Time-dependent Collaboration Schemes for
Cooperative Coevolutionary Algorithms

Liviu Panait and Sean Luke
Department of Computer Science, George Mason University
4400 University Drive MSN 4AS5, Fairfax, VA 22030, USA
{Ipanait, sean} @cs.gmu.edu

Abstract

Cooperative coevolutionary algorithms represent a pop-
ular approach to learning via problem decomposition.
Since they were proposed more than a decade ago, their
properties have been studied both formally and empiri-
cally. One important aspect of cooperative coevolution-
ary algorithms concerns how to select collaborators for
computing the fitness of individuals in different popu-
lations. We argue that using a fixed number of collabo-
rators during the entire search may be suboptimal. We
experiment with a simple ad-hoc collaboration scheme
that varies the numbers of collaborators over time. Em-
pirical comparisons in a series of problem domains in-
dicate that decreasing the numbers of collaborators over
time fares better than fixed collaboration schemes. We
conclude with a brief discussion of our findings and sug-
gest directions for future research.

Introduction

Coevolutionary algorithms (CEAs) are popular augmenta-
tions of traditional evolutionary algorithms (EAs). The ba-
sic elements of these augmentations lay in the adaptive na-
ture of fitness evaluation in coevolutionary systems: individ-
uals are assigned fitness values based on direct interactions
with other individuals. Traditionally, CEAs may be either
competitive or cooperative. In competitive coevolutionary
algorithms, individuals compete against one another during
fitness assessment — an individual’s increase in fitness usu-
ally results in a decrease in the fitness of other individuals.
In cooperative coevolutionary algorithms (CCEAs), individ-
uals are rewarded when they perform well together, and pun-
ished when they perform poorly (Bull, 1997; Husbands and
Mill, 1991; Potter, 1997). Applications of these methods in-
clude optimization of inventory control systems (Eriksson
and Olsson, 1997), learning constructive neural networks
(Potter and De Jong, 2000), and rule learning (Potter and
De Jong, 1998; Potter et al., 1995).

A standard approach (Potter, 1997) to applying coopera-
tive coevolutionary algorithms (or CCEAs) starts by identi-
fying a static decomposition of the problem representation
into components, each represented by a separate population
of individuals. CCEAs do not evaluate components of the

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

entire solution in isolation from each other, but rather only
the quality of a complete solution is assessed. The fitness
of an individual in a population is determined by testing that
individual in combination with individuals from the other
populations (in order to assemble one or more complete so-
lutions that can be evaluated). Aside from this collabora-
tive assessment, each population follows its own indepen-
dent evolution process in parallel with other populations.

An example may serve to clarify how cooperative coevo-
lutionary algorithms work. Suppose we are optimizing a
three argument function f(x,y,z). One might assign indi-
viduals in the first population to represent the x argument,
individuals in the second population to represent y, and in
the third to represent z. Each population is evolved sepa-
rately, except that when evaluating an individual in some
population (e.g., x), collaborating individuals are chosen
from the other populations (y and z) in order to obtain an
objective function value with a complete solution, f(x,y,z).
The fitness of x might simply be assessed as f(x,y,z), where
< ¥,z > is a tuple containing one individual form each of the
other populations (we refer to this tuple as a collaborator).
Alternatively, two collaborators < y;,z;) and < y,z, > may
be used to assess the fitness of x as the average of f(x,y;,z1)
and f(x,y2,z2). The collaborators may be either chosen at
random, or as containing the best individuals in the popu-
lations at the previous generation, or using some other se-
lection procedure. Additionally, the fitness of an individual
may be aggregated using average, maximum or minimum
of performance with multiple collaborators. We assume that
learning in the populations is performed concurrently. That
is, all populations advance to the next generation at the same
time.

The effects of different settings of cooperative coevolu-
tionary algorithms onto the performance of the search have
been the concern of several research studies such as Bull
(1997); Wiegand et al. (2001). The results indicate that us-
ing the maximum to aggregate the fitness of individuals over
multiple evaluations performs significantly better than us-
ing the minimum or the average. Also, using multiple col-
laborators might fare better in domains involving complex
non-linear interactions among the components, but it also
increases the computational requirements. Wiegand (2003)
argues that the sampling of collaborators introduces a cer-
tain bias on the search: wider peaks (see Figure 1) are more

likely to have collaborators sampled from them, and this
may bias the search toward suboptimal solutions; this is
termed relative overgeneralization. Relative overgeneraliza-
tion may shift the focus of the search from optimality to ro-
bustness — depending on the problem, one criteria may be
more important than the other. The basins of attraction for
different equilibrium points are visualized in (Panait et al.,
2004); this provides a graphical illustration of the impact of
multiple collaborators onto the learning process.

In this paper, we focus on the number of evaluations used
to assess the fitness of an individual. Typically, a coevo-
lutionary learning process is allowed a fixed computational
budget, which usually translates into a given total number
of evaluations (computing the fitness of an individual may
require multiple evaluations). We argue that a fixed num-
ber of collaborators may not be optimal in such a case:
if too few collaborators are used, the populations may not
identify the better areas of the joint space, while too many
collaborators might waste evaluations in later stages of the
search. As a consequence, we suggest that coevolutionary
algorithms may benefit from a time-dependent allocation of
evaluations: early generations might take advantage of di-
versities in the other populations to better sample the joint
search space and identify promising areas, while fewer eval-
uations may be desirable as the populations start to converge.
This is reminiscent of our previous research and recommen-
dations for genetic programming (Luke et al., 2003).

Next, we illustrate the perspective of the search space as
one population might get when in combination with various
other populations. Based on these observations, we propose
a simple scheme that employs a time-dependent allocation
of evaluations; the preliminary results indicate that no fixed
allocation of evaluations outperforms it.

Single-Agent Perspectives on the Search Space

Imagine a simple two-dimensional learning task as the one
presented in Figure 1. Based on the values for the x and y
components, the curve shows the performance of the over-
all solution (f(x,y) is plotted along the z axis). The figure
shows two peaks of different sizes. The lower peak repre-
sents a locally-optimal but globally-suboptimal solution; the
wide coverage of the peak implies small changes in solu-
tion quality when any of the components is slightly altered.
The higher peak represents the globally optimal solution; its
smaller coverage implies that the solution quality degrades
rapidly as any of the components is changed. Both peaks
represent Nash equilibria points — modifying either the x or
the y value (but not both) would lead to a decrease in the
function value. This implies that no single population has a
rational incentive to move away from the Nash equilibrium,
once both populations have converged there.

In coevolutionary learning, each population is afforded
only a partial glimpse at the search space, via the fitness
assessment of each individual. Specifically, each popula-
tion can only respond to the fitness difference among the
individuals in that population, and such differences lie along
the projection of the joint fitness space: one such projection
is shown in Figure 2. Ideally, each of the populations per-
ceives the two peaks in this manner, so that they both learn

souewoped weal
=

2727

72

——

—
7z

27

—

=
e

Yoa:
77~
ZZ 7 ZZZ

/Z

A7

77

/7
77

(77

Z
| 77

7z

Strategies for Agent 2

Figure 1: A bimodal search space for the possible rewards
received by a two-agent team. Wider peaks may attract
many search trajectories, although such peaks may be glob-
ally suboptimal.

900 1000 1100
|

Performance
800
!

T T T T T T T
0 10 20 30 40 50 60

Strategies for First Player

Figure 2: A desirable projection of solution quality for the
first population provides enough information on the location
of the optimal peak. Such a projection may be computed at
each point x as maxycy f(x,y;), where Y denotes the range of
the second argument.

to choose actions that lead to globally optimal solution (the
higher peak).

Figure 3 shows approximations of the search space ob-
tained via projection when selecting random collaborators
from the other population. In order to compute these projec-
tions, we proceeded as follows: for each possible individual
a in population 1, we generated uniformly K random indi-

viduals (y;);—1.x for the second population (K was set to 3,
5, 10, and 20). The “fitness” of x (i.e. the projection value at
x) was set to max;—1_g f(x,yi), where f(x,y;) is the quality of
the solution formed by x and y; (f is the same bimodal func-
tion used in Figures 1-2). Due to stochasticity, the process
is repeated three times (there are three curves on each plot
in Figure 3). The graphs show that the projections are very
noisy for small numbers of samples, but they become more
and more accurate when increasing the number of randomly
generated collaborators. When using 20 collaborators, the
projections are almost perfect.

Upon random initialization of the coevolutionary search
process, the collaborators are spread across the entire space.
In this situation, the quality of the projection is very sensi-
tive to the number of collaborators used. As the evolution
progresses, the populations start to converge. This departure
from uniformity alters the projections of the search space,
and thus the ranking of individuals in each population.

Assume that the distributions of individuals in the subpop-
ulations resemble a normal distribution'. Then suppose that
the other population starts to converge towards the lower,
wider peak. Figure 4 uses a normal distribution instead of
a uniform distribution for choosing the collaborators from
the other population. The normal distribution is centered
on the lower peak, and collaborators generated outside the
valid range are ignored. With a wide standard deviation (20)
and a large number (5-20) of collaborators, the projection
resembles the one in Figure 2. However, with a lower vari-
ation (suggesting the population of collaborators has con-
verged), the projection is far less accurate. The individuals
corresponding to the suboptimal peak are evaluated almost
perfectly, but the individuals corresponding to the optimal
peak are eventually eliminated. Importantly, the differences
among the graphs become small (especially for those with
standard deviations 2 and 5), which suggests that additional
collaborators have diminishing returns.

On the other hand, suppose that the second population
starts to converge towards the higher, narrower peak (Figure
5). As before, a wide variance and a large number of col-
laborators provides a good-quality projection of the space.
As the population of collaborators converges (the standard
deviation drops), the projection becomes less accurate, es-
pecially around the suboptimal peak (which is less impor-
tant to global convergence). The minor differences among
projections for low standard deviations hint again at the di-
minishing returns of additional collaborators.

What can we learn from Figures 2-5? First, we observe
that the quality of projection increases almost insignificantly
with more collaborators when the other population starts to
converge. This is intuitive, given the fact that the samples
are not uniformly distributed, but rather they’re generated
according to normal distributions. Second, we observe that
the information regarding the higher peak fades away as the
other population converges to the suboptimal peak. This
means that a population might benefit from additional col-

! Although Popovici and De Jong (2003) argue that distributions
are usually not distributed normally, our argument holds for many
distributions that indicate convergence of the population.

laborators at the early stages of search, but the impact of
more collaborators fades once the populations start to con-
verge to suboptimal solutions.

Most cooperative coevolutionary learning algorithms as-
sume that each individual is evaluated when in combination
with a fixed number of collaborators. However, our obser-
vations suggest that additional collaborators from a popula-
tion with high diversity provide more information than when
taken from populations that have started to converge. The
next section experiments with a simple ad-hoc scheme that
decreases the number of collaborators over time.

Experiments

There are many approaches to decreasing the number of col-
laborators over time, including methods that consider the di-
versity of the populations. Here, we will simply apply a
trivial ad-hoc setting: start with 10 collaborators for the first
5 generations, followed by using only 2 collaborators for
the rest of generations until exhausting the computational re-
sources. In short notation, we will refer to this collaboration
setting as 10*5+2%rest.

All experiments have been performed using the ECJ li-
brary (Luke, 2003). The following settings are used in all
the experiments: 32 individuals per populations, tourna-
ment selection of size 2 for the breeding process, domains
discretized in 1024 x 1024 intervals, elitism of size 1 for
each subpopulations, and mutation probability 1. Mutation
worked as follows: a coin was repeatedly tossed, and the
individual’s integer gene was increased or decreased (the di-
rection chosen at random beforehand) until the coin came
up heads (making sure it does not go outside the allowed
bounds). The coin is biased such that it comes up heads
with probability 0.05. One of the collaborators is always
chosen as the best individual from the other subpopulation
at the previous generation; the others are chosen by a tour-
nament selection of size 2. In all experiments, there are 250
runs for each of the methods. Performance in a run is com-
puted as the average of the best performing individuals in
the two populations at the last generation. Statistical signifi-
cance is verified using t-tests assuming unequal variances at
95% confidence.

The coevolutionary algorithm is given a budget of 17600
evaluations per subpopulation; settings for both subpopula-
tions are identical. With these settings, using 5 collabora-
tors per fitness assessment allows around 110 generations
for the coevolutionary algorithm. When choosing this bud-
get, we took into consideration the fact that too small of a
value would prevent differentiations among the algorithms
because the search would be cut too short, whereas too large
abudget might diminish the differences between those meth-
ods that waste evaluations and methods that use them effec-
tively. The value we chose seemed to be a good compromise.

The experiments compared the performance of methods
using a fixed number of collaborators against our technique
employing a variable-sized number of collaborators. We
tested 10 different numbers of collaborators (1 to 10). Using
a single collaborator allowed for many generations, while
more collaborators provided a more accurate fitness assess-
ment mechanisms at the expense of fewer generations.

Number Mean St Dev

Collaborators | Performance | Performance
1 960.308064 30.622387
2 989.164076 48.826596
3 1004.111361 49314857
4 1020.230865 | 44.603223
5 1031.049270 | 37.868720
6 1035.819193 32.235383
7 1036.992860 | 30.671499
8 1042.224061 22.536767
9 1042.303012 | 22.076877
10 1041.991019 | 20.991886

10*5+2*rest | 1047.110667 16.520011

Table 1: Performance of different collaboration schemes in
the discretized two-peak problem domain. 10*5+2*rest sig-
nificantly outperforms all other settings.

We must point out a few problems with our experiments.
First, the same collaborators are used to evaluate an en-
tire population at each generation, as opposed to drawing
random collaborators for each individual. This reduces the
evaluation noise in the population, but it also limits the ex-
ploration of the search space. We are not aware of much
literature comparing these two settings, but we do not ex-
pect the difference to be significant. Second, the collabora-
tors are chosen based on a tournament selection of size 2,
as opposed to choosing them randomly. This setting might
diminish the benefit of multiple collaborators later on in the
search (the extra selection pressure might make the popula-
tion seem more converged than it actually is). In our defense,
we point out the relationship between this selection pressure
and the diversity in the population: the results of the se-
lection process might be similar (in terms of expectation) if
using random selection from a less diverse population, or us-
ing tournament selection with size 2 from more diverse pop-
ulations. Thus, we argue that other collaboration schemes
could work better than the fixed collaboration schemes even
if random selection were used instead. Third, we discretized
the space of individuals in this preliminary study, but a real-
valued representation might be appropriate for optimization
problems such as the ones used in our experiments.

The first experiment compared the results of the settings
mentioned above in the two-peaks domain illustrated in Fig-
ure 1. Specifically, the quality of a complete solution (x,y) is
computed as

2
950 — 500+ ((%)ZJF ())

fx,y) = max
1050 — 9600 (()‘6;“g)+ (yéjS)Q)

where x and y ranged from O to 64, discretized into 1024
intervals.

The results are summarized in Table 1. The results
for 10*5+2%*rest are significantly better than the ones for
any fixed collaboration scheme. We believe this difference
comes from a better allocation of computational resources

Number Mean St Dev

Collaborators | Performance | Performance

1 999.805368 0.702603

2 999931824 0.165259

3 999.948679 0.151703

4 999.946774 0.133769

5 999.939639 0.142567

6 999.947729 0.110188

7 999.951085 0.082815

8 999.943306 0.107280

9 999.940341 0.117084

10 999945124 0.088891

10*5+2%rest | 999.986614 0.054527

Table 2: Performance of different collaboration schemes
in the discretized Rosenbrock-like problem domain.
10*5+42*rest significantly outperforms all other settings.

Number Mean St Dev

Collaborators | Performance | Performance
1 999.974879 0.087959
2 999.992303 0.017698
3 999.992725 0.014395
4 999.994459 0.003547
5 999.994457 0.003247
6 999.994630 0.003522
7 999.994800 0.003434
8 999.995458 0.003786
9 999.994743 0.004014
10 999.994870 0.004457

10%*5+2%rest | 999.995700 0.003646

Table 3: Performance of different collaboration schemes in
the discretized Griewangk problem domain. 10*5+2*rest
significantly outperforms all other settings, except for 8 col-
laborators.

that allowed the 10*5+2*rest method to find the optimal so-
lution in 235 out of 250 runs.

The second experiment tested the methods using a
Rosenbrock-like? two-dimensional search space with

f(x,y) = 1000 — (2* (x2 —y)z +(1 _x)Z)

where x and y range between -5.12 and 5.12 discretized into
1024 intervals. The results are summarized in Table 2. The
results for 10*5+2*rest are significantly better than the ones
for all fixed collaboration schemes.

A third experiment used the Griewangk function

F(xy)=1000— (1+ LA cos (x) % cos | =
X = — _ [AR X L
Y 4000 4000 /2

with x and y between -5.12 and 5.12, discretized again into
1024 intervals. This modified function has several subopti-

2This function resembles the two-dimensional Rosenbrock, but
with a diminished influence of the non-linear component of the
fitness function.

Number Mean St Dev

Collaborators | Performance | Performance
1 999.944621 0.258064
2 999.945253 0.278818
3 999.896547 0.624545
4 999.927854 0.182885
5 999.940833 0.168899
6 999911407 0.215897
7 999912132 0.194326
8 999.893961 0.227951
9 999.903006 0.208813
10 999.877023 0.315515

10%5+2%rest | 999.996837 0.022781

Table 4: Performance of different collaboration schemes in
the discretized Booth problem domain. 10*5+2*rest signifi-
cantly outperforms all other settings.

mal peaks, and an optima of value 1000 at (0,0). The re-
sults of different collaboration methods on this problem do-
main are summarized in Table 3. The results indicate that
10*5+2*rest is significantly better than all other settings ex-
cept for 8 collaborators; it is not possible to distinguish be-
tween these two settings with 95% confidence.

The fourth experiment used with the Booth problem do-
main as described in (Schwefel, 1995). In this domain, the
two-argument optimization function equals

F(x,y) = 1000 — ((x+2>ky—7)2+ (2*x+y—5)2)

(again transformed to a maximization problem), with x and
y between -5.12 and 5.12, discretized into 1024 intervals.
This is a challenging problem for coevolutionary search be-
cause of non-linearities among variables; the minimum of
the function is at (1,3) and it has a value of 1000. The results
of the methods in this domain are presented in Table 4. The
10*5+2*rest method has a significantly better performance
than all fixed settings.

The fifth and last experiment used the Rastrigin function
(converted for maximization) to assess the performance of
the solution

f(x,y) =1000— (6 + (x* — 3cos (27x) + (y* — 3cos (2y))))

with x and y taking values between -5.12 and 5.12, dis-
cretized into 1024 intervals. A peculiarity of this function
is the large number of suboptimal peaks surrounding the
global optimum. Due to large variances of results in this
problem domain, we performed 1000 runs for each of the
settings. The results obtained with different methods are
presented in Table 5. In this domain, the t-tests failed to
indicate the superiority of any fixed collaboration scheme
over the 10*5+2*rest setting.

Conclusions

The illustrations in Figures 2-5 suggest that early stages in
the coevolutionary search can potentially take advantage of
large numbers of collaborators to identify more promising

Number Mean St Dev
Collaborators | Performance | Performance
1 999.295637 0.686536
2 999282862 0.696519
3 999.306431 0.707764
4 999255339 0.752893
5 999253378 0.715312
6 999.286966 0.730213
7 999270756 0.696554
8 999.251628 0.716294
9 999.266060 0.741226
10 999215434 0.717056
10*5+2%rest | 999.258291 0.747410

Table 5: Performance of different collaboration schemes
in the discretized Rastrigin problem domain. Although
5*1042*rest has lower mean performance than other set-
tings, it is not statistically significantly dominated because
of the large variance in performance.

areas of the joint space. This is the case because the popu-
lations at initial generations exhibit a high diversity in indi-
viduals. Later generations tend to converge to specific areas
of the space, and thus large numbers of samples provide less
information for the search process. Based on these observa-
tions, we argue that a variable number of collaborators may
be a better approach.

We proposed a very simple ad-hoc technique for varying
the number of collaborators: choosing 10 (maximum of all
alternatives considered in this paper) collaborators for the
first 5 generations, and choosing 2 collaborators thereafter.
We felt this setting would provide a good tradeoff between
initial exploration and later exploitation. This simple col-
laboration scheme was never dominated, and it was signifi-
cantly better in several domains.

The paper pointed out that randomly selecting the same
number of collaborators may be suboptimal due to variances
in the population diversity. We preserved the use of ran-
dom selection for collaborators, and we suggested varying
the number of collaborators. Alternatively, one may select
the same number of collaborators, but choose these collabo-
rators based on how different they are from one another. Yet
another approach may involve selecting varying numbers of
collaborators based on the diversity of the populations that
they are selected from. We are also currently experimenting
with a method that selects collaborators partly based on how
much information they provide to rank the individuals in the
other population. Which of these approaches works better,
and under what conditions, are possible directions for future
research.

Acknowledgements

The authors would like to thank R. Paul Wiegand for com-
ments and suggestions, and also for the help in plotting the
figures.

References

Bull, L. (1997). Evolutionary computing in multi-agent en-
vironments: Partners. In Back, T., editor, Proceedings
of the Seventh International Conference on Genetic Algo-
rithms, pages 370-377. Morgan Kaufmann.

Eriksson,R. and Olsson, B. (1997). Cooperative coevolution
in inventory control optimisation. In Smith, G., Steele,
N., and Albrecht, R., editors, Proceedings of the Third In-
ternational Conference on Artificial Neural Networks and
Genetic Algorithms, University of East Anglia, Norwich,
UK. Springer.

Husbands, P. and Mill, F. (1991). Simulated coevolution
as the mechanism for emergent planning and scheduling.
In Belew, R. and Booker, L., editors, Proceedings of the
Fourch International Conference on Genetic Algorithms,
pages 264-270. Morgan Kaufmann.

Luke, S. (2003). ECJ 10: An Evolutionary Com-
putation research system in Java. Available at
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Luke, S., Balan, G. C., and Panait, L. (2003). Population
implosion in genetic programming. In Genetic and Evo-
lutionary Computation — GECCO-2003, volume 2724 of
LNCS, pages 1729-1739. Springer.

Panait, L., Wiegand, R. P., and Luke, S. (2004). A visual
demonstration of convergence properties of cooperative
coevolution. In Parallel Problem Solving from Nature —
PPSN-2004. Springer.

Popovici, E. and De Jong, K. (2003). Understanding EA
dynamics via population fitness distribution. In E. Cantu-
Paz, et al., editor, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2003), pages
1604—1605. Springer-Verlag.

Potter, M. (1997). The Design and Analysis of a Compu-
tational Model of Cooperative CoEvolution. PhD thesis,
George Mason University, Fairfax, Virginia.

Potter, M. and De Jong, K. (1998). The coevolution of an-
tibodies for concept learning. In Eiben, A. E., Baeck,
T., Schoenauer, M., and Schwefel, H.-P., editors, Pro-
ceedings of the Fifth International Conference on Parallel
Problem Solving from Nature (PPSN V), pages 530-539.
Springer-Verlag.

Potter, M. and De Jong, K. (2000). Cooperative coevolution:
An architecture for evolving coadapted subcomponents.
Evolutionary Computation, 8(1):1-29.

Potter, M. A., De Jong, K. A., and Grefenstette, J. J. (1995).
A coevolutionary approach to learning sequential decision
rules. In Proceedings from the Sixth International Con-
ference on Genetic Algorithms, pages 366—-372. Morgan
Kaufmann.

Schwefel, H. (1995). Evolution and Optimum Seeking. John
Wiley and Sons, New York.

Wiegand, R. P. (2003). Analysis of Cooperative Coevolu-
tionary Algorithms. PhD thesis, Department of Computer
Science, George Mason University.

Wiegand, R. P., Liles, W., and De Jong, K. (2001). An em-
pirical analysis of collaboration methods in cooperative
coevolutionary algorithms. In E. Cantu-Paz, et al., editor,
Proceedings of the 2001 Genetic and Evolutionary Com-
putation Conference (GECCO-2001), pages 1235-1242.

Uniform Distribution

5 Collaborators

3 Collaborators

1100 500 600 700 800 900

Performance

10 Collaborators 20 Collaborators

500 600 700 800 900
|

T T T T T T T T T T T T T T
0O 10 20 30 40 50 60 0 10 20 30 40 50 60

Strategies for First Player

Figure 3: Projection of solution quality for the first popula-
tion in the two-peaks domain, given a uniform distribution
for the second population. The projection at point x is com-
puted as max;f(x,y;). Due to stochasticity, the process is
repeated three times - there are three curves on each graph.
Given more collaborators, the projection approximates

Standard Deviation = 20

1100
|

3 Collaborators

)

5 Collaborators

10 Collaborators

E

20 Collaborators

T
60

T T T T T T
0 10 20 30 40 50 60

Strategies for First Player

Standard Deviation = 5

3 Collaborators

/

5 Collaborators

=3
8
>
Q
8
@
Q
S
R
Q
8
©
8
e 8 4
< [t}
E Q
s o
£ -
s -
o
Q
8
=3
=3
s
@
=3
S
R
=3
3
@
=3
S
el
=3
[
Q
8
>
Q
8
@
Q
S
R
Q
8
©
8
s 8 4
< [re)
E Q
s o
£ -
s -
o
Q
8
=3
=3
s
@
=3
S
R
=3
3
@
=3
S
el

10 Collaborators

/

500 600 700 800 900

20 Collaborators

Figure 4: Projection of solution quality for the first population in the two-peaks domain, assuming the second population is
normally distributed around the lower peak. The projection at point x is computed as max; f (x,y;). (;); are randomly generated
according to the normal distribution with mean 16 (centered on the lower peak) and standard deviations equal to 20, 10, 5, and

o A

T
10

T
20

T
30

T
40

T
50

T
60

T T T
0 10 20 30

T T T
40 50 60

Strategies for First Player

respectively 2. The process is repeated three times.

Performance

Performance

1100

500 600 700 800 900 1100 500 600 700 800 900

1100

1100 500 600 700 800 900

Standard Deviation = 10

/

3 Collaborators

5 Collaborators

.

10 Collaborators

20 Collaborators

T T T T T T
0 10 20 30 40 50 60

Strategies for First Player

Standard Deviation = 2

/

3 Collaborators

5 Collaborators

/

10 Collaborators

20 Collaborators

T T T
0 10 20 30

T T T
40 50 60

T T T T T T
10 20 30 40 50 60

o

Strategies for First Player

Standard Deviation = 20

1100
|

o
s |
[
[=]
S |
@©
o
8
8
g o 3 Collaborators 5 Collaborators
o o |
2 2
5 T
o
s |
o
o
s |
©
o
s |
R
o
8
o 10 Collaborators 20 Collaborators
s |
0 T T T T T T T T T T T T T T
0 10 20 30 40 50 60 O 10 20 30 40 50 60
Strategies for First Player
Standard Deviation = 5
o
9_ -
o
s |
[
[=]
S |
@©
[=]
8
8 - \
8 o 3 Collaborators 5 Collaborators
o o |
2 2
5 T
o
s |
o
o
s |
©
o
s |
R
o
8
° 10 Collaborators 20 Collaborators
s |
wn

T T T T T T T T T T T T T T
0O 10 20 30 40 50 60 O 10 20 30 40 50 60

Strategies for First Player

Performance

Performance

1100

500 600 700 800 900 1100 500 600 700 800 900

1100

1100 500 600 700 800 900

500 600 700 800 900

Standard Deviation = 10

3 Collaborators 5 Collaborators

10 Collaborators 20 Collaborators

T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0O 10 20 30 40 50 60

Strategies for First Player

Standard Deviation = 2

3 Collaborators 5 Collaborators

10 Collaborators 20 Collaborators

T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0O 10 20 30 40 50 60

Strategies for First Player

Figure 5: Projection of solution quality for the first population in the two-peaks domain, assuming the second population is
normally distributed around the higher peak. The projection at point x is computed as max; f (x,y;). (y;); are randomly generated
according to the normal distribution with mean 48 (centered on the higher peak) and standard deviations equal to 20, 10, 5, and
respectively 2. The process is repeated three times.

