with sophisticated col-
laboration and synchronization. To this end, we have developed planner-guided
robot swarms as a novel solution to these problems. In our method, the mission
for the swarm is specified in automated planning terms. Each agent has its own
planner, and all use the same algorithm and inputs, yielding identical results.
The swarm is treated as a set of one or more virtual agents, each composed of
many real ones and responsible for the parallel execution of the actions in the
plan steps. An a priori mapping of virtual agent actions to real agent behaviors
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is the bridge that leads to emergent behavior in service of the mission objectives.
Our approach does not require tight synchronization among swarm members but
is still robust to retrograde behavior among out-of-sync robots. The method also
seeks to ensure that their plans will ultimately synchronize and align (Fig. 1 and
Fig. 2).

2 Main Purpose

In our early work in this area [8,9], we assumed ideal and simplistic conditions
in a trivial simulated grid-world, with predictable communications and none
of the sensor noise or action failures associated with actual physical robots.
In this work we remedy that deficiency, showing that potentially large groups
of physical robots can collectively perform synchronized and planned actions.
The robots are able to do these tasks while overcoming physical crowding and
interference, significant difficulties in localization and wayfinding, and physical
challenges inherent in object detection, grasping, and manipulation. We further
show that the method scales and that it can adapt to dynamic changes in the
environment and in the nature of the robot swarm.

In this demonstration we exercise the planner-guided swarm approach in real-
world conditions with groups of physical robots, as well as the noise, localization
and wayfinding difficulties, physical crowding, and interference that comes with
them. The robots are nonetheless able to perform a coordinated and planned
task using this technique. We also show via simulation that the method still
exhibits qualities ascribed to swarms, namely that it scales with the number of
agents, that it can deal with changes in the makeup of the swarm, and that it
can adapt to dynamic changes in the environment.

We also address a practical limitation in the architecture: the need for a
human to specify the initial conditions and the goal conditions using Planning
Domain Definition Language (PDDL) [5]. Many potential use cases involve a
non-technical user directing a robot swarm to accomplish some multistep task.
Requiring that user to express the initial and goal states in formal PDDL would
make the system more difficult to use and limit its possible reach. We show
that a Large Language Model (LLM) can be used to convert the user’s natural
language description of the conditions into predicates for the planner to process,
thus expanding the potential applications of the system (Fig.4 and Fig.5).

3 Demonstration

We performed three experiments using physical robots and in simulation, all
using a scenario called “Brick Layering”. The first was a baseline experiment
that demonstrated that the method could scale to large numbers of agents (we
tested up to 64). The second experiment showed that the method was robust
to unexpected changes in the number of agents in the swarm, both tolerating
loss of agents and accepting new ones. The third experiment demonstrated that
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Fig. 4. Robots at work on a Brick Layering scenario. Red
and yellow bricks are at their destinations in the top right;
green and white ones are still in the field. (Color figure

Fig.3. Locobot with

brick online)
= hobsons ok pTEIs SR A
«*°
L4 [
. L : 0% ° & ~ A @ C
.
' - L [
. ° e o
.

(a) Agents (gray disks) explore the field for  (b) All four rows are correctly filled in; the
bricks (colored rectangles). agents have declared the job complete.

Fig. 5. Stages of the Brick Layering scenario in simulation.

the method could deal with noise and unexpected state changes in the robot
environment.

Our simulations were created with the MASON multiagent simulation toolkit
[4] using two-dimensional continuous space. For the physical robot implementa-
tion we used the Trossen Robotics PX100, a robot platform based on the open-
source LoCoBot design (Fig. 3). We positioned four AprilTag [6] two-dimensional
barcodes on the sides of the experiment area to add visual localization assistance
to the onboard odometry, and incorporated YOLOV5 object detection [3] trained
on a custom set of images of colored Duplo bricks on the floor.

All code for the abstract swarm operations, including PDDL definitions, par-
allel planning, success token management, and completion criteria, was shared
between the physical robot and simulation implementations. We used our own
custom implementation of the GraphPlan algorithm [1] built using the PDDL4J
planning toolkit [7|(Fig. 6,Fig.7 and Fig.8).

For the LLM exploration [10], we created a system prompt beginning with,
“You are a PDDL expert. In your answers, only respond with PDDL code...”
Then we supplied the PDDL domain definition along with a natural language
description of the initial and goal states, e.g. “Write a PDDL problem definition
that starts with all areas being empty and ends with item1 in area4, item2 in
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Fig. 7. Robustness results with physical robots.

Fig. 6. Scalability results with physical robots.

with physical robots.

aread, item3 in area2, and item4 in areal.” Smaller LLMs did not usually produce
usable output, but flagship models such as GPT and Claude were consistently
successful, and self-hosted CodeGemma performed well too.

4 Conclusions

Implementing the planner-guided swarm algorithm on physical robots exposed
many challenges that were not readily apparent when working in simulation. In
the course of conducting the experiments, we made a number of observations
relevant to practical swarm robot engineering.

Crowding and Interference. Robots are not point objects. With real robots,
crowding is a much bigger problem than in simple simulations. In the physi-
cal world, crowding can become a dominant factor even with small numbers of
agents (four in our lab). Robots frequently bump into each other, causing them
to be nudged out of position, miss their destinations, and fail to pick up bricks.
Furthermore, often two robots will detect the same brick, then spend time align-
ing, approaching, and targeting it, only to have one grab it and the other miss, or
for both to miss due to an arm collision (which can and does damage hardware).
We mitigated this problem to some extent by having each robot announce when
it’s about to attempt a pickup and delay arm movements if another is grabbing,
but this de facto mutex lock either works only occasionally due to timing issues,
or introduces long delays if timeout periods are extended.

Localization. The agents in our previous grid-world simulations needed no abso-
lute positioning knowledge because they navigated using pheromones and could
sense when they were in a pickup or dropoff zone. Our real robots lack this, and
so must rely on other, noisy localization methods (odometry and AprilTags in
our work) to grab and drop bricks in the correct places and to prevent retro-
grade behavior (e.g. one removing bricks from where another has just correctly
placed them). Similarly, without pheromones the robots need other mechanisms
for wayfinding and deconfliction. Lacking help from a pheromone gradient, they
employ arc-turn maneuvers to escape from head-on encounters. These motions
are usable but imperfect solutions to problems that don’t even exist in the grid-
world simulations.



Planner-Guided Robot Swarm Demonstration 377

Delay. The physical robots experience inertial delays in their rotation and sig-
nificant delays due to repeated misses in grasping bricks and maneuvers to avoid
interference among arms. Most importantly, the data pipeline that provides our
real robot code with the image location of a brick runs with an approximately
one-second latency. This small delay has implications for every aspect of the sys-
tem. While rotating to scan for bricks in the area, we maintain a first-in /first-out
queue of historical pose measurements to pair with the delayed detection notifi-
cations so the robot can turn back to where it spotted a target. When preparing
to move the arm to pick up a brick, we need to insert delays to ensure the robot
has an up-to-date image with which to plan the arm motion.

In this demonstration, we built on our prior work with planner-guided robot
swarms, showing the system running on physical robots and in continuous-space
simulation for the first time. We demonstrated that the technique is scalable,
robust, and adaptable in real swarm and multi-robot conditions, and that an
LLM can ease the work of specifying initial and goal conditions. This will help
pave the road from research to real-world applications for this powerful, general
approach to swarm engineering.

References

1. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1-2), 281-300 (1997)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1-41 (2013)

3. Jocher, G., et al.: ultralytics/yolovh: v3.1 - bug fixes and performance improve-
ments (2020). https://doi.org/10.5281 /zenodo.4154370

4. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. SIMULATION 81(7), 517-527 (2005)

5. McDermott, D., et al.: PDDL: the planning domain definition language (1998)

6. Olson, E.: Apriltag: a robust and flexible visual fiducial system. In: 2011 TEEE
International Conference On Robotics And Automation, pp. 3400-3407. IEEE
(2011)

7. Pellier, D., Fiorino, H.: PDDL4J: a planning domain description library for Java.
J. Exp. Theor. Artif. Intell. 30(1), 143-176 (2018)

8. Schader, M., Luke, S.: Planner-guided robot swarms. In: International Confer-
ence on Practical Applications of Agents and Multi-Agent Systems, pp. 224-237.
Springer (2020)

9. Schader, M., Luke, S.: Fully decentralized planner-guided robot swarms. In: Inter-
national Conference on Practical Applications of Agents and Multi-Agent Systems,
pp. 241-254. Springer (2021)

10. Smirnov, P., Joublin, F., Ceravola, A., Gienger, M.: Generating consistent PDDI
domains with large language models. arXiv preprint arXiv:2404.07751 (2024)



