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Wireless Sensor Networks (WSNs) are increasingly used in industrial applications such as the Internet-of-
Things, Smart City technologies and critical infrastructure monitoring. Industrial WSNs often operate in
a cluster or star configuration. To ensure real-time and predictable performance, link access is typically
managed using time-slotted superframe methods. These methods generally use static and potentially in-
efficient slot assignments. In this paper, we propose to dynamically readjust time slot lengths as a tech-
nique to minimize overall energy consumption. Our approach combines real-time performance guarantees
with energy conservation methods through a set of dynamic modulation based adaptive packet transmis-
sion scheduling algorithms that are designed to reclaim unused slot times. To support our reclaiming
method in a wireless environment we introduce a novel low-power listening technique called reverse-
low-power listening (RLPL) as part of an overall Hybrid Low-Power Listening (HLPL) protocol. We evaluate
our algorithms using Castalia simulator against an oracle-based approach, and show that our dynamic
slot reclaiming approach, coupled with HLPL, can introduce substantial power savings without sacrificing
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real-time support which may be a new approach towards improving industrial wireless standards.
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1. Introduction

Industrial network automation systems were traditionally in-
stalled with wires connecting communicating devices. Potential
drawbacks to purely wired systems are higher costs for cables and
maintenance and inflexibility in terms of deploying new nodes or
reconfiguring existing systems. As a result industrial automation
and control systems are increasingly being supported by wireless
networks [1]. Wireless industrial systems are now appearing in
application domains such as manufacturing, electrical generation,
and chemical refining [2], along with Smart City and environmen-
tal monitoring applications [3]. Currently deployed industrial wire-
less protocols include IEEE 802.15.4e, WIA-PA, WirelessHART and
ISA100.11a [4].

Low-power real-time wireless protocols typically work by orga-
nizing nodes in cluster or star topologies, and sometimes in multi-
hop topologies. Variations of time division multiple access (TDMA)
based scheduling for link access is the most widely used method
to provide real-time guarantees on WSN [5]. TDMA systems gener-
ally have a coordinator that is in charge of distributing time slots
to the nodes. Nodes in the system therefore share a logical super-

* Corresponding author.
E-mail addresses: agumusal@gmu.edu (A. Gumusalan), simon@gmu.edu (R. Si-
mon), aydin@gmu.edu (H. Aydin).

https://doi.org/10.1016/j.adhoc.2018.02.002
1570-8705/© 2018 Elsevier B.V. All rights reserved.

frame that is divided into timeslots. Each node has a pre-assigned
time slot where it is allowed to transmit so that collisions are pre-
vented. The work presented in [5]| concludes that TDMA improves
the performance of basic CSMA/CA protocols. Most current stan-
dards either use a fixed size or varying size but pre-computed slot
lengths for their superframes. This may lead to an efficient or in-
flexible use of resources in the form of unused timeslots, especially
if the workload is not fully predictable.

To address the above issues we propose to dynamically readjust
time slot lengths in the superframe as a method to reduce overall
energy cost and provide tight real-time guarantees. As noted, many
existing protocols assume that the workload is fully deterministic
and known in advance, which is not the case for many newer ap-
plications that can be supported by real-time wireless protocols
[6]. An intuitive question then emerges — is it possible to achieve
both real-time performance and energy savings in the face of uncer-
tain workloads?

This paper aims to answer the above question through the de-
sign and analysis of adaptive, superframe based techniques de-
signed to maintain real-time performance guarantees while mini-
mizing energy consumption. In order to accomplish this goal, we
adopted a well-known and widely-studied technique called Dy-
namic Modulation Scaling (DMS) [7,8]. DMS is a technique that ex-
ploits the trade-off between latency and energy consumption at a
given modulation level. Higher modulation levels consume more
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energy to transmit and receive the data but the transmission takes
less time. It has been showed that DMS technique leads to reduced
energy consumptions [8]. The basic idea in our approach is to as-
sign nodes time slots in order to meet their communication trans-
mission deadlines, but allow them to proactively wake up and de-
termine if other nodes have transmitted all of their packets and no
longer require some portion of their time slots. If this is the case,
a node can begin packet transmission before its scheduled time,
and conserve energy by transmitting at reduced modulation levels.
In order to accomplish this, we have designed a new low-power
listening protocol called Hybrid Low-Power Listening. The algorith-
mic and protocol challenge is to schedule packet transmissions in
a manner that reduces energy while maintaining real-time perfor-
mance, as compared to the traditional static TDMA approach.

Our work makes the following contributions. We first build a
basic real-time superframe model, and then use DMS to oppor-
tunistically save energy. DMS, also known as Adaptive Modulation,
is commonly used to increase throughput in hostile and unpre-
dictable wireless communication settings [9]. For instance, in tacti-
cal military environments one current mobile handheld standard is
called JTRS. Mobile handheld radios such as the Harris AN/PRC-15
implement adaptive modulation within the JTRS standard. For Low-
Power and Lossy Networks, the TI CC1200 supports 2-FSK, 2-GFSK,
4-FSK, 4-GFSK, MSK, OOK modulations [10] whereas CC2500 sup-
ports 2-FSK, 2-GFSK, MSK and OOK [11]. The application of DMS
within WSNs has been studied in [12-16].

We formulate the joint real-time and energy minimization as
an optimization problem under the assumption of a workload that
can only be known probabilistically. Since solving the optimiza-
tion problem may be computationally complex, we then propose
a set of polynomial-time algorithms to address the joint real-time
energy optimization problem. To avoid excessive energy expendi-
tures during the times nodes proactively wake up to see if they
can prematurely transmit, we propose and analyze a novel Hy-
brid Low-Power Listening (HLPL) protocol. HLPL incorporates a new
technique called reverse-low-power listening (RLPL). RLPL is a twist
on traditional low-power listening (LPL) protocols, which are well-
known methods used in low data rate duty cycling wireless sensor
networks [17]. LPL protocols yield significant energy savings. To our
best knowledge this is the first usage of a hybrid LPL technique in
a joint TDMA-based real-time energy savings protocol, as well as
the first one that combines the beacon-enabled superframe con-
cept with low power listening.

Using HLPL, we evaluated our optimal and heuristic algorithms
against an oracle-based approach, which has perfect workload
knowledge, under a number of workload and deadline constraints.
Our detailed evaluation under 802.15.4 IEEE standards shows that
the hybrid HLPL approach, coupled with DMS, can achieve signif-
icant energy savings while maintaining real-time performance, as
opposed to the traditional TDMA method.

2. Related work

A beacon-enabled superframe technique is presented as an
amendment to IEEE 802.15.4 standards and is included in
802.15.4e [18]. Aimed at supporting real-time industrial systems,
802.15.4e provides real-time guarantees for wireless sensor net-
works (WSNs). This standard defines the contention-access-period,
contention-free-period and guaranteed-time-slot formats. This ba-
sic approach is incorporated in industrial standards such as Wire-
lessHART, ISA 100.11a and WIA-PA [4,19]. Our work is fully com-
patible with these standards.

WirelessHART made TDMA based scheduling an industrial stan-
dard using a formulation similar to the approach presented in [18].
It defines a superframe as the collection of fixed size time slots
controlled by the network manager [19]. In order to avoid inter-

ference, it uses a frequency hopping spread spectrum mechanism
across the 16 channels of 2.4 GHz ISM band [20]. ISA100.11a is an-
other industrial standard for wireless networks. It also has a su-
perframe concept similar to that in WirelessHART [4]. WIA-PA is
a widely adopted system arhitecture and communication proto-
col standard for wireless networks. WIA-PA uses the beacon en-
abled superframe design as introduced in 802.15.4e [4]. As dis-
cussed in Section 3, we use a generic beacon-enabled superframe
model that can be applied to any of these industrial standards.
These standards emphasize supporting real-time performance in
wireless networks. Our work enhances these standards by adopt-
ing dynamic time slot allocation and on-the-fly adjustment for
the generic superframe structure. Moreover, we introduce a novel
protocol called Hybrid Low-Power Listening (HLPL) as an efficient
technique to eliminate the impact of neighborhood for superframe
structures by combining the two seemingly contradicting ideas
such as superframe and low-power listening.

Our work incorporates TDMA, CSMA, and Low Power Listen-
ing (LPL) MAC layer protocols; hence, it can be categorized as
a hybrid MAC layer protocol. Hybrid MAC-layer approaches have
been studied for a number of years [21]. Some well-known exam-
ples are Z-MAC, HyMAC, H-MAC, ER-MAC, and Queue-MAC [22-
26]. Z-MAC [22] uses a randomized two-hop setup mechanism to
avoid collisions where each node is assigned a time slot. When
there is no transmission after a predefined time interval, the nodes
can start communicating using CSMA for the duration of the time
slot. A hybrid bandwidth-aware mechanism is presented in [27].
The work in [28] used a Markov Decision Process in a hybrid
solution to resolve congestion issues and minimize energy con-
sumption, while others considered approaches for reducing queue
length [29]. HYMAC combined TDMA and FDMA where a base sta-
tion assigns time slots and frequencies [23]. H-MAC is another hy-
brid MAC protocol that combines CSMA with the Aloha protocol
[24]. ER-MAC [25], on the other hand, reduces the energy con-
sumption of Z-MAC by allowing CSMA in only emergency situa-
tions. Queue-MAC [26] also combines TDMA with CSMA in con-
junction with variable slot length. In Queue-MAC, each node trans-
mits its load to its parent which in return adjusts the slot distribu-
tion in advance. One possible weakness in this protocol is that it
assumes the load of the nodes are known prior to their transmis-
sion, which is not practical in many real-life scenarios [6].

A more recent hybrid MAC protocol called MMSMAC is pro-
posed in [30]. This protocol operates in synchronous, asyn-
chronous, and hybrid modes. MMSMAC groups the nodes into clus-
ters according to their per-hop distances to the cluster head. In
synchronous mode, the nodes are grouped into odd or even based
on their cluster numbers and work in periodic active and sleep cy-
cles. Only the nodes in active state are allowed to receive or trans-
mit data (one node can transmit during an active state per clus-
ter). This mode reduces energy consumption but increases delay.
In asynchronous mode, the nodes compete for the channel which
reduces delay but increases energy consumption. In hybrid mode,
the nodes are set up just as synchronous mode but sensor nodes
of the active cluster follow the asynchronous operation mode. The
hybrid mode’s performance is between those of asynchronous and
synchronous modes. Another recent hybrid MAC protocol is TAH-
MAC [31] which combines CSMA/CA,TDMA, and FDMA. This pro-
tocol uses CSMA/CA for lower traffic levels and TDMA/FDMA for
high traffic and only TDMA for medium traffic. An adaptive TDMA
scheduling for multi-cluster networks is proposed in [32]. This sys-
tem divides time slots into three categories — IntraSend, Inter-
Comm, and IntraRecv — and requires each node to know its in-
terference information and workload. The adjustment of time-slots
are done accordingly and are static during the superframe inter-
val. Lenka et al. [33] also proposed a distributed slot schedul-
ing algorithm for hybrid CSMA-TDMA MAC layer. In this proto-
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col, each node randomly selects a slot from the available slots list
then broadcasts its request to acquire it. If all neighboring nodes
agree, the slot is assigned. CSMA comes into play during slot re-
allotment process where the system tries to reduce the number of
allocated time slots. This re-allotment process may cause non-slot-
owner nodes to collide and hence, CSMA is used by non-owners
for channel assessment.

Our work differs from the above through our introduction of
the Hybrid Low-Power Listening (HLPL) concept that allows effi-
cient on-the-fly slot adjustments, even in the presence of interfer-
ence where the nodes may overhear each others’ communication,
and our use of Dynamic Modulation Scaling (DMS) to save energy
while maintaining transmission deadlines.

Low-power listening (LPL) is a commonly used MAC-layer pro-
tocol that reduces the energy consumption caused by idle listening
to the channel for an activity. In LPL, nodes periodically wake up
to detect the activities in the channel. LPL techniques are gener-
ally categorized as either sender-initiated, receiver-initiated, or hy-
brid. Another classification divides LPL protocols into synchronous
or asynchronous solutions. Our proposed HLPL protocol is a sender-
initiated, asynchronous LPL and includes a new technique to ad-
dress high false-alert rates caused by overhearing observed traf-
fic in the traditional LPL protocol frameworks [34]. The most com-
mon current approach in these scenarios is to use either TDMA to
give QoS guarantees or LPL otherwise [35]. To our best knowledge,
our work is the first to show that these can be combined in order
to give QoS guarantees such as real-time performance and energy
saving.

In our system DMS is simply a control knob that can be re-
placed with any other energy saving mechanism but it is an im-
portant concept for energy minimization and worth examining in
greater detail. One of the earliest papers that applied DMS to real-
time traffic is [36]. That work developed the concept of adjust-
ing modulation scaling on-the-fly for general real-time purposes.
However, WSNs are not the main focus of the paper. The authors
in [37] studied the application of DMS on data gathering schedul-
ing of wireless sensors in a real-time scenario. They have shown
that DMS can achieve up to 90% energy savings. However, they
have assumed the same constant packet workload for each node
in the network. Our work differs from the above by considering a
probabilistic workload and applying DMS to Time Division Multiple
Access (TDMA) based scheduling. We believe a non-deterministic
workload is more realistic for many applications of wireless sen-
sors and is worth investigating. The work in IGCC'14 by Bandari
et al. [38] considered joint DVS/DMS for a single wireless node
with probabilistic workload, and suggested static speed scheduling
solution for both DVS and DMS. In our work, we consider applying
DMS to the task set of every node in the network as a whole where
they all share the same deadline. Although the work by Bandari
et al. [38] proves the benefits of DMS and DVS, it does not con-
sider dynamic time slot readjustment, which is the main focus of
this paper. This case creates problems such as the overhead of low-
power listening and interference. In our work, we investigate this
dimension in depth and evaluate the effects of low-power listen-
ing and neighborhood problem. We also propose a new protocol to
overcome this problem.

3. System architecture

This Section describes our targeted system architecture, require-
ments and device model.

3.1. Application topologies and requirements

Our work focuses on nodes that form single-hop communica-
tion clusters. Each node is assumed to periodically generate some
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Fig. 1. The lay-out of superframe.
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number of packets that it must transmit by a specific deadline.
The actual number of packets changes over time, and is only
known probabilistically. In order to meet these requirements we
use a generic, beacon-enabled superframe architecture for real-
time communication. We assume every node participating in the
cluster can directly communicate with the coordinator. We also as-
sume that the coordinator or clusterhead is not power-limited.

This model is shown in Fig. 1. As seen, at the beginning of each
superframe the beacon is transmitted by the coordinator. The bea-
con contains management information such as TDMA slot assign-
ments, and is received by all the nodes in the cluster. This is fol-
lowed by a contention access period (CAP), allowing each node to
talk to the coordinator via CSMA. During this phase a node may
send future workload information, or may ask to join or leave the
cluster. The contention free period (CFP) starts right after the CAP.
The CFP consists of a series of Guaranteed Time Slots (GTSs), which
are assigned to specific nodes. In order to provide real-time com-
munication guarantees, each node is assigned a number of GTSs
equal to its worst-case traffic workload.

The coordinator manages GTS assignments to avoid collisions
and provide real-time guarantees. The CAP could followed by an
inactive period during which the nodes can sleep. We assume that
the coordinator manages the duty cycle and, without loss of gener-
ality, do not consider its impact in our work. A traditional approach
is to have a node sleep during the GTSs assigned to other nodes.
In this paper, we introduce a Hybrid Low-Power Listening protocol
that allows nodes to proactively remain awake during time slots
assigned to other nodes to attempt to opportunistically transmit
their packets at reduced energy levels.

3.2. Communication

We assume that each node is equipped with a DMS-enabled
radio capable of dynamically adjusting the modulation levels. We
adopt the basic energy model presented in [7]. Specifically, the
radio power consumption is divided into two parts. The first is
transmission power, denoted as ps, and the second is electronic cir-
cuitry power, denoted as p.. These values can be expressed as
ps =G x ¢(b) x Rs and p. = Ce x Rs, respectively. Here, R is the
number of symbols transmitted per second and b is the modu-
lation size. The values C, and C; are radio-specific; but Cs; can
be affected by the current environmental conditions, such as at-
mospheric noise, transmitter-receiver distance and temperature. In
practice C. and Cs can both be approximated as constants. Finally
¢(b) is the convex scaling function of the modulation used, de-
pending on the modulation scheme. For QAM, ¢(b) function is
2b —1 for even modulation levels and a close approximation for
odd levels [7], which shows the exponential increase in power con-
sumption in terms of the modulation level (p. is assumed to be
constant). The transmission time, on the other hand, is %RS which
decreases linearly in terms of modulation level. As a result, the
trade-off involved in DMS becomes an exponential increase (de-
crease) of transmission power compared to a linear decrease (in-
crease) of transmission time for QAM [7].

Our HLPL protocol uses two schemes commonly used in asyn-
chronous duty-cycled low-power MAC protocols, namely low-
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Fig. 2. Illustration of static and dynamic slack reallocation.

power listening (LPL) and embedding information in short pream-
ble (physical layer) packets. A typical LPL protocol such as B-MAC
[17] requires a sender to transmit a long preamble. Receivers wake
up, sense the preamble, and stay awake to receive data. The du-
ration of listening and sleeping schedules can be adjusted to, for
example, maximize energy savings, maximize throughput, or min-
imize delay. Protocols such as X-MAC [39] extend this idea by us-
ing shorter preambles with embedded address information of the
target node. The advantage of using preamble addressing is a re-
duction in the number of bits that need to be transmitted and a
flexible, user configurable information that follows the preamble.
X-MAC also showed embedding address information into pream-
ble avoids the overhearing problem and saves energy on the non-
target devices.

4. Hybrid low-power listening (HLPL)

The advantage of DMS is that the nodes can minimize overall
energy consumption by using lower modulation levels. The draw-
back is that lower modulation levels require longer periods of time
to transmit the same number of bits. In our environment this
means that more GTSs are required. We assume that the nodes can
bound their worst-case workload in terms of the number of pack-
ets to send, but the actual distribution is only known probabilisti-
cally. This means that the nodes may send fewer packets then their
worst case estimate. Hence, a node might not use all of the GTSs
assigned to it. It is therefore desirable to devise dynamic algorithms
capable of assigning these unused slots to other nodes. Further, it
is possible to use DMS techniques to extend transmission over un-
used slots, in order to reduce their energy expenditures, as long
as the deadlines are maintained. We call the extra time available
from unused slots “slack time”.

Fig. 2 shows how different algorithms may behave when slack
time is available. We can generalize these slack reallocation algo-
rithms as static and dynamic. Assume the initial GTS assignments
are shown in the superframe labeled A. In this example node; has
been assigned 3 packet-length GTS but it only transmits a single
packet. Superframe B shows what happens under the traditional
static approach. The GTS assignments for node, and nodes do not
change, and the available slack time remains un-utilized. The su-
perframe C shows a possible dynamic approach where these slots
are reallocated to node,, which can lower its modulation level but
still meet the deadline. Another possible dynamic approach is dy-
namic_fair, shown in superframe D. In this case the slack could be
allocated among node, and nodes; equally. Detailed descriptions of
these algorithms along with methods for determining modulation
levels for the new GTS distribution are provided in Section 7.

For dynamic algorithms to succeed, the nodes need to be aware
when the currently scheduled node prematurely finishes transmis-

sion. Our approach works by having the coordinator broadcast a
relatively short preamble that contains the address of the next
node to transmit and the modulation levels that the node will use.
Nodes hear this preamble by using low-power listening. The se-
lected node may in fact be granted permission to transmit early
using the available slack time.

Fig. 3 shows the parameters of the listen-sleep cycle from the
perspective of a single node. Here § shows the wait-duration be-
fore the node starts its low-power listening (LPL) cycle. The node
is entirely asleep during the period &. Initial intuition is to set &
value to zero which means the nodes will start performing LPL
as soon as the CAP period ends to ensure no preamble will be
missed. As we will show in Section 7, performance improvements
can be achieved with a careful choice of a non-zero § value. How-
ever, this is possible only in the cases where we have a pri-
ori information about the packet workloads of the nodes. For the
LPL phase, we use parameters « and y, referred to as the sleep-
duration and listening-duration, respectively. y is the time during
which the node is listening to the medium whereas « is the time
during which the node is in the sleep mode.

The length of the coordinator’s preamble has to be greater than
the LPL period of & + ¥. Lpreqmbie > @ + y guarantees that the re-
ceiver will hear a portion of the preamble. However, it does not
guarantee that the receiver will listen to the preamble as a whole.

Fig. 4 shows the possible intersections of the LPL period and
preamble. Among these three possibilities, the first one is prefer-
able, since the receiver gets the entire preamble. In the second and
third cases, the receiver will hear the preamble; however, it will
not know who the preamble is addressed to. As a result, the re-
ceiver will need to keep listening even after the preamble mes-
sage is over, in order to learn the address of the preamble. This
adds to the power consumption of the receiver. The coordinator
needs to make sure that after sending the preamble message, the
intended node starts transmitting. If not, the coordinator needs to
re-send the preamble. We evaluate the effect of these parameters
in Section 7.

An additional problem exists in that the absence of transmis-
sion activity being detected by a node does not necessarily mean
that nodes are not transmitting in the cluster. Two nodes may be
entirely out of each others’ radio range. Another possibility is that
a node may be in another node’s interference range, but not its
transmission range. This means that a node can hear another node
transmit but cannot decode the transmission. Also, when a node is
in the transmission range of another node, it overhears the com-
munication. However, nodes are only interested in transmissions
from the coordinator. Listening to the other nodes in addition to
the coordinator increases the energy consumption. For our scheme,
the practical impact is that a node may not be able to hear another
node that is in the process of sending a packet to the coordinator,
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and therefore cannot tell if the slot is used or idle. Further, it may
overhear the unintended communications with additional energy
cost. We refer to these issues as the neighborhood problem.

In order to overcome the neighborhood problem, we combine
preamble addressing with our newly defined hybrid-low-power lis-
tening (HLPL) protocol. As described earlier HLPL is a combina-
tion of traditional low-power listening and a new scheme called
reverse-low-power listening (RLPL). On the receiver side, the node
needs to decide which LPL mode it needs to be in. In HLPL, if a
node receives a preamble and learns that it is not scheduled next
and it senses any transmission during its first wake-up after this
preamble, the node goes into the RLPL (described below) stage. For
non-zero wait-duration values, when the node wakes up, it listens
to the channel for a preamble. If it senses any transmission and
this transmission is not a preamble then the node goes into the
RLPL stage. However, if this transmission is a preamble that is not
addressed to itself and if it does not hear any transmission during
its first wake-up after the preamble, it goes into the traditional LPL
stage.

For zero wait-duration values the nodes (except for the first
scheduled node) start with traditional LPL. During listening phases
if they do not hear any transmission, they stay in the tradition LPL
stage. However, when a node senses a transmission after a pream-
ble, it goes into the RLPL stage. The logic behind this process is
the fact that hearing a transmission during the first wake-up right
after the “false” preamble indicates that there is an interference
since the sleep-duration is smaller than the time needed for a
single packet. If the node does not hear any transmission after a
preamble addressed to another node means there is no interfer-
ence. Meanwhile, the coordinator waits for sleep-duration amount
of time before it broadcasts the preamble, unlike in traditional LPL,
where a sender broadcasts the preamble as soon as the current
node stopped transmitting. Waiting for sleep-duration amount of
time ensures that all the nodes that are in RLPL mode are cur-
rently in the wait-for-preamble stage. Fig. 5 shows the flow chart
for HLPL.

RLPL differs from traditional LPL in its conditions to transi-
tion between listening and sleeping stages. In RLPL when the
node wakes-up and hears a transmission, it goes back to sleep.
However, if it does not hear any transmission, it starts listening,
which is different than the traditional low-power listening case.
In RLPL, this listening phase is called wait-for-preamble stage. As
explained, when a node stops transmitting, the coordinator waits
for sleep-duration amount of time before it broadcasts the pream-
ble. Hence, wait-for-preamble stage can last at least for the sleep-
duration time. Wait-for-preamble guarantees that when the coordi-
nator broadcasts the preamble, the nodes will be listening to the
channel.

The core idea of HLPL is to save energy when there is constant
traffic in the network. In the absence of this, HLPL behaves very
similar to traditional LPL. Fig. 6 aims to clarify the difference be-
tween traditional LPL and RLPL during a constant traffic. Under tra-
ditional LPL, the node wakes up periodically and tries to sense a
transmission. Then it stays awake long enough to conclude that
the transmission is not from the coordinator. On the other hand,
under RLPL, the node first listens to the channel, realizes that it is
not a preamble, and goes to the RLPL stage. With RLPL, a node still
periodically wakes up but stays awake enough to detect that there
is some transmission. If so, the node goes back to the sleep mode.
Otherwise, the RLPL stage concludes, and the node transitions to
the wait-for-preamble stage. It stays in that stage until it hears a
transmission.

5. Joint deadline-energy optimization problem

Based upon the number of nodes, the real-time constraints, and
the actual workload, the question remains how to set the modula-
tion levels to achieve all deadlines and conserve energy. We now
show how to formulate this question as an optimization problem.

Earlier research in DMS has shown that there exists a con-
stant optimal modulation level that minimizes the energy con-
sumption while meeting all deadlines under deterministic work-
loads [7]. However, the work in [38] observed that under proba-
bilistic workloads, this is not the case. Instead, the optimal solution
to minimize the expected energy consumption consists in transmit-
ting the first packets at low speed (modulation), and increasing the
speed gradually for the subsequent packets when the deadlien ap-
proaches. This is based on the observation that in the more likely
scenarios where the actual workload deviates from the worst-case,
low modulation levels are sufficient to meet the deadline while
saving significant energy. However, as more packets are transmit-
ted, the modulation level is gradually increased to meet the dead-
line. The framework to find the optimal modulation levels given a
deadline and probabilistic workload profile is called speed schedul-
ing in [38] and we also adopt this approach.

In our target applications each node has a varying communi-
cation workload determined by a known probabilistic distribution.
The node; can have from 1 to m; packets to transmit in a given
superframe. p;(k) represents the probability distribution function
of node;’s workload. Specifically, p;(k) denotes the probability
that node; will transmit exactly k packets during a superframe
(Table 1).

The energy needed to transmit a single packet, e,qcer, i the
product of time to send a single bit (tp;), the length L of the max-
imum transmission unit (in bits), and the total power (ps+ pe).
Moreover, tp; = b%RS where b indicates the modulation level and
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Table 1
List of symbols
Symbol Description
n Number of nodes
m; Upper limit on the number of packets node; can send
D length of superframe
pi(k) Probability that node;’s workload is k packets
yi(k) Probability that node; sends k or more packets
b;(k) Modulation level used by node; to send its kth packet
L Maximum transmission unit of the underlying
communication protocol in bits

tpic Time to send a bit
tsymbol Time to send a single symbol
Rs Symboling rate
bin Minimum modulation level that a node can use
bimax Maximum modulation level that a node can use

,’-k A binary indicator that equals 1 for the selected

modulation level | for node;’s kth packet

Pe Power consumption of the electronic circuitry
Ds Power consumption from transmission

Rs is constant. A typical value for Rs is 62,500 symbols/s for
802.15.4 [40]. By using the radio power consumption formula from
Section 3, we get:

L-(G-¢p(b)+C)

€packet = L - (Ds + Pe) - tpir = b (1)

Define y;(k) as the probability that node i will actually trans-
mit the kth packet. Then y;(k) = Z;":"k pi(x). The total expected en-
ergy consumption is the sum of expected energy consumption of n
nodes:

n

m;
eexpected = Z Z epacket ‘yi(k)
i=1 k=1
By denoting the modulation level of the kth packet of the node
i by b;(k), we obtain:

Ly;(k
Cexpected = 121: kX: by'(i))
Note that the kth packet of node i can potentially be trans-
mitted with any of the discrete modulation levels in the range
[biins - - - » bmax]. Let ﬂ{*" be a binary indicator variable <{0, 1} to
represent whether the kth packet of node i is transmitted using
the modulation level [ or not. Then an integer programming for-
mulation to minimize the expected energy can be obtained as:

(2)

(G- (bi(k)) + Cel (3)

n m;  bmax
minimize SN L yl(k) G -¢b) +C]  (4a)
im1 k=1 Ibyg,
b]ﬂﬂx
subject to > Bk=1Vik (4b)
l bmln
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n M bpax

ik L
20 LA g =D (4c)

i=1 k=1 I=by,

ke {0, 1} Vi, k (4d)

The objective function gives the sum of the energy consump-
tion of all the packets over all the nodes, by considering their
probability of being transmitted and all possible modulation lev-
els. The constraints (4b) and (4d) indicate that exactly one modu-
lation level will be assigned to each packet in the workload. The
constraint (4c) enforces that all the modulation levels must be se-
lected in a way that all the transmissions will be completed be-
fore the deadline (the end of the superframe). Although integer
programming problems are known to be intractable in the general
case, moderate-size instances can be solved using the existing op-
timization tools such as CPLEX.

6. Proposed algorithms

Section 4 showed how static and dynamic algorithms operate
when slack time is available. Section 5 illustrated how to opti-
mally calculate the modulation levels to achieve energy minimiza-
tion and required performance. Now we will discuss the algorithms
that combine both.

i.) Static: In this algorithm, assuming the worst-case workload
for every node, the smallest possible modulation level with which
the deadline can be met is assigned to all the nodes in uniform
manner, statically. The assigned modulation levels do not change
for the duration of the superframe, even though the actual work-
load of a node may deviate from the worst-case (i.e., the slack time
is not reclaimed).

ii.) Static*: This is similar to the Static algorithm in the sense
that the modulation levels are computed statically and slack is not
reclaimed. However, instead of assigning a constant modulation
level to every node, the nodes use a speed schedule that gradu-
ally increases the modulation levels by exploiting the probabilistic
workload profile. This is computed by solving the integer program-
ming problem with the objective function given in Eq. (4a).

iii.) Dynamic: This algorithm makes the initial modulation level
assignments as in Static but then dynamically adjusts the modula-
tion levels in order to take advantage of the available slack time
after the end of each node’s transmission and allows only the fol-
lowing node to reclaim this slack time by adaptively reducing the
modulation level. At slack reclamation times, each node uses the
smallest feasible modulation level to use the duration of its origi-
nally allocated slots and reclaimed slots.

iv.) Dynamic*: This algorithm enables the dynamic reclaiming
of the unused slots by adaptively reducing the modulation level
at run-time. However, the initial modulation levels are computed
using Static* and the node that reclaims the slack uses the speed
scheduling solution to re-assign possibly different modulation lev-
els to each of its packets.

v.) Dynamic_f: The fair version of the Dynamic algorithm in the
sense that the available slack time is distributed evenly among all
subsequent nodes rather than being assigned entirely to the next
node. The modulation levels of all the subsequent nodes are dy-
namically adjusted after the end of each node’s transmission to the
lowest feasible modulation level.

Static, Dynamic, and Dynamic_f are polynomial-time algorithms.
They only iterate over each modulation level (from 2 to 8) once
and select the minimum feasible one. Static* solves the Binary-
Integer Programming Problem introduced in Section 5 but it is ex-
ecuted offline by the coordinator and only once unless the prob-
ability distribution changes. Dynamic* also solves the same Binary
Integer Problem but only for a single node. In practice, a look-up

table can be constructed with the pre-computed modulation levels
as a function of available slack.

Fig. 7 shows an example of possible slack reclamation of dy-
namic algorithms. In this example there are 5 nodes with maxi-
mum workload of 10 packets. Initially, each node is assigned slots
with total length equal to 10 packets with the modulation level
b where b> b ;,- When it is node’s turn, it sends 6 packets us-
ing the modulation level b which yields a slack time of 4-packets
long. Dynamic and Dynamic* allocate this slack time to the next
scheduled node, namely node,. Now, node, has effectively addi-
tional slots, giving a transmission time equal to 14 packets. How-
ever, node, will transmit at most 10 packets so it can reduce its
modulation levels. In the case of Dynamic, node, uses the lowest
feasible modulation, bp, where bp <b for each of its 10 probable
packets. Dynamic* uses the optimal modulation levels computed by
solving Eq. (4a) only for its probabilistic workload and slot length.
When it is node,’s turn, it ends up transmitting 5 packets imply-
ing there is a slack time of 9 packets with modulation b. Similarly,
Dynamic and Dynamic* assign this slack time to the next sched-
uled node, namely nodes. In the Dynamic case, nodes uses the low-
est feasible modulation level, by, where by < bp < b. nodes uses
the optimal solution computed for its own packets with its own
deadline. In the Dynamic_f case, the 4-packet long slack time af-
ter node;’s transmission is distributed among node,, nodes, nodey,
and nodes. These nodes have 11-packet long slack time with the
modulation level b. The lowest feasible modulation level, bp ;- that
will meet with the deadline with 40 possible packets is computed
where bp ;< b. After node, stops transmitting, the 9-packet long
slack is distributed among nodes, node4, and nodes. The new low-
est feasible modulation level by, for all 30 possible packets to meet

the deadline is computed where bD/f < bDf <b.

7. Performance evaluation

To evaluate the performance of the several variants of the pro-
posed framework under different workload conditions, we simu-
lated the system on Castalia framework of Omnet++ simulator. We
simulated a system with a coordinator and 10 nodes arranged in
star topology, and with communication range set to 30 m. The
work done in [41] shows that DMS is effective for distances greater
than 25 m. Each node’s workload in a superframe varies between 1
and 10 packets and is derived from a probability distribution. We
assumed DMS-capable systems (with QAM modulation) where the
modulation levels can vary from 2 to 8.

The purpose of our simulation is to quantify, from an algo-
rithmic perspective, the difference between DMS-aware and DMS-
oblivious approaches in energy-aware super-frame management. In
order to achieve this, we ran various simulations for different su-
perframe lengths (deadlines) to analyze how the energy consump-
tion varies. Furthermore, we have compared our proposed algo-
rithms against an Oracle algorithm which is the yardstick scheme
where the exact number of packets that each node will transmit
is known in advance, at the beginning of each superframe. As a
result, it does not need to assume the worst-case workload. Or-
acle does not require any LPL because it knows the exact time
each node will stop transmitting. Hence, the overhead of LPL is
also omitted. Although it is not a feasible algorithm in practice,
it provides the minimum energy consumption that is theoretically
possible for a given experiment.

The minimum deadline Dy is assumed to be the superframe
length necessary to allow the transmission of the worst-case work-
load (10 packets) by each node at the maximum modulation level,
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Fig. 7. An example for dynamic algorithms.

considered to be equal to 208 ms.! The actual deadline for a given
experiment is then computed as D = hﬁ% where the system’s load
is in the range [0.1, 1.0].

For each load value, our simulator generated 600 workload in-
stances for 10 nodes using a uniform distribution function. We also
ran experiments with Normal, Pareto and Flipped-Pareto distribu-
tions for workload generation. We will present detailed simulation
results for the Uniform distribution and underline the trends and
relative ordering of the schemes for the other distributions.

Castalia is a high-fidelity simulator with an advanced channel
model that incorporates log-normal path loss with temporal vari-
ations [42]. It is not platform-specific and allows reliable and re-
alistic validation of wide range of algorithms and platforms [43].
The packet loss is computed according to collisions as well as by
comparing the energy level of the received packet to the noise
level in the environment. Our simulation implementation com-
plies with 802.15.4-2006 standard, and allows data transfer dur-
ing CAP period where nodes only use slotted CSMA/CA. In the
slotted CSMA/CA, a node needs to wait for a random number of
backoff slots to transmit data packet but the acknowledgement
packet does not have to use slotted CSMA/CA. During the CFP pe-
riod, the coordinator sends ACK packets after each successful data
packet transfer. IEEE 802.15.4-2006 standard describes how the su-
perframe intervals must be calculated. The sum of active and in-
active period lengths must be equal to BaseSuperframeDuration =
NumberOfSuperframeSlots x symbolTime. SymbolTime is calculated
as

1
physicalDataRate x 1000/ physicalBitsPerSymbol

1 As in low-power listening mode each node can miss up to 2 preambles before it
can start transmitting, this duration as well as the transmission delay are included
in Dy to ensure feasibility.

and then BeaconInterval is calculated as BaseSuperframeDuration x
2BeaconOrder - Here  BeaconOrder is a constant and is equal to 6
in our simulations. The active portion of the superframe is
Activelnterval = BaseSuperframeDuration x 2ActiveOrder \Aje have cho-
sen 4 as our ActiveOrder constant. Also, the number of time slots
assigned to CAP period needs to be specified in order for the CAP
length to be calculated. We set the CAP period to 2 GTS long. The
transition cost in terms of energy and delay between RX, TX, and
Sleep states are also included.

» MaximumNumberO fTries_CAP = 4, MaximumNumberOfTries_CFP =
2, guardTime = 1 ms

Clear Channel Assessment related factors: IEEE 802.15.4-2006
specifies three modes of performing CCA. Castalia’s radio mod-
ule is built to provide Mode 1 which checks whether the mea-
sured energy is above a threshold value or not. The default time
duration to measure the energy level is set to 0.000128 ms
which is independent of the radio that is being used. The de-
fault value of energy threshold is —95 dBm.

Transition costs: We only consider the light sleep level which
consumes 0.5 mW. The list of transition costs are; RX to TX =
32mW, TX to RX = 32mW, RX to Sleep = 1.4 mW, Sleep to RX
= 1.4mW, TX to Sleep = 1.4mW, and Sleep to RX = 0.5 mW.
Transition delays: Once again only with the light sleeping mode
the transition delays are as follows: RX to TX = 0.01 ms, TX to
RX = 0.01 ms, RX to Sleep = 0.05 ms, Sleep to RX = 0.194 ms,
TX to Sleep = 0.05. These values are obtained from the CC2420
radio specification.

Modulation level parameters: DataRate (kbps) is calculated as
symbolRate*bitsPerSymbol where symbolRate is constant and
62,500 for 2450 MHz radios such as CC2420. Bandwidth, noise-
Bandwidth, noiseFloor, and Sensitivity values are taken from
the CC2420 radio specification, and they are 20 MHz, 194 MHz,
—100dBm, and —95dBm respectively. TX_dBm levels which af-
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Fig. 8. Energy consumption in the ideal case. Here, we assume dynamic algorithms
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mitting. Hence, LPL is not needed.

fect packet loss, CCA, and neighboring problem (see Section 4)
are 5, 8, 11, 14, 17, 20, 23 dBm, respectively, for modulation lev-
els 2-8.

All the proposed algorithms run on the coordinator. The com-
puted modulation levels are transmitted to the nodes using bea-
cons and preambles. Hence, the computation overhead on individ-
ual nodes is minimal. We set the preamble size to 14 bytes, which
includes a 1 byte for sender address, a 1 byte for receiver address,
10 bytes for the calculated modulation levels, and 2 bytes for the
CRC footer. For the Static, Static*, and Oracle algorithms the beacon
size is set to 124 bytes; while it is set to 24 bytes for the Dynamic,
Dynamic*, and Dynamic_f algorithms.

All the dynamic algorithms require the same amount of signal-
ing. Furthermore, we assumed that the coordinator uses the max-
imum modulation level to broadcast the preamble. In our sim-
ulation settings, the listening-duration y =0.000128 ms and the
sleep-duration & = tpreqmple — v For the Ce and Cs values described
in Section 3, we have used 15 x 1072 and 12 x 109 J, respec-
tively, and by, = 2, bmax = 8, after [7,38]. All the simulation results
are presented at 95% confidence level. In all the plots presented,
the energy consumption values of various schemes are normalized
with respect to the energy consumption of Static at load = 1.0.

7.1. Analysis of the ideal case

In this section we evaluate the proposed algorithms’ ideal case
performances. In ideal case, we assume that the nodes have exact
knowledge about the time at which they need to wake up, in ad-
vance. The static algorithms can incorporate this information in the
beacon message. For dynamic algorithms we assumed the same
beacon message structure. Obviously in this ideal case, the need
for low-power listening disappears. Still, we believe the analysis of
this case reveals some important patterns because it yields the up-
per bounds on the energy savings that each algorithm can provide
with zero-overhead low-power listening.

Fig. 8 shows the normalized energy consumption of the pro-
posed algorithms. We observe that on higher load values, the Dy-
namic, Dynamic*, and Dynamic_f algorithms give significant energy
savings compared to Static and Static* algorithms. Moreover, Dy-
namic and Dynamic* perform better than Dynamic_f. However, at
lower load values, the dynamic algorithms provide only limited

gains; this is because even the static algorithms are able to assign
low modulation levels when the system has ample time to finish
the workload.

It is observed that the energy consumption is minimized for
the load value 0.625. For the load values smaller than 0.625 the
sleeping energy consumption becomes dominant and for the load
values greater than 0.625 the transmission and reception energy
consumptions become dominant.

7.2. Analysis of the effect of traditional LPL with no interference

In this section, we will show the effect of low-power listen-
ing on the proposed algorithms. The ideal case where the nodes
know exactly when the previously scheduled node stops trans-
mitting cannot be implemented in real-life scenarios. The nodes
need to listen for a preamble from the coordinator to see when
they can start transmitting. One possibility is to use the tradi-
tional low-power listening (without the HLPL enhancement de-
scribed in Section 4) and our results in this section consider this
case, by further assuming that the cross-node interference is neg-
ligible. In Section 7.3, we will re-analyze these settings within the
HLPL framework by considering the impact of the interference.

Fig. 9a shows the normalized energy consumption of greedy
low-power listening enabled algorithms. The compared algorithms
are greedy in the sense that they use traditional low-power lis-
tening with the wait-duration § set to zero. We need to recall
that only Dynamic, Dynamic*, and Dynamic_f require low-power lis-
tening. The remaining algorithms have pre-determined wake-up
times. We can see that the dynamic algorithms perform poorly
compared to static algorithms when load < 0.6. This is due to the
fact that for lightly loaded systems, the gain from dynamic recla-
mation of the slack times is offset by the additional energy con-
sumption due to energy overhead of traditional low-power lis-
tening activity. The dynamic algorithms’ energy performance im-
proves only when load approaches and exceeds 0.6 (this thresh-
old is slightly larger for dynamic_f) - this is when the overhead of
low-power listening (necessary to implement the reclaiming mech-
anism) becomes reasonably low compared to the gains of adaptive
modulation downscaling at run-time. We also observe the energy
consumption gap between dynamic algorithms becomes more sig-
nificant where Dynamic and Dynamic* performs very closely and
outperforms Dynamic_f.

Another possibility for the implementation of the traditional
low-power listening in these settings is to have each node wait for
a time duration & equal to the expected time needed for the comple-
tion of the packet transmissions by the previous nodes. The idea is to
take advantage of the known probability distribution. Rather than
letting nodes start low-power listening as soon as the collision-
avoidance-period starts, the nodes calculate the expected number
of packets that will be transmitted by the previously scheduled
nodes based on the known probability distribution function. We
call this scheme smart-LPL. The expected-number-of-packets before
node; can start to transmit is Y"j_ 3", pi() x I. The scheduling
order is embedded into the beacon message. Two observations are
in order here: i) if the node starts low-power listening before its
actual turn then the node spends more energy for low-power lis-
tening but does not miss any of its slack time. However, if the node
wakes up after its turn starts then the node loses some portion of
the given slack time (the node could not reduce its modulation lev-
els as much as it could have) but spends less energy on low power
listening. Hence, there is a trade-off between the gain from low-
power listening and loss from smaller slack times. ii) The modula-
tion level assumed in the calculation of the expected-wait-time for
the previous nodes is another critical variable. The nodes know the
expected number of packets to be sent before their turn, but they
do not know what modulation levels have been used by the pre-
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Fig. 9. Simulation results with no interference. We assume each node node only hears the coordinator and none of its neighbors. Hence, the neighborhood problem described

in Section 4 hypothetically does not exist in this settings.

vious nodes (they cannot accurately map the expected number of
packets to the expected amount of waiting time). In our simulation
settings, we have used the modulation level calculated by Static to
compute the expected-wait-time values.

Fig. 9b illustrates the normalized energy consumptions with
smart-LPL. Our analysis reveals that with smart-LPL, the energy
consumption of the dynamic algorithms is reduced compared to
the greedy-LPL case. One important observation here is the effect
of low-power listening on the dynamic algorithms. The increased
gap between dynamic algorithms observed in Fig. 9a becomes less
significant in Fig. 9b. This is a result of two factors: i) shorter GTS
slots mean longer duration to listen for a preamble and hence lead
to higher overhead caused by low-power listening; ii) For the case
shown in Fig. 9b, the expected-wait-time values are calculated us-
ing the modulation level given by the Static algorithm. However,
higher ideal case performance implies that the previously sched-
uled nodes have used smaller modulation levels than initially com-
puted. This leads to less accuracy in predicting expected-wait-time
and as a result, a longer duration for traditional low-power listen-
ing. This is a crucial result that shows how dynamic modulation
levels can affect low-power listening and becomes one of the fun-
damental reasons necessitating the use of HLPL protocol.

7.3. Analysis of the impact of neighborhood/interference

In this section, our aim is to evaluate the effect of neighbor-
hood/interference on traditional low-power listening and also in-
clude our newly proposed HLPL in the comparison. In real settings
when a node wakes up to check for a preamble, it has to listen to
its neighbors’ communications to make sure that the communica-
tion it is sensing is not a preamble. In order for a node to make
sure that it is not receiving a preamble, it may need to listen the
channel for up to two preamble transmission times as shown in
Fig. 4.

Fig. 10a shows the normalized energy consumption with tra-
ditional low-power listening and possible interference. A striking
observation is the significantly increased energy consumption of
the dynamic algorithms for most of the spectrum, due to the pro-
hibitive energy consumption of false alerts induced by the interfer-
ence due to the naive application of the traditional low-power lis-
tening framework. In this case, the nodes receive false alerts from

their neighbors and they need to verify the content of these trans-
missions. The length of preamble message is 14-byte long whereas
the MTU of 802.15.4 is 127 bytes. This indicates that even for a
single packet with the highest modulation level, the node has to
consume an additional energy of listening up to 2/3 of a packet
(which is 84 bytes) to see if there is or there is not a preamble ad-
dressed to itself. In a neighborhood of size 4, this may create and
additional overhead up to 26 packets per node as can be seen from
Fig. 10a.

The overhead created by the interference also depends on the
values used for sleep-duration and preamble size. In our simu-
lations, we have observed that larger sleep-duration values tend
to decrease the overhead induced by the interference. However,
longer sleep-duration has other consequences such as longer su-
perframe lengths and larger losses in the available slack times. In
order to ensure the deadlines, we have to account for the maxi-
mum time a node can miss before it hears a preamble. This maxi-
mum time needs to be added to the minimum feasible superframe
length to ensure the feasibility of the system.

Some optimal values of preamble length and sleep-duration val-
ues that will minimize this overhead may exist. However, we be-
lieve even this minimized overhead will still be undesirable es-
pecially for lower utilization factors where offline algorithms per-
form well. Finding this minimized overhead value is left as a future
work.

Fig. 10b shows the simulation results obtained after adopting
greedy-HLPL. Comparing to Fig. 10a, one can see the drastic energy
savings provided by the greedy-HLPL. Dynamic and Dynamic* out-
perform the Static algorithm for load values higher than 0.52. For
load value 0.6 and higher, we observe that Dynamic and Dynamic*
have less energy consumption than Static*. Dynamic_f outperforms
Static* for load values roughly after 0.91. If we compare Fig. 10b
with Fig. 9a, we can see that the performance of Dynamic and
Dynamic* algorithms in the presence of interference is rather close
to the one in the no-interference case where Dynamic_f results
in a more significant increase. Fig. 10c shows the normalized en-
ergy consumption of smart-HLPL when wait-duration is equal to
expected-wait-time. This case further reduces the overall energy
consumption of dynamic algorithms. In this case, Dynamic out-
performs the static algorithms for load values roughly larger than
0.45.
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Fig. 11. Energy consumption of smart-HLPL with different probability distribution functions.

As can be seen, HLPL successfully addresses the neighbor-
hood/interference problems and yields significant energy savings.
Finally, the comparison of Fig. 8 with Fig. 10c shows that the re-
sults of HLPL are reasonably close to the ideal case, showing the
potential of the framework.

7.4. Effect of different probability distribution functions

All the results presented so far were obtained under Uniform
probability distribution for the packet workload. We have also
repeated all the simulations with Normal Distribution (with the
mean u =5 and standard deviation o = 2), Pareto and Flipped-
Pareto distributions (with the shape parameter k = 10, scale pa-
rameter o = 3, and threshold value 6 = 13—0).

An important difference is in terms of the average energy
consumption under different distributions. Our simulation results
show that the Pareto distribution has the lowest average energy
consumption followed by Normal, Uniform, and Flipped-Pareto dis-
tributions. This is expected due to the fact that each distribution
function has different expected workload figures which are 3.22,
5.04, 5.5, 7.78 for Pareto, Normal, Uniform, and Flipped-Pareto dis-
tributions, respectively.

Fig. 11 shows the energy consumptions for different probabil-
ity distributions. We can draw several conclusions: i) Distribution

functions have limited impact on the results presented in previ-
ous sections; the ordering of the algorithms is still the same for
each of the tested probability distribution functions. ii) For all the
cases analyzed in previous sections: the gap between the average
energy consumption values of the algorithms got smaller for the
Pareto distribution case. The dynamic algorithms have performed
very close for these load values greater than 0.5. Fewer number
of packets led to limited difference in transmission energy con-
sumption. For similar reasons, this gap became larger for Flipped-
Pareto distribution function. We can say that when the nodes have
higher workloads, the performance gaps between dynamic algo-
rithms get larger and for the cases where the nodes have lower
workloads, the gap between Dynamic_f and Dynamic* as well as
the gap between Dynamic* and Dynamic get smaller. iii) In the
Pareto distribution case, Dynamic, Dynamic* and Dynamic_f out-
performed Static* for the load value roughly 0.5. These values are
slightly lower than the results presented in previous sections.

7.5. Analysis of scalability

We have analyzed the scalability of HLPL in terms of number of
nodes, and number of packets. When assessing the impact of the
number of nodes, we conducted simulations with 1 to 20 nodes
each with uniformly distributed workload of 10 packets. When
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Fig. 13. Scalability in terms of the worst-case number of packets.

evaluating the impact of the worst-case number of packets, we as-
sumed 10 nodes with uniformly distributed 1-20 packets of prob-
abilistic workload. Figs. 12 and 13 show the scalability in terms
of number of nodes and packets. The linear regression analysis
shows that for all of the scheduling algorithms except Dynamic and
Dynamic* in Fig. 13a and b, the average energy consumption grows
linearly with respect to number of nodes and number of packets
where each of the regression analysis had an R-squared value of
0.96 or higher. For the mentioned Dynamic and Dynamic* results,
a 6th degree polynomial regression had R-squares value of 9.95 or
higher. The general ordering of the algorithms has not changed in
terms of number of nodes. However, we observed that Static* out-
performs Dynamic_f for 14 packet workloads.

7.6. Impact of radio hardware variations

In this section we will discuss the effect of different values of
radio power consumption. We first ran a series of experiments
with sleeping-power consumption of 0 mW and 3 mW. In the
previously reported results, this value was set to 1.4 mW. Fig. 14
shows the effect of sleep power consumption with 10 nodes, max-
imum of 10 packets workload with uniform distribution. Fig. 14a
corresponds to the ideal case (described in Section 7.1) with sleep
power consumption assumed to be zero. Here, we observe a strict
increase in energy consumption with increasing load value. This
result is different than the one shown in Fig. 8 which has the
minimum energy consumption at the load value of 0.625. This is

because lower load values mean longer superframe duration and
hence increased energy consumption from sleeping. When we take
sleeping energy consumption out of the equation (recall that ideal
case does not require low-power-listening), higher load values re-
sults in strictly higher energy consumption due to higher modula-
tion levels. Fig. 14b shows the energy consumption with greedy-
HLPL when sleep power consumption is set to 0. Comparing this
with Fig. 10b, we see the energy consumption gap between the
highest and the lowest load levels increases. Fig. 14c shows the
case where sleep power consumption is set to 3mW. The lowest
load level results in the highest energy consumption except for
Static. For the other algorithms, the sleeping energy consumption
is higher than the energy savings from using lower modulation
levels. This case also shows that the Dynamic and Dynamic* out-
performs static algorithms for every load value which further em-
phasizes the effectiveness of HLPL.

Next, we experimented with the CC2420 based power con-
sumption values. The results are presented in Fig. 15. CC2420 only
has a single modulation level of 4, which consumes 62 mW. If we
assume the same exponential increase of initial test values, the
transmission/reception power consumption can be estimated to be
15, 31, 62, 124, 248, 496, 992 mW for modulation levels 2, 3, 4, 5,
6, 7, 8 respectively. Fig. 15a shows the energy consumption results
for the greedy-HLPL. These settings shows using Static* consumes
less energy for every load value hence, the best option. This is due
to the very expensive clear channel assessment performed by the
dynamic algorithms exceeding the energy savings from lowering
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Fig. 15. Energy consumption with CC2420 based power consumption settings.

modulation levels. However, Fig. 15b gives significantly different
results with smart-HLPL with only the lightest low-power-mode
called idle. In this mode, CC2420 turns off its frequency synthe-
sizer and draws 426 A of current. The results showed that dy-
namic and dynamic* outperforms static* for load values of 0.8 or
higher and dynamic_f does so for the load value of roughly 0.9.
Moreover, CC2420 has two more low-power-modes namely power
down and power off. In power down the crystal oscillator is turned
off in addition to frequency synthesizer and draws 20 w A of cur-
rent, and in power off the voltage regulator is also turned off with
a total of 0.02 w A current draw. It takes 0.6 ms to transition from
power off to power down and 1.0 ms from power down to idle. We
assumed that during these transitions there is a current draw equal
to the level with the higher current draw value. All the algorithms
are adjusted to consider all low-power-modes and put the nodes
into the deepest one wherever expected-wait-time exceeds the re-
spective break-even point. The results shown in Fig. 15c indicate a
significant improvement. The dynamic algorithms outperform the
static ones for the load value of roughly 0.4 and greater. This fur-
ther shows the benefits of smart-HLPL.

8. Conclusions

This paper addressed the problem of ensuring real-time guaran-
tees while minimizing the overall energy consumption in wireless
sensor networks. We focused on cluster-oriented superframe com-
munication, the most widely adopted method for providing real-

time guarantees in industrial wireless networks. Using Dynamic
Modulation Scaling we studied static and dynamic algorithms for
reallocation of slack times in a superframe. We analyzed the ef-
fect of interference and dynamic modulation levels on low-power
listening. We also introduced a new low-power listening protocol
called hybrid-low-power listening (HLPL) in order to overcome the
interference problem caused by neighborhood. Using th Castalia
Simulator we empirically assessed the performance improvements
of DMS slack reclaiming and HLPL. Our experiments show that dy-
namic slot readjustment saves a significant amount of energy un-
der highly loaded systems. They also indicate that HLPL overcomes
the interference caused by other nodes in the cluster and signifi-
cantly reduces the overall energy consumption of the system.
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