Co-evolving Soccer Softbots

The University of Maryland RoboCup simulator entry (Sean Luke, Charles Hohn,
Jonathan Farris, Gary Jackson, and James Hendler) consisted entirely of computer-
evolved players devel oped with Genetic Programming [Koza 1992]. Genetic Program-
ming is abranch of evolutionary computation which uses natural selection to optimize
over the space of computer algorithms. Unlike other entrants who fashioned fine-
tuned softbot teams from battery of relatively well-understood robotics techniques,
Maryland's goal was to see if it was even possible to use evolutionary computation
to develop high-level soccer behaviors that were competitive with the human-crafted
strategies of other teams. While evolutionary computation has been successful in many
fields, evolving a computer algorithm has proven challenging, especially in a domain
like robot soccer.

Luke et al used Genetic Programming to evolve apopulation of “teams’ of LISP s-
expression algorithms, evaluating each team by attaching its algorithmsto robot players
and trying them out in the simulator. Early runs tested individual players; later runs
pitted whole teams against each other using co-evolution. After evaluation, a team's
fitness assessment was based on its success relative to its opponent. This fithess score
determined which teams would be selected to interbreed and form the next generation
of algorithms.

The RoboCup soccer simulator makes evol utionary computation extremely difficult.
The simulator gives noisy data, limited sensor information, and complex dynamics.
Most problematic is that the simulator runs in real-time; even at full-throttle, games
can take many seconds or minutes. Unfortunately, evolving a team of eleven soccer
players can require hundreds of thousands of evaluations, so in the worst case asingle
soccer-evolution run might take a year or more to complete.

In order to keep the number of eval uationsto aminimum, Maryland severely limited
the population size, which demanded special customizationsto prevent the population
from converging to a suboptimal strategy. Maryland also cut down the number of
evolved algorithms by grouping players into “squads’, with one algorithm per squad,
or by using one single algorithm for the entire team [Luke and Spector 1996]. They
performed runs for both strategies; at the time of the competition, the single-team
strategies had better fitness. To further speed up runs, evaluations were run in parallel
on an Alpha supercomputer cluster.

Asthey had only one shot to evolveteams, L uke et al cannot makerigorousscientific
claimsasto popul ation development. Nonethel ess an admittedly anecdotal observation
is still interesting. After a hesitant start, most early teams soon began to learn the
worrisome suboptimal “kiddie soccer” strategy: “everyone go after the ball and kick it
to the goal” (Figure 1). Thankfully, players learned to hang back and protect the godl,
and ultimately to disperse through the field to provide better coverage (Figure 2).

By the end of the final runs, the computer had produced teams which passed to
teammates, blocked the ball, protected different parts of the field, and tried to stay
open. Maryland’s entry was successful in competition, beating itsfirst two hand-coded
competitors before succumbing.



References

JR. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press, Cambridge MA, 1992.

S. LukeandL. Spector. Evolving Teamwork and Coordinationwith Genetic Program-
ming. InJ.R. Kozaet a., editors, Proceedings of the First Annual Conference on
Genetic Programming (GP-96). TheMIT Press, CambridgeMA, pages 150-156,
1996.

Figures

Figure 2. Soccer teams eventually learn to disperse themselves throughout the field.



