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Abstract. We introduce a model for cooperative coevolutionary algo-
rithms (CCEAs) using partial mixing, which allows us to compute the
expected long-run convergence of such algorithms when individuals’ fit-
ness is based on the maximum payoff of some N evaluations with partners
chosen at random from the other population. Using this model, we de-
vise novel visualization mechanisms to attempt to qualitatively explain
a difficult-to-conceptualize pathology in CCEAs: the tendency for them
to converge to suboptimal Nash equilibria. We further demonstrate vi-
sually how increasing the size of N , or biasing the fitness to include an
ideal-collaboration factor, both improve the likelihood of optimal con-
vergence, and under which initial population configurations they are not
much help.

1 Introduction

Cooperative coevolutionary algorithms (CCEAs) are coevolutionary algorithms
where individuals from different populations are evaluated based on how well
they perform together as a team. Commonly all individuals in a team receive
the same resulting fitness (payoff). Applications of this method include opti-
mization of inventory control systems [1], learning constructive neural networks
[2], rule learning [3], and multi-agent learning [4]. The presumed advantage of
CCEAs is decomposition of the search space: each of the N populations learns
a different aspect (projection) of the problem, instead of one single population
having to learn the joint problem at one time. Unfortunately, though each CCEA
population is searching its projection of the problem at a time, that projection
is constantly changing. The result is that it is easy for the algorithm to get
tricked by misleading information provided by poor samples of the projected
space. This leads to algorithms that tend to prefer individuals in one popula-
tion that will do well with many individuals in the other population(s) (relative
overgeneralization), whether or not these combinations are globally optimal [5].

We have recently examined approaches to overcome relative overgeneraliza-
tion. In [4, 6] we showed that this can be countered through judicious biasing

of how individuals are evaluated. Specifically, the fitness of an individual is a
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weighted sum of how well it performed when teamed with individuals from the
other population(s), plus how well it performed with its ideal collaborator (or
some approximation thereof). This biasing is quite effective at eliminating rel-
ative overgeneralization, at least in the simple problems we presented and ana-
lyzed formally.

Conceptualizing the phenomenon of overgeneralization, and the effects of
ideal-collaboration, is quite difficult. A goal of this paper is to provide an intuitive
understanding of the issues involved. The paper begins by extending the existing
theoretical framework for analyzing cooperative coevolution by replacing the
complete mixing model for fitness assessment with one using expected maximum
payoff with multiple partners. This model can be used to determine the basins of
attraction for the coevolutionary search. Then we will introduce a technique for
visualizing these basins of attraction in a coevolutionary search space for small
numbers of dimensions. As each “dimension” is a separate genome in the search
space, obviously only trivial search spaces can be visualized in this way, but it
will be more than sufficient for our goal. Last, we will use this new technique to
show expected outcomes with and without biasing.

2 Evolutionary Game Theory

Our approach to coevolution follows Potter’s [7] model of cooperative coevolu-
tion: each population contains individuals that represent a particular component
of the problem, so that one member from each population is needed in order to
assemble a complete solution. Evaluation of an individual from a particular pop-
ulation is performed by assembling the individual with collaborating partners
from other populations. To combat noise in the evaluation process due to choice
of partners, multiple evaluations may be performed. Aside from evaluation, the
populations are evolved independently.

An appealing abstract mathematical model for this system comes from the
biology literature: evolutionary game theory [8, 9]. EGT provides a formalism
based on traditional game theory and dynamical systems techniques to analyze
the limiting behaviors of interacting populations under long-term evolution. For
specifics about applying EGT to the analysis of multi-population cooperative
coevolutionary algorithms, see [5].

In this paper, we consider only two-population models. Expressing the quality
of complete solutions through a pair of payoff matrices, one for each population.
For this paper, we assume a symmetric model where each payoff matrix is the
transpose of the other. When individuals from the first population interact with
individuals from the second, a payoff matrix A is used, while individuals from
the second population receive payoffs defined by AT . We will also use an infinite

population model. A population can be thought of not as a set of individuals, but
rather as a finite-length vector x of proportions, where each element in the vector
is the proportion of a given genotype in the population. As the proportions in a
valid vector must sum to one, all legal vectors make up what is commonly known
as the unit simplex, denoted ∆n, n here is the number of distinct genotypes



possible, x ∈ ∆n : xi ∈ [0, 1],
∑n

i=1 xi = 1. The joint, two-population space of a
CCEA is the product simplex ∆n × ∆m.

Previous approaches to modeling CCEAs via EGT [4–6, 10] assume that an
individual’s fitness is assessed as the average of payoffs received when in com-
bination with every member of the cooperating population; this is also known
as complete mixing. Instead we will use a more realistic fitness assessment: the
maximum payoff obtained when the individual is combined N times with in-
dividuals, chosen with replacement, from the other population. Maximum has
been shown to produce superior results to average in recent studies [11].

Theorem 1. Let the payoff for individual i when teamed with individual j be aij,

and (pj)j∈1..n be the probability distribution for the individuals in the population

of partners for i. If the aij values are sorted in increasing order (ai1 ≤ ai2 ≤

.. ≤ ain), the expected maximum payoff of i over N pairwise combinations with

random partners j1...jN from the other population is
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Proof. The expected maximum payoff is a linear combination of the actual payoff
aij times the probability that it is the maximum of pairwise combinations with

N random partners. As the aij values are sorted, it follows that
(

∑j

k=1 pk

)N

represents the probability of choosing all N partners from the 1....j set. There-
fore, the probability that aij is the maximum of N combinations is equal to the
probability of extracting all partners from the 1...j set, minus the probability of

choosing all such partners except j (that is,
(
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). Hence, the expected
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Interestingly, the extreme setting N = 1 results in same fitness per individual
as in the complete mixing model. As we will see later on, our extension shows
improvements as the number of partners is increased in the two populations.

3 Related Work

Traditionally, EC applications of evolutionary game theory have focussed almost
entirely on modeling coevolutionary algorithms that use proportionate selection
and employ complete mixing. There are several exceptions, however. Ficici [12]
considers several alternative selection methods, including truncation selection,
(µ, λ)-ES selection, linear ranking selection, and Boltzman selection; however,
this work concerns single population, competitive models of coevolution. Wie-
gand [5] presents two partial mixing models for cooperative coevolution, one for
a complete mixing but weighted with a scheme that prefers more fit individuals



Table 1. Examples of coordination games: (a) a simple 2x2 coordination game; (b)
the Climb game; (c) the Penalty game.

20 0

10 15

21 0 10

0 17 16

10 10 15

20 10 0

10 15 10

0 10 20

(a) (b) (c)

(from previous generations) over less fit ones; and one that models fitness assess-
ment as the average result of partnering with a finite number of collaborators.
Finally, Ming [13] analyzes CEA behaviors on two-bit landscapes using various
partnering strategies, indicating that even in such a simple setting such choices
can have profound effects on runtime behavior.

Visualization of basins of attraction is a common approach for understand-
ing behaviors in many kinds of dynamical systems [14]; however, they are of-
ten restricted to two dimensions and they are not commonly employed by the
evolutionary computation community. Elsewhere, visualizing dynamical system
properties have proved helpful in understanding aspects of other kinds of evolu-
tionary systems. Visualizing reverse iterates of dynamical trajectories in genetic
algorithms has revealed interesting properties of locations of fixed points outside
the population space one normally considers [15]. In coevolutionary systems, the
aforementioned paper by Ficici [12] attempts to illustrate chaotic and periodic
behaviors using cobweb plots. Recent work in the analysis of cooperative coevo-
lutionary algorithms has demonstrated the usefulness of plotting measures of rel-
ative sizes of basins of attraction using rain-gauge methods [4, 10]. Additionally,
trajectory plots in the simplex and Cartesian-product simplex spaces of evolu-
tionary and coevolutionary systems have revealed the at-times-counterintuitive
dynamics of these systems [5, 10, 8]. Finally, visualization of transitional state
information in finite populations using Markov models of evolution [16] and
coevolution [17] have helped illustrate the differences between the long-term dy-
namical systems predictions and the true algorithm behaviors.

4 Visualizing Basins of Attraction

We employ the EGT model with expected maximum fitness as described in the
previous section, using fitness proportionate selection and no variational opera-
tors. We iterate the model until the proportion for one of the genotypes in each
population exceeds a threshold of 0.99995, or until 50000 generations. Given the
initial configuration, EGT models the coevolutionary search as a deterministic
process. That is, for each initial point in the search space, we can compute to
which equilibrium point it converges. As [5] shows, the populations are expected
to converge to Nash equilibrium points in the payoff matrix (elements that are
maximal on their row and column).
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Fig. 1. Basins of attraction for the simple 2x2 coordination game, when using different
numbers of partners for each of the two populations. The proportion of 1s in the first
population decreases from 1.0 (top) to 0.0 (bottom) in each squared image. Similarly,
the proportion of 1s in the second population decreases from 1.0 (left) to 0.0 (right) in
each squared image. The basin of attraction for the (1,1) point is colored white, and
the one for (2,2) is colored gray.

4.1 2x2 Coordination Games

Imagine the payoff matrix (a) in Table 1, where each population contains two
kinds of genotypes: “1”s and “2”s. The higher payoffs are achieved by either
pairs (1,1) and (2,2). Both of these are Nash equilibria points. A payoff of 10 is
received by the pair (2,1); this increases the difficulty of the search process.

As there are only two genotypes, the state of the coevolutionary search as
modeled by EGT can be described at each instant by only two proportions— p1

and p2 (proportions of 2s in the first and in the second population). For visualiza-
tion, we consider the cartesian product of the two spaces of initial configurations
(ICs) for the two populations, which is a two dimensional square from (0.0,0.0)
to (1.0,1.0). p1 increases from top to bottom, and p2 increases from left to right.
The width and height of the square are divided into 100 segments, and the center
of each segment is taken as the proportion of 2s in the initial configuration.

To visualize the basins of attraction, we mark with different colors the sets
of initial configurations from which the EGT model converges to the specific
equilibrium point. As we have only two Nash equilibria in our example, we use
white for the (1,1) equilibrium and gray for (2,2).

Figure 1 show the basins of attraction when using different numbers of part-
ners for each of the populations. As expected, if both populations start with very
high proportions of 1s, the system converges to the (1,1) equilibrium. Similarly,
if both populations start with very high proportions of 2s, the system converges
to the (2,2) equilibrium. The visualization shows that using more partners for
both populations leads to an increase in the size of the basin of attraction of the
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Fig. 2. (left): Our projection divides the simplex ∆
3 into six equal-area triangles;

arrows shows the direction for sorting points in each area. (right): Visualization of the
cartesian product of two simplexes; see details in the text.

optimal Nash equilibrium point (1,1). This result is in accordance with empirical
findings reported in [11].

Additionally, gains in performance decrease with more partners. As more
partners lead to longer runtimes, there may be a maximal justifiable number of
partners. We plan to investigate this issue in the future.

Also, the visualization of the basins of attraction reveals an interesting arti-
fact: the basin of attraction for the suboptimal peak tends to grow in the upper
area of each image as we increase the number of collaborators for the second
population. Thus, when the first population starts with a majority of 1s and the
second population with a majority of 2s, the final results are worse if we provide
the second population with more collaborators. One explanation: an increase
in the number of partners for the second population significantly increases the
expected fitness of the 2s, but does not dramatically affect the fitness of the 1s.

4.2 3x3 Coordination Games

Visualizing basins of attraction in 2x2 coordination games is relatively straight-
forward. In this section, we describe how the visualization can be extended to
the more complicated case of 3x3 coordination games.

For a given population, possible proportions (points from the ∆3 space) are
projected onto the vertical or (for the second population) horizontal axis by first
dividing the ∆3 space into subregions, where all points in a given subregion
have the same ordering of genotype proportion (1s more common than 2s, which
are more common than 3s, for example). These subregions define the primary
sorting for projecting points onto the axis. In this way we hope to see patterns
emerging based on similarity in overall proportion.

Our projection of ∆3 onto one dimension starts by dividing it into six equal-
area triangles, as in Figure 2 (left). ICs in areas 1-2 have a majority of 1s in



the population, and similarly areas 3-4 and 5-6 have majorities of 2s and 3s.
The single axis is divided into six equal segments and points are assigned to
the segments in the order of the triangular regions from which they come (e.g.,
points from area 1 are assigned to the first segment, etc.). Inside each area, ICs
are ordered lexicographically in the direction of the arrow. More specifically, in
regions 1-2, sorting is done primarily on p1, and secondarily on p2; for 3-4, p2

and p3; for 5-6, p3 and p1. Even-numbered regions are sorted ascending and odd-
numbered regions are sorted descending. The objective of all these is to group
together regions that we expect will converge to the same equilibrium. For this
paper, we sample 216 ICs in the simplex: the six areas in Figure 2(left) are
each divided into six triangles, and each of them is further divided into six more
triangles. The center of each resulting triangle is an IC for our visualization.
Our sampling does not cover ICs on the edges or vertexes of the simplex, but
the probability that an EC algorithm starts from those ICs is 0 anyway.

The right image in Figure 2 is an example of the resulting projection of (∆3)2

onto 2-D. The sorting described above creates 2-D regions reflecting majority-1,
majority-2, and majority-3 areas. Borders between those regions are the mixture
of the two areas respectively. Dark lines in the figure show locations that are all
1s, 2s, and 3s in one or the other population (the vertices of the simplex).

In [4], we introduced a biased cooperative coevolution approach, and studied
its application to two multi-agent coordination problems: Climb and Penalty.
Both domains represent problems that associate penalties with miscoordinated
actions, while providing suboptimal collaborations that avoid penalties. In this
paper, we visualize basins of attraction for equilibria points in these two prob-
lems. The payoff matrices for Climb and Penalty are presented in Figure 1. Climb
has two Nash equilibria, the optimum (1,1) and the suboptimum (2,2), and is
strongly deceptive. Penalty has three Nash equilibria: both 1s, both 2s, and both
3s; both 2s is suboptimal, but is more forgiving if one or the other population
deviates from the Nash equilibrium.

Figure 3(a) shows the basins of attraction1 for the Climb coordination game
when using different numbers of partners in each population. The images show
that the “deceptiveness” of the problem domain decreases as the number of part-
ners is increased. When using a single partner, it appears that the coevolutionary
search will find the optima if at least one of the populations starts with a large
number of 1s. However, as the number of partners is increased we observe that
the basin of attraction for the suboptimal equilibria reduces to areas where at
least one of the initial populations has a very large proportion of 2s or 3s: the
more partners are used, the larger the proportion required to still converge to
the sub-optimum.

One interesting feature we note: if either population is dominated by 2s (as
opposed to 3s), the system is less likely to converge to the optimum even if the

1 Some of the images, especially the one with 1 partner for each population, contain
some gray dots. Those are visualization artifacts due to the threshold of 0.99995 we
used for convergence.



Second Population

1 partner 3 partners 5 partners 7 partners
F
ir

st
P
o
p
u
la

ti
o
n

1
p
a
rt

n
e
r

3
p
a
rt

n
e
rs

5
p
a
rt

n
e
rs

7
p
a
rt

n
e
rs

(a) Standard Coevolution

Second Population

1 partner 3 partners 5 partners 7 partners

(b) Biased Coevolution

Fig. 3. Basins of attraction in Climb problem when using (a) standard and (b) biased
coevolution, and 1, 3, 5 and 7 partners per population. White and black mark the
basins of attraction for the (1,1) and (2,2) equilibria.

other population is mostly 1s and 3s. This is due to the large, attractive basin
of attraction for 2 is very large.

Figure 4(a) presents the basins of attraction for the Penalty game. We observe
that the two global optima cover most of the space even when a single partner
is used; the suboptimal equilibria covers mainly areas where at least one of the
population started with a high percentage of 2s, and the other population has the
1s and 3s equally distributed — this increases the percentage of miscoordinations.
As the number of partners is increased, the basin of attraction for the (2,2) point
reduces to only areas where both populations start with almost only 2s. The
visualization of the basins of attraction suggests that Penalty is a much easier
coordination game than Climb.

We note a thin diagonal line in the 1-partner, 1-partner graph in Figure 4(a).
Interestingly, this is due to the fact that if the proportion of 1s in one population
is equal to the proportion of 3s in the other population, such combinations are
heavily penalized and the system converges to the suboptimal (2,2) equilibrium.

Biased Coevolution As discussed in [4–6], much of the convergence to suboptimal
solutions is due to relative overgeneralization, and one approach to dealing with
this is to bias the fitness by basing it partly on the payoff of collaboration
with the ideal partner for that individual (or an approximation thereof). Here,
we compute the fitness of an individual as the average of the maximum payoff
of N collaborations (as before), and the payoff of the individual with its ideal
partner. We assume the ideal partner is known for each individual. Figures 3(b)
and 4(b) present the basins of attraction for the equilibrium points for the biased
coevolutionary search. The images suggest that biasing further reduces the basins
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(a) Standard Coevolution

Second Population

1 partner 3 partners 5 partners 7 partners

(b) Biased Coevolution

Fig. 4. Basins of attraction in Penalty problem when using (a) standard and (b) biased
coevolution, and 1, 3, 5 and 7 partners per population. White, black and gray mark
basins of attraction for the (1,1), (2,2) and (3,3) equilibria.

of attraction for suboptimal equilibria, and when biasing, increasing the number
of partners helps even further. In fact in the Penalty domain, the basins of
attraction for the two globally optimal equilibria cover the entire space, even
with a single partner.

5 Conclusions and Future Work

In this paper we provided an evolutionary game theoretic formalism for com-
puting the expected convergence when an individual is teamed with partners
N times with replacement, and the maximum payoff is used as the individual’s
fitness. We then used this formalism to provide a visualization of convergence
properties when teamed with multiple partners. The goal of the visualization
was to demonstrate qualitatively how increases in number of partners affects the
likely convergence to the globally optimal Nash equilibria, and how including col-
laboration with the ideal partner as part of the fitness function, as was done in
[5, 4, 6], further reduces convergence to suboptima. This visualization was done
straightforwardly for 2-genotype populations, and through a novel linearization
of 3-D space, for 3-genotype populations.

Future research will investigate formal models for other complex collabora-
tion schemes, and the visualization of basins of attraction for even more compli-
cated problem domains. We believe that both the model and the visualization
techniques improve our intuition of how CCEAs work, and how they can be
better applied to optimization tasks.
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