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1 Introduction

The RoboPatriots are a team of three humanoid robots designed by the Com-
puter Science Department at George Mason University. Each robot is based
on the Kondo KHR-3HV, a customized Surveyor SVS camera, and a Gumstix
embedded computer (see Figure 1(a)).

2 Hardware

We are interested in embodied AI, so we choose commercially available hard-
ware rather than fabricating our own. After Robocup 2010, we realized our
robots needed additional computational resources and an extra degree of free-
dom in each leg to allow rotation (see Figure 1(b)). Figure 2 shows the hardware
architecture and information flow between components.

The robot base is the Kondo KHR-3HV. Each robot has 3 DOF per arm, 6
DOF per leg, and 2 DOF in the neck. The eighteen Kondo KRS-2555HV digital
servos used in the arms and legs produce 14 kg-cm of torque at a speed of 0.14
sec / 60 degrees. The 2555HV servos communicate via a serial protocol and are
controlled by the RCB-4 servo controller board. In addition, two KRG-3 single
axis gyros and one RAS-2 dual axis accelerometer connect to the RCB-4. The
two Kondo KRS-788HV digital servos used in our pan/tilt mount produce 10
kg-cm of torque at a speed of 0.14 sec. / 60 degrees. These servos are controlled
by the Surveyor SVS vision system via PWM.

Our main sensor is the Surveyor Stereo Vision System (SVS) [1]. The SVS
consists of two OmniVision OV 7725 camera modules connected to two indepen-
dent 600 MHz Blackfin BF537 processors. The two camera modules are mounted
on a pan/tilt mount with 10.5 cm separation. Each camera module operates at
640x480 resolution with a 90-degree field of view. The two processors are con-
nected via a dedicated serial bus with hardware flow control.

For 2011, we added an additional computer: a Gumstix Overo Air [2]. The
Air is a 600 MHz OMAP 3503 processor with 256 MB of flash and 256 MB RAM.
The Air runs embedded Linux, and provides 802.11 b/g. The Air communicates
with the RCB-4 over a dedicated serial bus with a custom inverter circuit for
logic level shifting and signal inversion. The SVS and Air are connected via



(a) Complete RoboPatriot robot (b) Close up of robot’s hips

Fig. 1. 2010 RoboPatriot’s robot and close up of new rotation servos in the hips.

an SPI bus. The Air and SVS are mounted on a custom motherboard which
also provides power distribution, USB connections, and sensor connections. See
Figure 3 for a prototype.

Each robot has a 11.1V 2200 mAh battery.

3 Software

The goalie and attackers each run a state machine for high level decision mak-
ing. The state machines include states for approaching the ball, orientation for
kicking, and kicking towards the goal. As in past years, predefined motions are
stored on the RCB-4 and are not dynamically modifiable. However, we can in-
terrupt motions during execution and can run cyclic motions for an arbitrary
length (e.g., we can execute N walking steps based on dynamic sensor informa-
tion). The software architecture is split across the RCB-4, SVS and Gumstix as
follows:

– The RCB-4 Servo controller handles gryo stabilization and execution of pre-
defined motions.

– The SVS performs vision related tasks (discussed below) and localization.
– The Gumstix detects falls, handles communication, and runs the state ma-

chine.
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Fig. 2. The hardware architecture of the RoboPatriots, and the information flow be-

tween components.

Fig. 3. A prototype of the integrated motherboard connecting the Gumstix computer

and SVS modules.



Vision One camera module of the SVS handles basic color tracking, first using
its own image, then the image from the other camera module. If both camera
modules detect the color, then stereo depth mapping combined with the camera
pan/tilt position provides an approximate physical distance to the object of in-
terest. In addition, ground-plane calibration allows us to ensure detected objects
are on the floor, and shape detection ensures detection of appropriate objects
such as the goals, the ball, and field lines.

Localization Our localization module uses a particle filter with random parti-
cle injection. The field is represented as a topological graph, where nodes are
distinct field features (line intersections, goal posts, etc.), and edges are logi-
cal connections between features. The sensor model computes the probability
of observing a set of features given a location. The motion model is based on
basic walking behaviors. The localization information is used for autonomous
repositioning and robot coordination.

4 Learning from Demonstration

Due to the difficulty in developing robust behaviors for RoboCup, we recently
starting experimenting with learning from demonstration as a way to train robots
to play soccer. In learning from demonstration, a robot learns a behavior based
on real-time samples from a demonstrator. Learning from demonstration is a
attractive alternative to the traditional coding, trial, and debugging cycle. In
our approach, the robot learns the transition between states in a hierarchical
finite state automaton where transitions are based on sensor information.

One challenge facing learning from demonstration is the number of samples
required to learn robust behaviors. In a simulated environment, gathering suffi-
cient data is not particularly difficult. However, collecting samples using robots
is quite expensive: each sample is a data point from an experiment conducted in
real-time. We recently developed a learning from demonstration system capable
of rapidly training virtual agents to perform complex behaviors with a minimum
number of samples [3].

Our system learns behaviors in the form of hierarchical finite state automata
(HFAs): the individual states are either pre-coded basic behaviors (“go forward”,
“turn left”, etc.), or learned HFAs, and the each transition function is learned by
a classification algorithm on features gleaned from robot sensors, internal state,
etc. Each feature can take any form allowed by the classifier. Once learned, the
HFA is then saved and then can be used as a state in a more complex behavior.
This approach is supervised and allows robots to learn both stateless and stateful
behaviors.

Our ultimate goal is to field a humanoid soccer team which is trained, rather
than programmed. To that end, we have ported our learning from demonstration
system to the RoboPatriot humanoids and have trained the robot to perform
visual servoing [5]. The goal was for the robot to search for the ball by turning the
“correct” direction, and walk towards the ball. Using feature information from



the camera, a group of computer science graduate students with no humanoid
robot experience successfully trained the robot. In addition, we demonstrated
that learning complex behaviors in a hierarchical fashion is quicker and easier
then learning complex behaviors in a monolithic fashion.

Transitioning from a single robot to a group of robots, we have also organized
a team of robots into a robot hierarchy, with robots at leaf nodes and coordinator
robots as nonleaf nodes [4]. This tree-structured organization dovetails with our
HFA-based task decomposition. Individual robots are trained as usual, with the
caveat that all robots share the same behavior library. Coordinator agents control
a group of agents, and themselves are trained to develop an HFA. Future work
will focus on heterogeneous robot hierarchies: each subgroup runs a different
HFA, with dynamic subgroup membership.
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M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Workshop at

AAM AS 2010. pp. 61 – 68 (2010)

4. Sullivan, K., Luke, S.: Hierarchical multi-robot learning from demonstration. In:

Proceedings of Robot Science Systems Conference (submitted)

5. Sullivan, K., Luke, S., Ziparo, V.A.: Hierarchical learning from demonstration on

humanoid robots. In: Proceedings of Humanoid Robots Learning from Human In-

teraction Workshop. Nashville, TN (2010)


