
Towards Rapid Multi-robot Learning from
Demonstration at the RoboCup Competition

David Freelan, Drew Wicke, Keith Sullivan, and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

dfreelan@gmu.edu, dwicke@gmu.edu, ksulliv2@gmu.edu, sean@cs.gmu.edu

Abstract. We describe our previous and current efforts towards achiev-
ing an unusual personal RoboCup goal: to train a full team of robots
directly through demonstration, on the field of play at the RoboCup
venue, how to collaboratively play soccer, and then use this trained team
in the competition itself. Using our method, HiTAB, we can train teams
of collaborative agents via demonstration to perform nontrivial joint
behaviors in the form of hierarchical finite-state automata. We discuss
HiTAB, our previous efforts in using it in RoboCup 2011 and 2012, recent
experimental work, and our current efforts for 2014, then suggest a new
RoboCup Technical Challenge problem in learning from demonstration.

Imagine that you are at an unfamiliar disaster site with a team of robots, and
are faced with a previously unseen task for them to do. The robots have only
rudimentary but useful utility behaviors implemented. You are not a programmer.
Without coding them, you have only a few hours to get your robots doing useful
collaborative work in this new environment. How would you do this?

Our interest lies in rapid, real-time multi-robot training from demonstration.
Here a single human trainer teaches a team of robots, via teleoperation, how to
collectively perform tasks in previously unforeseen environments. This is difficult
for two reasons. First, nontrivial behaviors can present a high-dimensional space
to learn, yet one can only provide a few samples, as online training samples are
costly to collect. This is a worst case for the so-called “curse of dimensionality”.
Second, when training multiple interactive robots, even if you can quantify the
emergent macro-level group behavior you wish to achieve, in order to do learning,
each agent needs to know the micro-level behavior he is being asked to do. One
may have a micro→macro function (a simulator), but it is unlikely that one has
the inverse macro→micro function, resulting in what we call the “multiagent
inverse problem”. These two challenges mean that real-time multi-robot learning
from demonstration has proven very difficult and has a very sparse literature.

Over the past several years we have participated in the Kid-Size Humanoid
League with a single objective: to successfully do a personal RoboCup-style
technical challenge of our own invention, independent of those offered at RoboCup:
can we train multiple generic robots, through demonstration on the
field, how to play collaborative soccer at RoboCup solely within the
preparatory time prior to the competition itself?



This is a very high bar: but over the past four years we have made major
strides towards achieving it. In RoboCup 2011 we began by replacing a single
hard-coded behavior in one attacker with a behavior trained on the field at
the venue, and entered that robot into the competition. At RoboCup 2012 we
expanded on this by training an attacker to perform all of its soccer behaviors
(17 automata, Figure 1), again at the venue. This trained attacker scored our
winning goal against Osaka. This year we intend to train multiple robots, and
ideally all four robots on the team, to perform collaborative behaviors.

Our approach, HiTAB, applies supervised learning to train multiple agents to
perform behaviors in the form of decomposed hierarchical finite-state automata.
HiTAB uses several tricks, notably task decomposition both per-agent and within
a team, to break a complex joint behavior into smaller, very simple ones, and
thus radically reduce its dimensionality. Sufficient domain knowledge is involved
that HiTAB may fairly be thought of as a form of programming by demonstration.

This paper documents our past efforts at applying HiTAB on the field at
RoboCup. We also discuss related penalty-kick experiments using the technique,
and detail our success so far towards our 2014 goal. Finally, we propose a new
RoboCup Technical Challenge in multiagent learning from demonstration.

1 Related Work

Learning from demonstration (or LfD) has been applied to a huge range of
problems ranging from air hockey [2] to helicopter trajectory planning [14], but
rarely to the multi-robot case [1]. Most of the multi-robot learning literature falls
under agent modeling, where robots learn about one another rather than about a
task provided by a demonstrator. The most common multi-robot LfD approach is
to dismiss the macrophenomena entirely and issue separate micro-level training
directives to each individual agent [11]. Another approach is to train individual
robots only when they lack confidence about how to proceed [4].

1.1 Machine Learning at RoboCup

To put our “personal technical challenge problem” in context, it’s worthwhile to
survey how machine learning has been used at RoboCup in the past. Machine
learning has been applied to RoboCup since its inception, coming to slightly
less than 100 papers and demonstrations since 1997. We mention only a small
number of the papers here.

The bulk of the machine learning RoboCup literature has involved single
agents. This literature breaks down into three categories. First, learning algorithms
have been applied about a dozen times to sensor feature generation tasks such as
visual object recognition [13, 31] and opponent behavior modeling and detection
(for example [8, 29]). Second, a equal amount of literature has applied machine
learning to a robot’s kinematics, dynamics, or structure. The lion’s share of this
work involves gait development (such as [19, 18]), with some work on kicking [6,
32], head actuation [5] and omnidirectional velocity control [17]. Third, about
sixteen papers have concerned themselves with learning higher-level behaviors
(for example [26, 28]).



Cooperative Multiagent Learning There have been approximately twenty five
cooperative multiagent learning papers at RoboCup. The area breaks down into
two categories. First, there is team learning, where a single learning algorithm is
used to optimize the behaviors of an entire team. Some of this work has involved
evolutionary computation methods to develop joint team behaviors (such as
[15, 10]); reinforcement learning papers have instead usually developed a single
homogeneous behavior (for example [7, 22]). In contrast the concurrent learning
literature, where separate learners are applied per-agent, has largely applied
multiagent reinforcement learning (such as [12, 21]).

It is useful here to mention why this area is dominated by optimization
methods (reinforcement learning, evolutionary computation): as mentioned before,
multiagent learning presents a difficult inverse problem, and optimization is the
primary way to solve such problems. However, optimization generally needs many
iterations for even moderately high-dimensional spaces, meaning realistically such
methods must employ a simulator, and so are not optimal for real-time training.

Training Training differs from learning in that it involves a trainer, that is,
a person who iteratively teaches behaviors, observes agent performance, and
suggests corrections. This is a natural fit for soccer: but training is surprisingly
rare at RoboCup. RoboCup has long sponsored a related topic, coaching, but
the focus has more been on influencing players mid-game via a global view [27]
than on training. One exception has used a coach to train action sequences as
directed by human speech, then bind them to new speech directives [30]. This
work resembles our own in that it iteratively trained behaviors as compositions
of earlier ones. There is also work in imitation learning, whereby an agent learns
by observing a (not necessarily) human performer [9, 16], though without any
trainer correction.

We know of two examples. besides our own, where training or related iterative
learning was done at RoboCup. The Austin Villa has fed the previous night’s
results into an optimization procedure to improve behaviors for the next day
[20]. Using corrective demonstration, the CMurfs coached a robot to select the
correct features and behaviors from a hard-coded set in an obstacle avoidance
task during the open technical challenge [3].

We also note that, like our own work, [27] does hierarchical decomposed
development of stateless policies, albeit built automatically and for single agents.

2 HiTAB: Hierarchical Training of Agent Behaviors

HiTAB is a multiagent LfD system which trains behaviors in the form of hier-
archical finite state automata (or HFA) represented as Moore machines. The
system is only summarized here: for a fuller description see [23].

In the single-agent case, an automaton contains some number of states which
are each mapped to a unique behavior, plus a distinguished start state whose
behavior simply idles. A behavior may be atomic, that is, hard-coded, or it may
be another finite-state automaton trained earlier. Some atomic behaviors trigger
built-in features: for example, transitioning to the done (similarly failed) state



immediately transitions to start, and further signals to the grandparent automaton
that the parent HFA believes it is “done” with its task (or “failed”). Other built-in
behaviors increment or clear counters. Every state has an accompanying transition
function which tells HiTAB which state to transition to next time. Each iteration,
HiTAB queries the current state’s transition function, transitions as directed,
then pulses the new state’s behavior for an epsilon of time.

The trainer manually decomposes the desired task into a hierarchy of subtasks,
then iteratively trains the subtasks bottom-up. In our experience, an experienced
trainer need decompose only once. Training an automaton only involves learning
its transition functions. In “training mode” the HFA transitions from state to
state only when told to by the demonstrator. When the demonstrator transitions
from state S to a new state S′ 6= S, the automaton gathers the robot’s current
sensor feature vector ~f , then stores a tuple 〈S, ~f, S′〉 as a sample, and in many
cases a “default sample” 〈S′, ~f , S′〉. A default sample says “as long as the world
looks like ~f , continue doing S′ ”, and is added only when transitioning to a
continuous behavior (such as walk), as opposed to a one-shot behavior (like kick).

When training has concluded, the robot enters a “testing mode”, at which
point it builds an automaton from the samples. To do this, for each i the robot
collects all tuples of the form 〈Si, ~f , S

′〉, then reduces them to 〈~f, S′〉. These

form data for a classifier Ci(~f) → S′ which defines the transition function Ti

accompanying state Si. We use decision trees (C4.5) to learn these classifiers.

The trainer then observes the performance of the automaton. If he detects
an incorrect behavior, he may correct it, adding a few new training samples,
and then re-build the classifiers. HiTAB can also perform unlearning: use the
corrective samples to determine which earlier samples had caused the erroneous
behavior (either due to sensor noise or user error), then delete them [25]. Finally,
the trainer can “undo” an incorrect sample he had just erroneously entered.
When he is satisfied with the automaton, he can save it to the behavior library,
at which point it becomes available as a behavior (and state) when training a
later, higher-level automaton. A behavior saved to the behavior library can be
revised in the future without retraining the entire HFA from scratch.

In HiTAB, both basic behaviors and sensor features may be parameterized:
thus we may say “go to X” rather than “go to the ball”; and similarly “angle to
X” rather than “angle to the nearest teammate”. Use of parameterized behaviors
or features in an automaton without binding them to ground values results in
the automaton itself being parameterized as well. Of course, ultimately each
parameter must be bound to a ground value somewhere in the hierarchy: the set of
available ground values is, like basic behaviors, hard-coded by the experimenter.

HiTAB is adapted to multiagent scenarios in two ways. First, both homoge-
neous and heterogeneous interactive teams may be trained through a process
we call behavioral bootstrapping [24]. The demonstrator starts with robots with
empty behaviors, and iteratively selects a robot, trains it with a slightly more
sophisticated behavior in the context of the current (simpler) behaviors run-
ning on the other robots, then distributes this behavior to similar robots, and
repeats. Second, once sufficient joint interactive behaviors have been designed,



Counter 
≥  5

Counter 
≥  4

Counter 
≥  2

Counter 
≥  3

Counter 
≥  2

Ball Ahead and 
Ball Distance ≤ Nearby

Ball Visible
and Counter  > 0

Goal Visible
and Counter  > 0

Ball Visible
and Counter  > 0

Servo on Ball With Counter

Servo on Ball

Search for Ball

Ball
Gone

Ball Visible
and Counter  > 0

Counter  <  3

Start Servo on Ball Rotate

Increment 
Counter

Reset 
Counter

Fail

Calibrate

Ball Ahead

Fail

StopServo on Ball 
With Counter DoneStart

Walk Search 
Distance

Ball to Left

Ball to Right

Ball Gone
or Ball Ahead

Wait for 
Camera

Turn Right

Turn Left

Start Stop

Kick Ball

Main

Move to Ball With Counter

Approach Ball

Move to Ball

Distance to Ball <
Close Enough

Fail

StopMove to Ball 
With Counter DoneStart

Fail

Ball Gone

Counter  <  2

Start Move to Ball Stop

Increment 
Counter

Reset 
Counter

Ball to Left

Ball to Right

Ball Ahead
Wait for 
Camera

Turn Right

Turn Left

Start Walk

Servo on Goal With Counter

Align to Goal

Servo on Goal
Goal to Left

Goal to Right

Goal Gone
or Goal Ahead

Wait for 
Camera

Pivot Left

Pivot Right

Start Stop

Goal Gone

Counter  <  5

Start Servo on Goal Stop

Increment 
Counter

Reset 
Counter

Servo on Goal With Pivot

Fail

Counter  <  4

Start Servo on Goal 
With Counter

Big Pivot 
Right

Increment 
Counter

Fail

Goal Ahead

Fail

Servo on Goal 
with PivotStart Stop Done

Aim for Kick with Counter

Align for Kick

Aim for Kick
Ball to Left

Ball to Right

Ball Ahead
Wait for 
Camera

Step Right

Step Left

Start Stop

Ball Gone

Counter  <  2

Start Aim for Kick Stop

Increment 
Counter

Reset 
Counter

Aim for Kick with Ball Ahead

Fail

Start Aim for Kick 
with Counter

Fail

Done

Done

Fail or
Ball too Far

Start Aim for Kick 
with Ball Ahead

Fail

Done

Try to Kick

Start

Ball to Left Kick Left Kick Right

Kick RightBall to Right Kick Left
Ball Visible

Done
Ball Not Visible

Ball Visible

Start Try To Kick Done

Step Forward

Ball Visible
and Done

Try To Kick
Done

Ball Not Visible
and Done

Stop

SearchForBall ApproachBall AlignToGoal AlignForKick KickBallStart
Done

Fail

Done Done Done

B
al

l S
ea

rc
h

B
al

l A
cq

ui
si

tio
n

K
ic

ki
ng

G
oa

l A
lig

nm
en

t
K

ic
k 

A
lig

nm
en

t F
in

e 
Tu

ni
ng

To
p 

Le
ve

l Transition
HFA

Behavior
Basic 

Behavior

Legend

Fail

Fail

Fail

Fail

Fig. 1. Trained Hierarchical Finite-State Automaton for RoboCup 2012. Unlabeled
transitions are always executed. Note the significant repetition in pattern: part of this
is simply behavior similarity, but part is because the 2012 HFA interpreter did not
support parameterized behaviors or features (see Section 2).



Is the ball visible? X coordinate of the ball on the floor Y coordinate of the ball on the floor
Bearing to the ball Bearing to the attacker goal Counter value
Is an HFA done? Did an HFA fail?

Table 1. Features in the Robocup 2011 and 2012 Experiments

Continuously turn left Continuously turn right Continuously walk forward
Walk forward one step Sidestep one step left Sidestep one step right
Stop Re-calibrate gyros Increment counter
Pivot left Pivot right Reset counter
Kick left Kick right Signal “Done”
Signal “Failed” Wait for camera

Table 2. Basic behaviors in the Robocup 2011 and 2012 Experiments

small teams of homogeneous or heterogeneous robots may be grouped together
under a controller agent whose atomic behaviors correspond to the joint trained
behaviors of its subordinates, and whose features correspond to useful statis-
tical information about the subordinates. The controller agent is then trained
using HiTAB. Homogeneous and heterogeneous controller agents may likewise
be trained together, then put under their own controller agent, and so on, thus
iteratively building entire swarms into a trained hierarchy of command. We have
used HiTAB to train groups of many hundreds of agents [23].

3 Our Previous Efforts at RoboCup

The RoboPatriots have been GMU’s entry in the RoboCup Humanoid League
from 2009 to present. Initially the RoboPatriots focused on issues related to
robot design, dynamic stability, and vision processing, and we exclusively used
hand-coded behaviors. Then at RoboCup 2011, we demonstrated a HiTAB-
trained robot as a proof-of-concept. The night before the competition, we deleted
one of the hard-coded behaviors (ball servoing) and trained a behavior in its
place through direct tele-operation of the robot on the field of play. We then
saved out the trained behavior, and during the competition, one attacker loaded
this behavior from a file and used it in an interpreter alongside the remaining
hard-coded behaviors. This trained behavior was simple and meant as a proof of
concept, but it worked perfectly.

In 2012 we had a much more ambitious goal: to train the entire library of
behaviors of a single robot on the field immediately prior to the competition. Our
attacker robots in 2012 used a decomposition of 17 automata which collectively
defined a simple “child soccer” style of behaviors without localization: search
for the ball, approach the ball, align to the goal, align for kicking, kick, and
repeat. Two days before the competition, we deleted the entire behavior set and
proceeded to train an equivalent set of 17 automata in its place (Figure 1), again
through tele-operation of the robot on the competition field. The final HFA was
saved to disk and run through an interpreter during game play.

The basic sensor features and robot behaviors we relied on to build these
automata are given in Tables 1 and 2 respectively: these were essentially the same
basic sensor features and behaviors used in the hard-coded version. Note that not
all features and behaviors were used in every HFA. The Wait for Camera behavior



Behavior Number of Samples Number of Provided Samples

ServoOnBall 11 11
ServoOnBallWithCounter (estimate) 10 (estimate) 9
SearchForBall 10 8
MoveToBall 9 9
MoveToBallWithCounter 10 9
ApproachBall 15 11
ServoOnGoal 9 9
ServoOnGoalWithCounter 12 11
ServoOnGoalWithPivot 9 7
AlignToGoal 12 9
AimForKick 9 9
AimForKickWithCounter 10 9
AlignForKickWithBallAhead 22 14
AlignForKick 42 35
TryToKick 10 10
KickBall 9 6
Main 34 19

Total 243 195

Table 3. Number of data samples for each HFA trained at RoboCup 2012. Provided
Samples are those directly provided by the user and do not include automatically inserted
“default samples” for continuous sub-behaviors. The data for ServoOnBallWithCounter
was not saved, so the estimate is based on other HFAs which used a counter.

ensured that we had new and complete vision information before transitioning
(our vision system was slower than the HFA).

The top-level HFA behavior, Main, performed “child soccer” by calling the
following second-level behaviors, which triggered additional hierarchical behaviors:

– Search for Ball: Using the bearing to the ball, the robot did visual servoing
on the ball, with the additional constraint of performing a rotation if the ball
was missing for several frames. If the robot had rotated several times, it then
walked forward before resuming searching.

– Approach Ball: Using the bearing to the ball and distance to the ball, the
robot moved towards the ball while performing course corrections en route.

– Align to Goal: Using the bearing to the goal, the robot oriented toward the
goal while maintaining the ball near the robot’s feet. The robot pivoted
around the ball if it could not see the goal.

– Align for Kick: Using the 〈X,Y 〉 position of the ball, the robot took small
steps to get the ball in a box near its feet so a kick could be performed.

– Kick Ball: The robot kicked based on the X position of the ball. If after a
kick the ball was still there, then the robot would kick with its other foot. If
the ball was still there, the robot would take a step forward and repeat.

Issues such as referee box event response and recovery from falls were handled
with hard-coded logic (in the second case, resetting to Search for Ball). The
HFA included subroutines designed to handle high sensor noise: for example,
MoveToBallWithCounter would robustly handle the ball disappearing due to a
temporary camera error.

HiTAB can be used to rapidly retrain behaviors as needed. As an example,
we had to train an additional HFA after the first day of competition. During our



early matches, we observed that the Aim for Kick sub-behavior assumed that
the ball would consistently be near the robot’s feet. However, due to sensor noise
the robot might enter Align to Goal when the ball was far away, and so when
Aim for Kick was entered, it would take many, many baby steps towards the ball.
We then trained a new version, Aim for Kick With Ball Ahead to also include a
failure situation for when the ball was outside a box centered at the robot’s feet.
The new HFA was then used in our later matches.

Table 3 shows the number of samples collected for all 17 trained HFAs. The
first column includes automatically inserted default samples while the second
column shows only the directly provided samples. Given the problem complexity,
we were able to train on a remarkably small number of samples.

Fig. 2. GMU’s trained Johnny-5 (magenta
#5) kicks the winning goal against Osaka.

During our second match versus
Team JEAP from Osaka University, our
trained robot scored the winning
goal. After discussion with colleagues
at the competition, we believe that, to
the best of our knowledge, this is the first
time a competing robot at RoboCup has
used a full behavior set trained in real
time at the venue itself, much less scored
a goal using those trained behaviors.

4 Penalty Kick Experiments

One claimed benefit of LfD is that the trained behaviors perform as well as hand-
coded behaviors. After RoboCup 2012, we conducted experiments to verify this
claim by comparing our trained soccer behavior with the hand-coded behavior
deployed on our other attacker. The task was penalty kicks, similar to those used
during the RoboCup competition.

The robot was placed 40 cm away from the penalty kick mark with a neutral
head position and facing the goal. The ball was randomly placed within a 20
cm diameter circle centered on the penalty kick mark (see Figure 3(a)). Initially,
the robot could see the goal, but not the ball, as shown in Figure 3(b). The
metric was time to kick the ball, independent of whether a goal was scored. Both
behaviors were run 30 times.

Figures 4(a)-(b) show histograms for the hard-coded and trained behaviors.
For both behaviors, sensor noise caused one run to take significantly longer than
the rest. The trained behavior had a mean execution time of 37.47 ± 5.51 seconds
(95% confidence interval), while the hardcoded behavior had a mean of 35.85 ±
3.08. The means were not statistically significantly different.

5 Set Plays: A Multiagent Training Proof of Concept

For RoboCup 2014 our goal is to train not just a single robot but a full team of
humanoids to play interactive robot soccer. To that end we have begun with an
experiment in multi-robot training on the soccer field: set plays.



(a) Penalty kick experimental layout (b) Robot starts facing the goal

Fig. 3. Penalty kick experimental layout. The robot cannot initially see the ball.

Time (sec)

Fr
eq
ue
nc
y

20 30 40 50 60

0
2

4
6

8
10

(a) Hardcoded results

Time (sec)

Fr
eq
ue
nc
y

20 30 40 50 60

0
2

4
6

8
10

(b) Trained results

Fig. 4. Penalty kick results. In both experiments, one run took longer than 60 seconds.

Multi-robot training is notionally difficult because of the interaction among
the robots and the challenges faced in coordinating them. To attack this problem
at scale, HiTAB relies on manual decomposition of a swarm of agents under a
hierarchy of trained “controller agents”. However for small groups (two to four
agents) we focus instead on developing joint behaviors among the agents. This is
the case for the set-play scenario, which typically involves two agents.

How might one use HiTAB to train an interactive joint behavior among two
robots without a controller agent coordinating them? We see three possibilities:

– Train the Robots Independently We train one robot while tele-operating the
other (the dummy), and vice versa. This is the simplest approach, but to
us it does not intuitively feel like a match for multiagent training scenarios
which involve a significant degree of interaction.

– Bootstrap We train one robot to perform a rudimentary version of its
behavior with the other robot doing nothing. We then train the second robot
to do a slightly more sophisticated version of its own behavior while the first



Kicked(P)
and Done

Start GotoPosition(P, L) Done

Ball Lost

Done
Ball Not Lost

Start Receive(P, L) TurnLeft

Done

Receive(Passer P, OpenLocation L) ReceiveWithSearch(Passer P, OpenLocation L)

SetPlay for Player 1
Done Done

Start ReceiveWithSearch
(Player2, Location1)

PassWithSearch
(Player2) Done

Pass(Receiver R)
Ready(R)
 and Done

Distance < 0.3 m

Distance ≥ 0.3m

Start GotoBall AlignToTarget(R) KickBall Done

Ball Lost

Done

Start Pass(R)
Ball Not Lost

TurnLeft

Done

PassWithSearch(Receiver R) GoalKick
Done

Start PassWithSearch(Goal) Done

SetPlay for Player 2
DoneDone Done

Start PassWithSearch
(Player1)

ReceiveWithSearch
(Player1, Location2) GoalKick Done

R
ec

ep
tio

n
Pa

ss
in

g
Se

t P
la

y

Transition
HFA

Behavior
Basic 

Behavior

Legend

Fig. 5. Trained Hierarchical Finite-State Automata for the 2014 set-play experiments.
Passing and reception automata are shared among both robots, but each robot executes
a different top-level set play automata.

robot is performing its trained rudimentary behavior. This back-and-forth
training continues until the robots have been fully trained.

– Simultaneously Train We use two HiTAB sessions, one per robot, to train
the robots at the same time while interacting with one another. This obvi-
ously requires much more effort on behalf of the demonstrator (or multiple
demonstrators working together).

For 2014 we have new robots (Darwin-OP humanoids) and so have decided to
base our system on a heavily modified version of the UPennalizers’s open-sourced
2013 champion software. This code provides localization and helpful behaviors
which we use as the foundation for basic behaviors and features in the set plays:

– GotoPosition(P, L) goes to location L on the field, facing the location of
player or object P , then broadcasts a “Ready” signal for five seconds.

– GotoBall goes to the ball position.
– AlignToTarget(R) orients around the ball until the robot is facing player or

object R.
– KickBall kicks the ball and broadcasts a “Kick” signal for five seconds.
– TurnLeft rotates to the left.

Each robot was also equipped with the robot sensor features Kicked(P) (did
P raise the Kick signal?), Ready(P) (did P raise the Ready signal?), Ball Lost
(has the ball been lost for over three seconds?), and Distance (to ball). Note that
the Goal, as a parameter, was considered to be always “Ready”.

Clearly these behaviors and features are higher-level than those used in 2012,
and the resulting automata are simple for a programmer to implement. We took



(and are continuing to take) such baby-steps on purpose: real-time training of
multirobot behaviors is notionally nontrivial, and previous examples for guidance
are few and far between. Our goal is to show that such a thing is even feasible.

Using this foundation, we trained the robots independently via dummies to
perform the joint set play behaviors shown in Figure 5: Robot A would acquire
the ball while B moved to a preset position. When both were ready, Robot A
would then kick to B and move to a second preset position. Then Robot B would
kick to A, which would then kick to the goal.

Though we had imagined that we would need to perform simultaneous training
or bootstrapping, in fact we have been perfectly successful in training set plays
separately using dummies. This surprising result is likely due to the small number
(two) of robots involved, but it has nonetheless forced us to question the prevailing
wisdom: does interaction necessarily complicate multi-robot learning?

Whether independent training will be sufficient for the remainder of the
behaviors for 2014 remains to be seen: and ultimately we will need to train a
virtual controller agent (likely residing on the goalie) to direct which behaviors
and joint actions should be undertaken by the team at any given time.

6 Conclusion: A Technical Challenge Problem Proposal

In this paper we outlined our efforts so far towards an unusual and challenging
goal: to successfully train a full robot soccer team on the field of play at the
RoboCup competition. We think that a “personal technical challenge” like this is
not only a useful research pursuit, but it also has direct impact on robot soccer.
After all, coaching and training players is an integral part of the sport! People are
not born with, nor hard-coded, to play soccer: they learn it from demonstration
and explanation from coaches and through the imitation of other players.

To this end, we propose a new yearly challenge problem for RoboCup involving
collaborative multiagent LfD (beyond just an open challenge). RoboCup teams
would yearly be presented with a brand new task, and they would have four hours
to train their robots to collectively perform that task. The robots might be asked
to do a certain set play; or to collectively form a bucket brigade to convey balls
from one corner of the field to the other. In earlier years teams might be informed
of the task a month before; or the tasks might be restricted to single agents.
But eventually the task should require multiple interacting agents and few clues
provided beforehand except for the basic behaviors permitted. Differences in robot
hardware or software architectures might constrain the available techniques, and
so the challenge might need to be more a showcase than a judged competition.

Acknowledgments Research in this paper was done under NSF grant 1317813.

References

1. Argall BD et al. A survey of robot learning from demonstration. Robotics and
Autonomous Sytems, 57, 2009.

2. Bentivegna DC et al. Learning tasks from observation and practice. Robotics and
Autonomous Systems, 47(2-3):163–169, 2004.



3. Çetin Meriçli et al. Multi-resolution corrective demonstration for efficient task
execution and refinement. International Journal of Social Robotics, 4, 2012.

4. Chernova S. Confidence-based Robot Policy Learning from Demonstration. Ph.D.
thesis, Carnegie Mellon University, 2009.

5. Fountain J et al. Motivated reinforcement learning for improved head actuation of
humanoid robots.RC. 2013.

6. Hausknecht M and Stone P. Learning powerful kicks on the Aibo ERS-7: the quest
for a striker.RC. 2010.

7. Kalyanakrishnan S et al. Half field offense in RoboCup soccer: a multiagent
reinforcement learning case study.RC. 2006.

8. Kaminka GA et al. Learning the sequential coordinated behavior of teams from
observations.RC. 2002.

9. Latzke T et al. Imitative reinforcement learning for soccer playing robots.RC. 2006.
10. Luke S et al. Co-evolving soccer softbot team coordination with genetic program-

ming.RC. 1997.
11. Martins MF and Demiris Y. Learning multirobot joint action plans from simulta-

neous task execution demonstrations. AAMAS, 931–938. 2010.
12. Merke A and Riedmiller M. Karlsruhe Brainstormers — a reinforcement learning

approach to robotic soccer.RC. 2001.
13. Metzler S et al. Learning visual obstacle detection using color histogram features.

RC. 2011.
14. Nakanishi J et al. Learning from demonstration and adaptation of biped locomotion.

Robotics and Autonomous Systems, 47(2-3):79–91, 2004.
15. Nakashima T et al. Performance evaluation of an evolutionary method for RoboCup

soccer strategies.RC. 2005.
16. Noda I. Hidden markov modeling of team-play synchronization.RC. 2003.
17. Oubbati M et al. Velocity control of an omnidirectional RoboCup player with

recurrent neural networks.RC. 2005.
18. Saggar M et al. Autonomous learning of stable quadruped locomotion.RC. 2006.
19. Schwarz M and Behnke S. Compliant robot behavior using servo actuator models

identified by iterative learning control.RC. 2013.
20. Stone P. Personal conversation, 2014.
21. Stone P and Veloso M. Layered learning and flexible teamwork in RoboCup

simulation agents.RC. 1999.
22. Stone P et al. Keepaway soccer: From machine learning testbed to benchmark.RC.

2005.
23. Sullivan K and Luke S. Learning from demonstration with swarm hierarchies.

AAMAS. 2012.
24. Sullivan K and Luke S. Real-time training of team soccer behaviors.RC. 2012.
25. Sullivan K et al. Unlearning from demonstration. IJCAI. 2013.
26. Takahashi Y et al. Behavior acquisition based on multi-module learning system in

multi-agent environment.RC. 2002.
27. Takahashi Y et al. A hierarchical multi-module learning system based on self-

interpretation of instructions by coach.RC. 2003.
28. Tuyls K et al. Reinforcement learning in large state spaces.RC. 2002.
29. Visser U and Weland HG. Using online learning to analyze the opponents behavior.

RC. 2002.
30. Weitzenfeld A et al. Coaching robots to play soccer via spoken-language.RC. 2008.
31. Wilking D and Röfer T. Realtime object recognition using decision tree learning.

RC. 2004.
32. Zagal JC and del Solar JR. Learning to kick the ball using back to reality. RC.

2004.


