
RoboPatriots:
George Mason University 2014 RoboCup Team

David Freelan, Drew Wicke, Chau Thai, Joshua Snider,
Anna Papadogiannakis, and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030 USA

dfreelan@gmu.edu, dwicke@gmu.edu, cthai3@masonlive.gmu.edu,

jsnider3@masonlive.gmu.edu, apapado2@masonlive.gmu.edu, sean@cs.gmu.edu

Abstract. The RoboPatriots are a team of four DARwIn-OP robots
from George Mason University which participate in the Kid-Size Hu-
manoid League. RoboCup 2014 marks the fifth year of participation for
the RoboPatriots: in 2009 and 2010, we advanced to the second round,
and in 2011 we were eliminated in the first round. Our approach is un-
usual in that we aim to train our robots how to play soccer using learning
from demonstration, then field those robots in the competition.

1 Introduction

The 2014 RoboPatriots are a team of four DARwIn-OP humanoid robots which
compete in the Kid-Size Humanoid League at RoboCup. Our goal for the com-
petition this year is unusual: we will try to train the entire team how to play
soccer, on the field at RoboCup, and then enter the trained behaviors in the
competition. Because this year RoboCup has cut the setup days to one, we may
not have enough time to train the robots at the venue: in this case some robots
may use behaviors we had trained at George Mason University immediately prior
to departure.

We have had past success using this technique at RoboCup, but in not as
ambitious a goal as this year. In RoboCup 2011 we deleted a single hard-coded
behavior (servoing on the ball) from one robot, then used successfully HiTAB
to learn that same behavior on the RoboCup humanoid league soccer field the
day before the competition. One attacker on the team used this learned behavior
along with its hard-coded behaviors; for comparison, the other attacker used all
hard-coded behaviors.

In RoboCup 2012 we went significantly further. We deleted all soccer behav-
iors from one of the robots, leaving behind only simple actions such as “move
forward” or “turn”, and basic sensor information such as the location of the
ball in the robot’s field of view. We then used HiTAB to train a hierarchy of
seventeen finite-state automata which recreated the entire play behavior except
for referee interaction.

This year our goal is to train all the soccer behaviors of multiple robots,
and ideally all robots on the team. We do not intend to just train four separate



robot behaviors, but rather train them as an interactive multiagent system: for
example, training them to work together to perform set plays. If successful, we
will have fielded an entire team of soccer robots which had been trained from
scratch by a human demonstrator.

2 Hardware

Fig. 1. GMU Darwin OP

We used four DARwIn OP humanoid robots with the
following specifications:

– Height 454.5 mm
– Weight 2.9 Kg
– Number of DOF 20 (6 DOF per leg, 3 DOF per

arm, 2 DOF head)
– Dynamixel RX-28M
– Main controller: Intel Atom Z530 CPU (@1.6GHz)
– Sub controller: STMicroelectronics Cortex-M3

STM32F103RE (@ 73MHz).
– Camera Logitech C905, HD video capture (up to

1600x1200@10fps, 1280x720@30fps)
– Walking Speed 24 cm/s

3 Software Architecture

The RoboPatriots’ software is a hybrid of GMU learning from demonstration
system (HiTAB, discussed in Section 4), and the U Penn robot software which
won in 2013. As presently envisioned, the architecture will use U Penn’s local-
ization, vision, and gait code, but the high-level soccer behavior code will be
entirely replaced with an interpreter which performs learned soccer behaviors
developed using HiTAB. Given time and need we will further modify U Penn
code beyond this.

4 Multirobot Learning from Demonstration

HiTAB is a learning from demonstration system developed at George Mason
University by which a human demonstrator or coach can train one or more robots
or virtual agents to perform nontrivial behaviors in effectively real-time [2].

Single-Agent HiTAB Research in learning from demonstration may be roughly
divided into two categories: research in learning trajectories or paths, and re-
search in learning plans, automata, and behavioral policies. In the first case the
learning algorithm may receive a great many samples, as every small movement
is a data point. In the second case however, samples typically only arrive at a
transition from behavior to behavior, and so are often very sparse. Our approach
falls in this second category.



Sparsity is a serious problem, since the learning space is can be high dimen-
sional. For example, if one were training a finite-state automaton describing all
of soccer play, this might consist of some twenty states and an equal number of
environment features on which transitions are based. Thus we must develop a
way to reduce the dimensionality of the space, or otherwise simplify the problem,
in order to make learning possible given the few samples available.

Our approach learns behaviors in the form of hierarchical finite-state au-
tomata (HFA) represented as Moore machines. Each state in an HFA maps to
a behavior, and when the HFA is in that state, that corresponding behavior
is performed by the robot. Behaviors may be hard-coded basic behaviors such
as “walk forward” or “kick”, or they may themselves be other HFA. No cyclic
recursion is permitted. Associated with each state in an HFA is a corresponding
transition function which tells the HFA which state it should transition to next.
Transition functions are often based on the current sensor feature vector. Fea-
tures may be parameterized, and so instead of “distance to the ball” or “distance
to the goal”, a feature may be defined simply as “distance to X”, where X is
left to be specified later. Similarly, basic behaviors may be parameterized, and
all this in turn allows HFA to be parameterized, resulting in general-purpose
behaviors such as “go to X” rather than “go to the ball”. This parameterization
allows us to train a general-purpose behavior once, then reuse it multiple times
in different contexts, which helps in reducing dimensionality.

HFA are run by iteratively pulsing them. Each time an HFA is pulsed, it first
calls the transition function associated with its active state, then transitions to
the state returned by this function (which can of course be the same state). It
then pulses the behavior associated with this new active state. If the behavior
is itself another HFA, this process recurses, until ultimately a basic behavior is
pulsed, which causes the robot to perform that behavior for a short period of
time.

Our model learns the transition functions associated with each HFA, but not
the states. Rather, each state is mapped to a unique behavior from the union
of basic behaviors and currently learned HFA. This simplifying assumption is
done in the name of dimensionality reduction. Because the behaviors are fixed,
so are the number of transition functions to learn. Each transition function is
essentially a mapping of the set of possible feature vectors to the (finite and
unordered) set of states, and is so nothing more than a classifier. Thus to learn
an HFA, HiTAB builds a set of classifiers, one per state in the automaton.

Training is done as follows. The demonstrator first determines the features
to form the feature vector f for the HFA. He then iteratively selects behaviors
from the current behavior library, and when he does so the robot performs those
behaviors. When a new behavior bt is selected, the robot stores a transition
sample of the form 〈bt−1, ft, bt〉, and also when appropriate a default (“keep on
doing bt”) sample of the form 〈bt, ft, bt〉. Ultimately the demonstrator asks the
robot to learn from the demonstrations, at which point for each behavior b, the
robot gathers all samples of the form 〈b, f, b′〉 for various f and b′. These are
then reduced to samples of the form b′ → f (that is, b′ is the data point and f is



is its class label), and from these samples the robot builds the classifier for the
transition function associated with b.

Armed with its own transition functions, the robot then begins performing
the HFA. At any point the demonstrator may jump in and correct errant be-
havior, resulting in additional samples. When the demonstrator is satisfied with
the behavior, it is saved to the behavior library and becomes available as a
corresponding state in a higher level HFA trained later.

Using this training approach it is theoretically possible to learn large, complex
automata; but our intent is instead to permit the trainer to learn a hierarchy
of simpler automata. This requires that the trainer manually decompose the
behavior into simpler and simpler sub-behaviors, then iteratively learn each sub-
behavior in turn bottom-up. In doing so, the trainer effectively projects the full
joint space of the behavior into the much smaller subspaces of each of the sub-
behaviors, dramatically simplifying the total learning space and dimensionality.
Further, each sub-behavior may have its own reduced set of features appropriate
for that sub-behavior, rather than requiring the full joint feature set.

Multiagent HiTAB Multiagent learning from demonstration presents a much
more challenging problem than the single-agent case, because of the multiagent
inverse problem. Learning from demonstration is fundamentally a supervised
learning task: the demonstrator shows what must be done in various situations,
and the agent learns from this. However in the multiagent case, even if the
demonstrator can quantify what emergent macro-phenomenon he wishes the
multiple agents to achieve in any given situation, in order to train them he must
break this down into those individual micro-level agent behaviors which collec-
tively achieve this. Unfortunately, while we can use an agent or robot simulator
effectively as a “forward” function which tells us what macro-behavior arises
from the combination of specific micro-level behaviors, we do not have the in-
verse function, that is, a function which tells us what micro-level behaviors are
necessary to achieve a given macro-behavior. But this inverse function is exactly
what the demonstrator needs.

The standard way to overcome inverse problems is through optimization. As
such nearly the entire multiagent learning literature has consisted of optimiza-
tion methods: stochastic optimization (genetic algorithms etc.) or reinforcement
learning. Supervised techniques are rare. Furthermore, multiagent learning from
demonstration cannot readily use optimization techniques because it typically
has no simulator to provide the “forward” function to optimize over. As a re-
sult, this area has a very limited literature: of the few supervised methods,
most fall instead in the category of agent modeling, where robots or agents learn
about one another rather than about a task given to them by demonstrator. The
most common multirobot learning from demonstration approach is to eliminate
macro-behaviors entirely by issuing separate micro-level training directives to
each individual agent [3–5]. This is very unlikely to scale. Another recent ap-
proach is to build up homogeneous behaviors through via confidence estimation
rather than reinforcement learning [1].



We have taken a different tack: to once again use decomposition to simplify
the inverse problem to the point where the gulf between micro- and macro-
level behaviors is so small that it is obvious what micro-level behaviors must be
learned. We do this by first manually breaking the swarm of agents into a hier-
archy of smaller and smaller sub-swarms, ultimately down to individual agents.
We then train individual agents with any needed fundamental single-agent be-
haviors. Then we train the smallest groups of agents (perhaps 2 or 3) to perform
collective homogeneous interactive behaviors. Once these are learned, we can
then train a virtual controller agent which directs the homogeneous behaviors of
this group. The controller agent’s “basic” behaviors map to the high-level inter-
active behaviors of its subordinates; whereas the controller agent’s “features” are
(hard-coded) statistical information about its subswarm (such as “percentage of
agents who have fallen over” or “did someone score a goal?” or “centroid of the
swarm”).

This continues recursively: the controller agent develops various HFA behav-
iors as necessary, then we group controller agents together to learn interactive
behaviors, and finally put that group under the control of a higher-level controller
agent, and so on, until the entire swarm or team is joined.

This can also be done with heterogeneous behaviors: but in this case the
controller must direct different behaviors to different agents rather than a single
behavior. We do this by explicitly mapping basic controller behaviors to groups
of heterogeous behaviors among its underlings.

5 Training Soccer Robots

The RoboPatriots are a four-robot heterogeneous team. Our goal this year will
be to train them with interactive behaviors, demonstrating set plays, passing
and receiving, and so on, using HiTAB. As there are four robots, we will use a
controller agent to decide which set play to perform. We will train the behaviors
for our four robots before the competition at George Mason University, and will
then re-train them at the competition given sufficient time.

The trained architecture will probably be a flat swarm of four basic robots
with no controller agent; though we may construct a controller hierarchy among
the non-goalies if it proves useful.

For simplicity, training will not be on-board the robots: rather we will develop
the trained behaviors on a remote laptop using one or more robots as clients.
Sensor information from the robots will be communicated in real time to the
laptop and used as features for HiTAB training, and likewise basic behaviors in
HiTAB will be translated in real-tie to the robots to perform as actions (such as
kicking or walking). Once the training is completed, we will transfer the learned
behaviors to the robots and run them in an interpreter on-board.



6 Conclusions

We have described hardware and software of the RoboPatriots, a team of three
humanoid robots developed at George Mason University. The RoboPatriots are a
primary research platform for our learning from demonstration system, HiTAB,
which is geared to training nontrivial hierarchical behaviors on teams of multiple
cooperative robots.

Statement of Commitment

The RoboPatriots commit to participate in RoboCup 2014 in Brazil and to
provide a referee knowledgeable of the rules of the Humanoid League.

Acknowledgments

This work is supported by NSF grants IIS-0916870 and IIS-1317813. We would
be amiss if we did not acknowledge various students and faculty who have been
involved in developing HiTAB over the past several years: notably Keith Sullivan,
Bill Squires, Ahmed Elmolla, Ermo Wei, and Vittorio Ziparo

References

1. Chernova, S.: Confidence-based Robot Policy Learning from Demonstration. Ph.D.
thesis, Carnegie Mellon University (2009)

2. Luke, S., Ziparo, V.: Learn to behave! rapid training of behavior automata. In: Grześ,
M., Taylor, M. (eds.) Proceedings of Adaptive and Learning Agents Workshop at
AAM AS 2010. pp. 61 – 68 (2010)

3. Martins, M.F., Demiris, Y.: Learning multirobot joint action plans from simulta-
neous task execution demonstrations. In: Proceedings of Autonomous Agents and
Multi-Agent Systems Conference (AAMAS). pp. 931–938 (2010)

4. Martins, M.F., Demiris, Y.: Learning multirobot joint action plans from simulta-
neous task execution demonstrations. In: Proceedings of Autonomous Agents and
Multi-Agent Systems Conference (AAMAS). pp. 931–938 (2010)

5. Takács, B., Demiris, Y.: Balancing spectral clustering for segmenting spatio-
temporal observations of multi-agent systems. In: IEEE Internationa Conference
on Data Mining (ICDM). pp. 580–587 (2008)


