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Abstract 
 

In this paper, we explore the feasibility and performance 
optimization problems for real-time systems that must remain 
functional during an operation/mission with a fixed, initial 
energy budget. We show that the feasibility problem is NP-
Hard in the context of systems with Dynamic Voltage Scaling 
(DVS) capability and discrete speed levels. Then, we focus 
on energy-constrained periodic task systems where the 
available energy budget is not sufficient to meet all the 
deadlines. We propose techniques to maximize the total 
number of deadlines met and the total reward (utility) while 
guaranteeing the completion of the mission and a minimum 
performance for each task. We consider separately: (i) 
systems with or without DVS capability, and (ii) off-line 
(static) and on-line (dynamic) solutions to select most 
valuable jobs for execution. We also discuss the tractability 
of the involved optimization problems. Our on-line 
algorithms combine job promotion, job demotion and speed 
reduction techniques to maximize the system performance 
while guaranteeing the completion of the mission.  We 
evaluate our schemes through simulations and show that the 
on-line schemes can yield significant performance 
improvements over static solutions.  
 
1. Introduction 
 

Traditionally, the feasibility problem - given a task and 
system model, determining whether it is possible to meet all 
the deadlines - has always had a central position in research 
on hard real-time (RT) systems [10,19]. Another line of 
research considers soft RT scheduling for overloaded 
systems: typically, researchers choose to trade-off the 
precision (such as imprecise computation [18] and reward-
based scheduling [2] approaches) or shed a part of the 
workload [7, 8, 9, 14,16] to provide timeliness guarantees to 
a subset of tasks or task instances deemed to be essential or 
more valuable. In [11], a framework that adjusts the rates for 
tasks in overloaded RT applications is presented.  

Recently, we have observed extensive research activity 
on Power/Energy management with the proliferation of 
wireless, portable and embedded devices. Of particular 
interest to RT system research is the Dynamic Voltage 
Scaling (DVS) technique, which consists in reducing the 
CPU supply voltage and the clock frequency (CPU speed) to 
obtain energy savings. Thus, many studies investigate ways 

to guarantee the feasibility in the presence of DVS for 
various task/system models and off-line/on-line scheduling 
algorithms [3, 4, 5, 6, 20, 23, 24].  

There exist also settings with a fundamentally different 
character: One can easily think of RT applications where the 
system, given a finite energy budget, has to remain 
functional for the entire duration of an operation/mission. In 
this case, the energy is obviously a hard constraint. Example 
applications include embedded control applications as well 
as military, space and disaster recovery missions requiring 
predictable RT system operation while not allowing battery 
re-charging until the end of the mission. If the system’s 
energy budget does not allow executing all the jobs, then 
there is the risk of losing functionality - with potential 
detrimental effects - in the middle of the mission while trying 
to meet each and every deadline [1]. Thus, it may be more 
preferable to skip a few jobs in a controlled fashion without 
affecting the stability of the system during the mission. As 
such, energy-constrained RT scheduling, with the objective 
of maximizing the system performance within the limits of 
available energy, is the topic of this study.  

We note that a number of recent research studies explored 
related problems. In [21], Rusu et al. considered the problem 
of maximizing the total reward in a system with fixed energy 
budget when all the tasks share a common deadline. They 
showed that the problem of maximizing the total reward is 
NP-Hard with DVS even for the case when all tasks have a 
common deadline. The same authors extended this 
framework to the periodic task case, focusing on re-
chargeable systems with DVS capability in [22]. They also 
presented a set of energy reclamation schemes that can be 
invoked only at hyperperiod/frame boundaries. Static 
scheduling of periodic tasks with continuous utility functions 
and fixed energy budget is explored in [15]. In [1], the static 
energy-constrained RT scheduling problem for systems 
without DVS capability is investigated.  
The main contributions of this paper are as follows:  
• We formally characterize energy-constrained RT systems 

and explore the nature of the feasibility problem in 
limited-energy settings. We show that the feasibility 
problem on systems with fixed energy budget and discrete 
speed levels is NP-Hard.  

• We consider separately the objectives of maximizing the 
total number of deadlines met and maximizing the total 
reward. We also show how to extend the framework to the 
case where some minimum performance guarantees must 



 

be provided for each task (in the form of a “minimum 
deadline meet ratio”).  

• We explore these performance optimization problems for 
systems both with and without DVS capability. 

• Although we include the discussion of static analysis, a 
focal point of this research is efficient and dynamic energy 
reclamation schemes for the common case where tasks 
complete early, without presenting their worst-case 
workload. We show how excess energy arising from early 
completions can be re-used by dynamically selecting jobs 
with an eye towards improving the performance of the 
system. For systems with multiple speeds, we extend the 
dynamic reclaiming algorithm (DRA) [3] to energy-
constrained settings, showing how dynamic energy 
harvesting through on-line speed reduction can provide 
additional improvements. Our reclaiming schemes are 
greedy, i.e. any slack time is put in re-use for speed 
reduction as soon as possible (at task 
completion/preemption  times). This is in contrast with the 
nature of dynamic schemes presented in [22], where the 
reclamation can occur only at hyperperiod/frame 
boundaries. We provide experimental evaluation of our 
schemes through simulations. Our results show that reward 
gains over static schemes can be as high as 70% for 
systems with DVS and as high as 30% for the ones 
without.  

 
2. System model and assumptions 
 
2.1. Power and energy consumption model 

 
We consider a single processor system that has to rely on 

battery power. In order to remain operational, the available 
energy must remain in a ‘safe range’ [Emin, Emax], where Emax 
denotes the maximum battery capacity and Emin indicates the 
minimum energy threshold below which the stable/safe 
operation is not guaranteed [22]. Thus the system has a 
limited energy budget Ebudget =Emax - Emin. Further, we assume 
that the system must remain operational in the time interval 
[0,X]; that is, the total CPU energy consumption should not 
exceed Ebudget for X time units  (in other words, the system is 
subject to a hard energy constraint). We refer to X as the 
mission time throughout the paper. Re-charging the battery is 
not possible or feasible during the mission.  

We consider systems with or without DVS capability. A 
system that does not support multiple speed or voltage levels 
can be either in normal (execution) mode or stand-by mode. 
In stand-by mode, the CPU does not execute any task, but 
consumes much less power. Systems with DVS capability 
can adjust their speed (frequency) and supply voltage when 
in normal mode. We assume that the DVS-enabled CPU can 
be in any of the m > 1 speed/frequency levels (or “modes”) 
denoted by S1, S2,…, Sm, where Si+1

 > Si. The speeds are 
normalized with respect to Sm

 , i.e. Sm =1.0. The power 
consumption with speed Si is denoted by gi; similarly, gstb 
indicates the power consumption in stand-by mode. Finally, 
in any time interval [t1,t2], the total energy consumption is: 
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where ti  and tstb denote the total time the CPU speed is Si and 
the system is in stand-by mode, respectively.  

In current DVS-enabled systems, it is not always possible 
to find a speed level that exactly corresponds to a desired 
target speed assignment (often obtained assuming a 
continuous speed spectrum). We will use the notation HS(S) 
for the quantity min(Si|Si ≥ S); informally, HS(S) denotes the 
lowest speed level available in the system that is equal to or 
greater than a target speed S. Similarly LS(S) will denote the 
highest speed level available in the system that does not 
exceed a target speed S; formally LS(S) = max(Si| Si ≤ S).  

 
2.2. Task model 

 
We consider a set of n periodic tasks T = {T1, T2,…, Tn}. 

Each task Ti has a period Pi which is equal to the relative 
deadline of each instance (job) Tij. The worst-case execution 
time of task Ti with speed Sk is denoted by Ci

k (we will omit 
the superscript and use notation Ci instead of Ci

1 for systems 
without DVS capability). Preemption is allowed; the 
preemption and the speed change overhead can be 
incorporated in Ci

k if necessary. We adopt the Earliest-
Deadline-First (EDF) scheduling policy which is known to 
be optimal from the feasibility point of view [17]. The 
emphasis of this paper is to study the feasibility and 
performance maximization problems in the context of 
energy-constrained systems (with limited CPU energy 
budget). Therefore, we assume that the task set would be 
feasible (schedulable) with a sufficient energy budget when 
the CPU speed is maximum (i.e.  ∑i Ci

m/Pi ≤ 1).  
 

3. Energy-constrained real-time scheduling 
 
In this section, we introduce the concept of energy-

constrained RT systems, explore feasibility conditions, and 
present the performance metrics and our general approach.  

Given an RT system that must remain operational during 
the mission interval [0,X], the natural question to ask is 
whether all deadlines can be met within the limited energy 
budget. To answer this question, it is necessary to know the 
minimum amount of CPU energy needed to complete all the 
tasks before their deadlines while sustaining the system’s 
operation until the end of the mission. We refer to this 
threshold energy as Ebound in the remainder of the paper.  

Definition 1. A real-time system is energy-constrained if 
Ebudget < Ebound. 

If the system is energy-constrained, then trying to execute 
all the jobs may result in a situation where the system runs 
out of energy in the middle of the mission with potentially 
detrimental effects (see [1] for an illustrative example). Thus, 
the aim should be to provide maximum predictability or 
utility while sustaining the system operation until the end of 
the mission.  



 

The computation of Ebound for systems without DVS 
capability and those with continuous speed spectrum can be 
performed efficiently (see below). Once Ebound is computed, 
then it can be compared against Ebudget to check if the system 
is energy-constrained or not.  

If the system does not support DVS, then all tasks must 
be executed with the only available speed (S1). The system 
can switch to stand-by mode when there are no ready tasks, 
thus we have: 
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where α is the set of all task instances with deadlines smaller 
than or equal to X.  

Assuming an  ideal DVS architecture where the speed can 
be varied over a continuous spectrum, the optimal speed 
assignments while preserving the feasibility can be computed 
in polynomial-time for both aperiodic [24] and periodic [3] 
task models. In particular, the optimal CPU speed for 
periodic model is constant across all the tasks and is equal to 
the utilization value, Uv (see [3, 20]). Using this result, one 
can easily compute Ebound by a formula similar to (2), 
assuming that the power/speed relationship is known.  

Unfortunately, the feasibility problem for a system with 
limited energy and discrete speed levels is intractable.  

Theorem 1. The problem of deciding whether it is possible 
to meet all the deadlines of a set of real-time tasks within a 
limited energy budget is NP-Hard for a DVS-enabled CPU 
with discrete speed levels. 
Proof: See Appendix A. 
  
Corollary: Deciding if a task set is energy-constrained is 
NP-Hard.  
Remark 1:  The proof shows that the problem is intractable 
for the simple case of tasks sharing a common deadline; thus 
it is valid for both aperiodic and periodic task models.  
Remark 2:  Although the problem is NP-Hard in the general 
case, some instances can be decided easily.  In the periodic 
task model, if Ebudget is smaller than the energy needed to 
execute all the tasks with speed LS(Uv), then the system is  
energy-constrained since some deadlines will be definitely 
missed. Conversely, if Ebudget is greater than the energy 
needed to execute all the tasks with the speed HS(Uv), then 
all tasks can complete without violating the energy bound.  

 
Since the problem of deciding if a system is energy-

constrained (consequently, computing Ebound) is intractable, 
we adopt a conservative (but safe) approach for periodic 
tasks; we take Ebound to be the energy required to execute all 
the tasks at the speed S=HS(Uv). Recall that this represents 
the lowest speed available in the system that is greater than 
or equal to the optimal continuous speed.  

In the remainder of this paper, we focus on the problem 
of maximizing system performance in energy-constrained 
settings (where Ebudget < Ebound).  

 
 
 
 

 

3.1. Performance objectives  
 
We propose two metrics to maximize the performance in 

energy-constrained settings: 
• Objective O1 − maximize the total number of deadlines 

met during the mission without exceeding the energy 
budget.  

• Objective O2 − maximize the total system reward during 
the mission without exceeding the energy budget. In this 
objective we account for the fact that some tasks may be 
more important than others. To this aim, we associate with 
each task Ti a weight (reward) wi that signifies its 
importance. An instance of task Ti contributes wi units to 
the total system reward only if it completes by its 
deadline. 

 
Some applications may require that a minimum number 

of instances of each task be successfully completed during 
the mission time, for the whole system to function properly. 
Maximizing system performance without observing this 
constraint cannot provide such a guarantee, since all 
instances of a task with small weight may be skipped all 
together. To this aim, we may associate with each task Ti a 
minimum deadline meet ratio Mi. We require that ni /Ni ≥ 
Mi, where ni is the number of instances of task Ti that 
complete by their deadlines in [0,X] and Ni =  X / Pi  is the 
number of all the instances of the same task whose deadlines 
lie within the same interval. We refer to the actual instances 
selected to meet this minimum requirement as mandatory 
jobs and refer to all the remaining jobs as optional jobs. If 
the application at hand imposes such a constraint, then the 
goal would be to maximize system performance, in the 
context of objective O1 or O2, while providing a minimum 
performance guarantee for each task.  
 
3.2. Our approach 

 
If the system is energy-constrained, then the task 

instances to be executed must be carefully selected in order 
to make best use of available energy. This selection process 
is guided by the performance metric under consideration for 
either objective O1 or O2. To this aim, we use a job selection 
phase in which each task instance (job) is labeled as skipped 
or selected. The selection process considers the parameters 
of the task set, as well as available energy and mission time.   
We associate with each job Tij a label Lij, where Lij = 0 
indicates that the job is skipped and Lij = 1 indicates that it is 
selected for execution. At run-time, only jobs whose labels 
are set to “selected” are dispatched. Thus, the problem 
becomes choosing the job labels for each performance 
objective (O1 or O2) while making sure that the energy 
budget is not exceeded.  Note that the labeling of jobs can be 
performed in static or dynamic fashion. In systems with 
DVS, another major component of the problem is to 
determine the speed assignments of selected jobs.  

 



 

4. Solutions to energy-constrained 
performance optimization problems 

 
4.1. Classification of energy-constrained RT 
scheduling algorithms 

 
In general, it is possible to classify energy-constrained 

RT scheduling algorithms depending on the on-line/off-line 
nature of the solution and the workload information used by 
the scheduler. 
• Off-line (Static) schemes select task instances before the 

mission starts and, thus, cannot adjust if the actual 
workload deviates from the expected one. On-line 
(Dynamic) schemes, on the other hand, start with an initial 
schedule generated off-line, and  later adjust it on-line by, 
for example, selecting more jobs when excess energy 
becomes available or unselecting some jobs if the system 
is running short on energy. 

• Conservative schemes only have knowledge about worst-
case workload and, hence, allocate the energy budget to 
selected jobs based on worst-case execution times. On the 
other hand, aggressive schemes have the additional 
knowledge of expected workload and, hence, allocate the 
energy budget to selected jobs based on average-case 
execution times. Finally, speculative schemes, while not 
having the information about expected workload, try to 
estimate it dynamically by monitoring actual workload. 
By virtue of their nature, aggressive and speculative 
schemes are on-line schemes. 
Note that an off-line scheme can only be conservative 

because it must guarantee the completion of the mission even 
under the worst-case scenario.  Based on the above 
classification, we identified the following generic schemes: 

  
1. Off-line conservative scheme (OFC) is an off-line job 

selection scheme that allocates available energy budget to 
tasks based on their worst-case execution requirements. 
This scheme was the focus of the study in [1]. 

2. On-line conservative scheme (ONC) is an on-line job 
selection scheme that allocates available energy budget to 
tasks based on their worst-case execution requirements. It 
also promotes jobs on-line (by re-labeling some skipped 
jobs as selected) if there is excess energy, thus trying to 
improve system reward at the expense of slightly 
increased overhead. 

3. On-line aggressive scheme (ONA) is an on-line job 
selection scheme that allocates available energy budget to 
tasks based on their expected execution requirements.  

4. On-line speculative scheme (ONS) is an on-line job 
selection scheme that estimates average-case 
requirements of tasks by monitoring actual workload, and 
allocates energy accordingly.  

 
We underline that: 
• The specifics of the schemes above differ for systems with 

or without DVS capability. We elaborate on the details of 
these in Sections 4.2 and 4.3. 

• Both aggressive and speculative schemes risk running out 
of energy before the end of the mission if (most of the) 
tasks present their worst-case workload as opposed to the 
expected (average-case) workload. To ensure that the 
system remains functional throughout the mission, our on-
line aggressive and speculative schemes -before 
dispatching a selected job- check whether the system has 
enough energy to remain operational until the end of the 
mission if this job were to present its worst-case workload. 
We execute the job only if this condition is satisfied; 
otherwise the job is skipped (dynamically “demoted”).  

 
 
4.2. Solutions for systems without DVS capability 
 
4.2.1. Off-line conservative scheme (OFC) for systems 
without DVS 

 
In [1], we explored in detail the energy-constrained RT 

scheduling algorithms assuming off-line settings and a 
scheduler having only the worst-case workload information. 
In other words, [1] presented the details of the OFC scheme 
for systems without DVS capability. Below we summarize 
the main results of [1], since it forms the basis for extended 
solutions discussed in the remaining part of this study.   

The generic job selection framework that we proposed in 
[1] for energy-constrained real-time systems includes the 
following major steps: 
• For each task Ti, calculate first the total number of 

instances Ni whose deadlines are smaller than or equal to X 
(Ni =  X / Pi  ).  

• Set aside enough energy to sustain the system throughout 
the mission and to execute the mandatory jobs required to 
meet the minimum deadline meet ratio, if any. 

• Invoke an auxiliary optimization module OM, which can 
be an optimal algorithm or a heuristic, to decide on the 
total number of instances ni to be executed for each task Ti 
in interval [0,X] to achieve the given objective, without 
exceeding the energy budget. This is the only module that 
needs to be modified if the performance objective changes.  

• Finally, determine specific instances to be actually 
scheduled using an additional labeling criterion. In other 
words, determine the label Lij (selected or skipped) for 
each job.  

Now we discuss the details of OFC scheme for each of the 
performance objectives O1 and O2. 
• Objective O1: maximize total number of deadlines met 

In [1], we showed that, in the absence of DVS, the 
problem of maximizing the total number of deadlines met 
during the mission time without exceeding the energy budget 
can be solved optimally and efficiently. We presented an 
optimal policy, which we refer to as Favor Shortest Job 
(FSJ). FSJ uses an optimization module OM that first orders 
tasks according to worst-case execution time per instance Ci, 
and then chooses for execution the maximum possible 
number of instances of tasks with shortest execution times 
until Ebudget is exhausted. Its overall complexity is O(n log n). 



 

Theorem 2. (from [1]) FSJ is optimal for the problem of 
maximizing the number of deadlines met. 

• Objective O2: maximize total system reward 
 
In [1] we also showed that, in the absence of DVS, the 

problem of maximizing total system reward during the 
mission time without exceeding the energy budget when 
tasks have different weights (which we refer to as the 
problem REWARD) is intractable.  

Theorem 3. (from [1]) REWARD is NP-Hard. 

In [1], we presented a number of fast and greedy 
heuristics for REWARD that give preference to tasks that 
have higher values of a specific (combination of) task 
parameter(s) such as execution time, period, and weight. We 
showed through simulation results that the best performing 
heuristic is the one that favors jobs with larger reward 
density values wi/Ci (i.e. jobs with larger reward and shorter 
execution time). We refer to this heuristic as LRD (Larger 
Reward Density). 

An implicit assumption of the work in [1] is that tasks 
always present their worst-case execution times.  However, 
actual workloads in real-time systems exhibit large 
variability. This implies that using on-line schemes to 
reclaim excess energy can increase the system reward 
significantly.  Now we show how to extend the work in [1] to 
incorporate a number of reclamation schemes, based on the 
on-line schemes discussed in Section 4.1. All of these 
schemes use LRD as the optimization module. 

 
4.2.2. On-line solutions for systems without DVS 

 
  As an initial step, our on-line schemes reserve enough 
energy to sustain the system throughout the mission, and to 
execute the mandatory jobs required to meet the minimum 
deadline meet ratio, if any, for each task. To guarantee that 
mandatory jobs are successfully completed, the selection 
framework allocates enough energy to execute these jobs 
under worst-case workload, even for aggressive and 
speculative schemes. The selection scheme then uses the 
optimization module OM, FSJ for O1 and LRD for O2, to 
select additional (optional) jobs to be executed during the 
mission to achieve the performance objective under 
consideration. Thus, we have an initial static schedule 
comprising, potentially, both mandatory and optional jobs. 

When the mission starts, the static schedule is used as an 
initial schedule, which is adjusted on-line if the actual 
workload deviates from the expected one. We refer to the on-
line adjustment of the static schedule as reclamation. To 
perform reclamation we keep track of the cumulative 
difference between expected energy consumption and actual 
one at task completions. For systems without DVS, 
reclamation can take two forms: either job promotion or job 
demotion. Job promotion occurs if there is excess energy due 
to some jobs completing early. In this case we re-invoke the 
optimization module OM to try to select additional (optional) 
future jobs, if any, for execution using the excess energy 
available. Note that OM can potentially be re-invoked at each 
task completion point to greedily re-use excess energy. The 

associated overhead of this process is O(n)  (recall that both 
LRD and FSJ are efficient algorithms) and it has the 
potential of significantly increasing total system reward, as 
we show in Section 5. Job demotion, on the other hand, 
occurs when the actual aggregate energy consumption is 
higher than the expected one (due to some jobs running 
longer than their expected execution times), in which case 
the system may become unstable before the end of the 
mission. To avoid this scenario, we unselect jobs to save 
energy for safe completion of the mission. Job demotion 
applies only to aggressive and speculative schemes. The 
details of the reclamation process depend on specific 
schemes and are discussed below.  
 
• ONC for non-DVS systems 

When invoking OM, ONC uses worst-case task execution 
times (since it assumes that average-case information is 
not available) to allocate the energy budget to selected 
optional jobs. It uses job promotion, but does not need to 
use job demotion because of its conservative nature. 

• ONA for non-DVS systems 
ONA uses average-case task execution times when 
invoking OM. It uses both job promotion and job 
demotion. 

• ONS for non-DVS systems 
ONS invokes OM with worst-case task   execution times 
when generating the static schedule. However, at run-
time it estimates the expected execution time of each task 
using the well-known exponential averaging formula: 
PETn+1 = 0.5(AETn + PETn), where PETn is the predicted 
execution time of the nth instance of a given task and 
AETn its actual execution time. When invoking OM for 
job promotion, ONS uses the most recent predicted 
execution time for each task. It also uses job demotion to 
ensure mission completion, if necessary. 

  
4.3. Solutions for systems with DVS capability 

 
The DVS capability provides additional opportunities to 

save energy through CPU speed adjustment. However, it also 
makes the problem of energy-constrained RT scheduling  
harder; since, in addition to carefully selecting jobs to 
achieve the performance objective, one also needs to 
determine the speed(s) at which the selected jobs will run. 
Achieving objective O2 with DVS (which we refer to as 
DVS-O2) is NP-Hard for static settings as Rusu et al. proved 
in [22]. We show below that even achieving the (seemingly) 
easier objective O1 in the presence of DVS capability (which 
we refer to as DVS-O1) is intractable. 

Theorem 4. DVS-O1 is NP-Hard. 

Proof: Follows from Theorem 1: If it were possible to 
maximize the number of tasks that meet their deadlines in 
polynomial-time on a CPU with multiple speed levels, then 
the feasibility problem would admit an efficient solution. ■ 
 
 
 
 



 

4.3.1. Static solution for systems with DVS  
 
Since the problem with either of the objectives O1 and 

O2 is NP-Hard, we present a general solution that applies to 
both. Just as in the case where DVS is not available, we 
construct an initial set of ’selected’ jobs (thus, a schedule) in 
off-line fashion before the mission starts. However, we 
impose a rigorous structure on this simple schedule allowing 
us to perform reclamation aggressively, and enhance the 
performance.  

 In [3], Aydin et al. address the problem of minimizing 
energy consumption using DVS while meeting all the 
deadlines of a periodic task set. They adopt a continuous 
CPU speed spectrum and  EDF scheduling policy. They 
show that the optimal speed S' that minimizes energy 
consumption, in these settings, is constant for all tasks and 
equal to the task set’s utilization Uv under maximum CPU 
speed. In static optimal schedule, all the tasks run with 
constant speed S' and present their worst-case workload, 
meeting their deadlines.  

We chose to adapt this static solution to our settings 
because it enables us to perform CPU-time reclamation 
greedily and efficiently. We denote the schedule produced by 
our static solution by Γnom. To obtain Γnom we start with a 
temporary schedule Γ0 in which all instances of all tasks are 
selected and run at exactly the same speed Snom, which we 
refer to as the nominal speed,  set to Snom = HS(S'). Γ0 is a 
feasible schedule and it minimizes the energy consumption, 
but it does not necessarily meet the energy constraint. We 
use Γ0 to obtain a schedule Γnom that meets the energy 
constraint. To this aim, we invoke the optimization module 
OM to select a set of jobs that achieves the performance 
objective while meeting the energy constraint; only these 
jobs are labeled as selected and all the others are labeled as 
skipped.  All the selected jobs in Γnom run at the speed Snom 
exactly as in Γ0. The selected jobs in Γnom meet their 
deadlines since Γnom is obtained by eliminating some jobs 
from Γ0, which is feasible in hard RT sense. It also meets the 
energy constraint since the job selection is done using OM, 
which never exceeds the energy budget, by definition.  The 
job selection schemes we discussed in Section 4.1 are still 
applicable in this context.  

The schedule Γnom is not optimal. In fact, computing the 
optimal solution is NP-Hard (Theorem 4). On the other hand, 
computing the total number of selected instances for all the 
tasks has a complexity of O(n log n) (the dominant term 
coming from the initial task sorting).. The simple structure of 
Γnom makes it possible to perform reclamation greedily 
during the mission at every task completion/preemption 
point, without compromising the deadlines of selected tasks 
(unlike the work in [22] where reclamation occurs only at 
hyperperiod/frame boundaries).   

 
4.3.2. Principles of dynamic adjustment      

 
For systems without DVS, we presented two forms of 

reclamation, namely job promotion and job demotion. Both 
techniques are still applicable to systems with DVS. In 
addition, we can also have CPU-time reclamation through 

dynamic speed reduction. When tasks complete early, we 
have some slack time that can be used to further increase the 
excess energy by reducing the execution speeds of some 
subsequent jobs (as long as this does not compromise the 
deadlines of already selected tasks). By reducing the 
execution speed of a job, we also reduce its energy 
consumption due to the convex nature of the relation 
between power and speed.  

In [3], Aydin et al. propose a dynamic speed reduction 
scheme for periodic tasks assuming continuous speed 
spectrum. They refer to this scheme as Dynamic Reclaiming 
Algorithm (DRA). We adapt DRA to energy-constrained RT 
systems and to the case of discrete speeds.  The extended 
scheme adds dynamic speed reduction to job promotion and 
demotion. We summarize below the principles of DRA and 
how it is extended in our solution.  

DRA starts with a static optimal schedule where each job 
presents its worst-case execution time. In this schedule, all 
jobs run at the same speed, namely the nominal speed Uv, 
which minimizes the energy assuming continuous speed 
without affecting feasibility. DRA computes the amount of 
CPU time that each job can safely use to slow down its 
execution at dispatch time. This additional CPU time is 
referred to as the earliness. The gist of the scheme is how to 
calculate the earliness without affecting feasibility. Since it 
is impractical to produce the entire schedule a priori, DRA 
uses a data structure called the α-queue. The α-queue is 
effectively the ready queue of the static optimal schedule. 
The formula for calculating the earliness as well as the 
details of the DRA are given in [3, 5]. 

Our solution is based on DRA with the following 
extensions: We start with Γnom as the initial (static) schedule.  
However, at any time, the α-queue reflects the ready queue 
of Γ0 which is a feasible schedule that approximates the static 
optimal schedule with continuous speed, assuming sufficient 
energy.  At dispatch time, the CPU speed is reduced by 
computing the earliness with respect to Γ0.  Note that the 
skipped jobs of Γnom can be considered as the jobs in Γ0 with 
zero actual execution time, enabling us to further reduce the 
speed.  Based on this earliness amount, we determine the 
lowest speed that still guarantees the deadlines of already 
selected jobs (through HS(.) function) for the dispatched job. 
By running at a lower speed we further increase excess 
energy that can later be used for job promotion. The speed 
reduction helps job promotion and is not an alternative to 
it (because Γ0 is feasible in hard RT sense). When a job is 
promoted, its initial speed is always Snom. The fact that all the 
deadlines of selected tasks are met  follows from (i) the 
feasibility of DRA (proved in [3]), and (ii) the fact that the  
selected jobs run at a speed that does not exceed Snom at all 
times, consequently ensuring a workload that does not 
exceed the one in the static schedule Γnom.  

 
4.3.3. On-line solutions for systems with DVS 

 
Three reclamation and task selection schemes ONC, 

ONA and ONS are still applicable to DVS settings. Just as in 
non-DVS settings, each scheme starts with an initial off-line 
schedule generated before the mission starts, which can later 



 

be modified on-line through reclamation. Moreover, each 
scheme still invokes an optimization module OM chosen 
depending on the performance objective of interest. The 
information with which OM is invoked for each module 
depends on whether it is conservative (uses worst-case 
workload information), aggressive (uses average-case 
workload information), or speculative (estimates average-
case workload information). In addition, in DVS settings the 
CPU speeds of selected tasks are reduced whenever possible 
(see Section 4.3.2).  
 
5. Experimental evaluation 

 
In order to evaluate our schemes experimentally, we 
implemented a discrete-event simulator. We evaluated:  
• Off-line conservative scheme (OFC): the static solution 

that uses worst-case workload information, and does not 
perform any on-line adjustments.  

• On-line conservative scheme (ONC):  dynamically uses 
job promotion assuming worst-case workload. 

• On-line aggressive scheme (ONA) that makes use of its 
(additional) knowledge about average workload when 
selecting jobs.  

• On-line speculative scheme (ONS) that tries to estimate 
average-case workload by monitoring the actual workload, 
using both job promotion and demotion.   
All the schemes invoke the optimization module OM that 

is carefully chosen to maximize system performance subject 
to the performance objective of choice; we use FSJ as the 
optimization module for O1, while LRD is used for O2. The 
computational complexity of OM is O(n log n) at each 
invocation in both cases. We applied these schemes to 
systems with and without DVS. In both cases, we compared 
the performance of our proposed schemes to a clairvoyant 
optimal scheme, which we refer to as Bound, which has 
knowledge about the actual workload information. This 
scheme provides an upper bound on the performance of our 
schemes. In the absence of DVS, to implement Bound we 
use a clairvoyant optimal scheme that uses FSJ for O1 and an 
optimization module based on dynamic programming for O2. 
In the case of DVS, we use a clairvoyant scheme that 
provides an upper bound on the performance of the (real) 
optimal solution, since the latter is computationally too 
expensive. This scheme maximizes system reward without 
exceeding the energy budget; however it only ensures that 
the completion time of the total workload does not exceed 
the mission time without worrying about individual 
deadlines. Clearly, this scheme outperforms the optimal 
solution in terms of total reward and provides an even more 
optimistic performance bound.  

In our simulation experiments we measured the total 
system reward R as a function of three parameters:   
• System energy budget, Ebudget, represented as a percentage 

of the total energy required to meet all deadlines, Ebound . 
If the system has DVS capability, then Ebound is 
calculated assuming that all jobs run at the nominal speed 
(the lowest speed with which all deadlines can be met 
without considering energy budget) throughout the 
mission time. 

• Execution time ratio, ER, which is the ratio of best-case 
execution time to worst-case execution time that is taken 
to be the same for all tasks. ER represents the variability 
of the actual workload compared to the worst-case.  

• Total system utilization, U = ∑ Ci
m

 / Pi. Note that Ci
m = Ci 

if the system does not have DVS capability. 
We generated 100 generic task sets with 30 tasks each, 

and then for each task set we ran 1000 experiments to 
generate actual execution requirements for each task. We 
changed the above parameters over the following ranges: U 
ranged from 0.1 to 1.0 in increments of 0.1, Ebudget (as a 
percentage of Ebound) ranged from 10% to 100% in 
increments of 10%, ER ranged from 0.1 to 1.0 in increments 
of 0.1. Task periods were generated according to a uniform 
probability distribution. The mission time X was 5 times the 
hyperperiod P. Similarly, the actual execution time AET of 
any given job was generated uniformly between ER*WCET 
and WCET, where WCET is its worst-case execution time. 
Finally, for objective O2, the weight wi of each task was 
chosen according to a uniform probability distribution in the 
interval [1, 10]. For O1, each task weight was set to 1.  We 
computed the average reward achieved by each scheme over 
this spectrum. We present all the results as a percentage of 
system reward improvement over the static scheme OFC.  

 

5.1. Experimental results for systems without DVS 
capability 

 
In the absence of DVS, the static solution for O1 is 

provided optimally by FSJ. The problem of achieving O2 is 
NP-Hard. In both cases, the on-line schemes do provide 
improvement  upon OFC, through dynamic job promotion.   

Figure 1 shows the reward improvement of our 
reclamation schemes over OFC as a function of Ebudget at 
U=0.7 and ER=0.4 for objectives O1 (left) and O2 (right). 
When Ebudget is low, the system is very energy-constrained 
and it is crucial to utilize any excess energy due to early 
completions to achieve the performance objective. Hence, 
under such conditions the difference in performance between 
the different schemes is significant. The on-line reclamation 
schemes provide improvements up to 25% over OFC. ONA 
and ONS outperform ONC because of their aggressive nature 
while selecting jobs for execution. Moreover, ONA 
approaches the performance of the optimal scheme by a 
margin of 10%. As Ebudget increases the system becomes less 
energy-constrained; more task instances can be executed, 
increasing the overall reward. The schemes converge when 
Ebudget = 100%, because the system has enough energy to 
meet all the deadlines and the reward reaches its maximum 
value. Examining Figure 1, one notices that the reward 
improvement for O1 (left) is slightly higher than that for O2 
(right). This is due to the difference in task reward 
assignment between O1 and O2 and the greedy nature of our 
solutions. For O1 all tasks have the same reward wi = 1, and 
hence dynamically promoted jobs accrue the same reward as 
originally selected ones. For O2, on the other hand, the 
reward can potentially be different for different tasks. The 
optimization module that consists of LRD gives preference 



 

to jobs with largest reward density return among the 
unselected jobs whenever it is invoked. 

Figure 2 (left) shows the reward improvement vs. 
execution time ratio ER for Ebudget = 30% and U = 0.7 for 
non-DVS O2. As ER increases the actual workload increases, 
compared to the worst-case. At small ER values, say 0.1, 
early completions yield more slack time, resulting in ample 
excess energy to be used by the reclamation schemes. Hence, 
at small ER values the use of aggressive and speculative 
techniques pay off and hence the benefit of ONA and ONS is 
greater.  Figure 2 (right) shows the reward improvement vs. 
utilization for Ebudget=Ebound(U = 0.3) and non-DVS O2. 
Unlike Figure 1 and Figure 2 (left) where Ebudget is 
recalculated as a percentage of Ebound, which is also a 
function of the total utilization U, in this set of experiments 
Ebudget is set to a fixed value, namely the energy required to 
meet all the deadlines when U=0.3 (i.e. Ebound(U=0.3) ). 
When U ≤ 0.3 the system has enough energy budget to meet 
all deadlines (i.e. Ebudget ≥ Ebound) and all heuristics yield the 
same reward, which is simply the maximum possible system 
reward. As U increases from 0.3 to 1.0, the system becomes 
effectively more energy-constrained and the performance of 
the online schemes compared to OFC improves.  
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Figure 1. Effect of Ebudget on non-DVS systems for 
objective O1 (left) and objective O2 (right) 
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Figure 2. Effect of execution time ratio (left) and utilization 
(right) on non-DVS systems for objective O2 
 
5.2. Experimental results for systems with DVS 
capability 

 
If the system has DVS capability then the reclamation 

schemes ONC, ONA and ONS are still applicable. Further, 
our schemes now resort to dynamic speed reduction upon 
detecting early completions. This results in additional energy 
savings and opportunities to promote jobs during mission 
time, thus improving the system performance. The combined 
dynamic promotion/speed reduction scheme was presented in 
Section 4.3.2. In the next set of experiments, we use the Intel 
XScale specifications shown in Table 1 [12]. Here, Bound is 

an upper bound on the reward of the clairvoyant optimal 
solution.  

 
Table 1. Intel XScale speed settings and voltages 

Speed (MHz) 150 400 600 800 1000 
Voltage (V) 0.75 1.0 1.3 1.6 1.8 

 
Figure 3 shows reward improvement over OFC as a 

function of Ebudget for U = 0.7 and ER = 0.4 for objectives O1 
(left) and O2 (right). We observe the same general patterns 
as in the non-DVS case. In addition, we note that the 
improvement of our reclamation schemes over OFC is much 
higher with DVS than in the case of non-DVS. This is due to 
the fact that by utilizing low-speed/low-energy levels, we 
effectively increase excess energy that can be used to 
promote additional jobs. 

Figure 4 (left) shows the reward improvement as a 
function of execution time ratio ER for Ebudget=30% and 
U=0.7 for DVS O2. Again, the general patterns are similar to 
the non-DVS case. But in addition, we notice the improved 
performance of our reclamation schemes compared to OFC. 
Note also that ONS slightly outperforms ONA at high ER 
values (above 0.4) and at low Ebudget values (from Figure 3). 
ONA is an aggressive scheme, but this aggressiveness may 
involve a cost; by underestimating the actual workload ONA 
can select a large number of  jobs which results in 
subsequent demotions undertaken by the algorithm to 
guarantee the completion of the mission, resulting in a 
decrease in reward. This critical region emphasizes this 
shortcoming of ONA. ONS, on the other hand, is a less 
aggressive scheme; it starts with an initial schedule assuming 
worst-case workload and gradually estimates the actual 
workload using exponential averaging. Recall that Bound is 
an upper bound on the optimal solution since it makes the 
best use of available energy to complete all the workload 
before the end of the mission, without paying attention to 
individual deadlines. Interestingly, we also observe that on-
line schemes yield a gain over the static scheme even when 
ER=1.0. This is due to the fact that the scheme is able to 
reduce the CPU speed dynamically by considering the CPU 
time allocated to skipped tasks with respect to the nominal 
schedule Γnom (see Section 4.3.2). Figure 4 (right) shows the 
reward improvement as a function of the utilization for 
Ebudget=Ebound(U=0.3) for DVS O2.  
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Figure 3. Effect of Ebudget on DVS systems for objective O1 
(left) and objective O2 (right) 
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Figure 4. Effect of execution time ratio (left) and utilization 
(right) on DVS systems for objective O2 
 
6. Conclusion 

 
This research effort was aimed at addressing the 

fundamental RT scheduling issues in the context of systems 
with a given energy budget and mission time. We considered 
separately: 
• systems both with and without DVS capability, 
• the objectives of maximizing the total number of deadlines 

met and the total reward, and 
• on-line and off-line solutions. 
Our solutions are based on skipping less important jobs in a 
controlled manner to achieve performance objectives while 
guaranteeing that the system remains functional until the end 
of the mission. For DVS-enabled systems, we extended the 
Dynamic Reclaiming Algorithm (DRA) of [3] to energy-
constrained settings in order to dynamically reduce CPU 
speed to obtain additional excess energy for selecting new 
jobs in a dynamic fashion. Our algorithms differ both in the 
type of workload information they have: conservative, 
aggressive, and speculative algorithms use worst-case, 
average-case, and estimated workload respectively. They 
also differ in their reclamation behavior: off-line schemes 
use reclamation while on-line ones do not.  The simulation 
results show that on-line schemes can provide up to 70% and 
30% reward improvement over the off-line schemes for 
systems with or without DVS capability, respectively.  
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Appendix A 

 
In this section, we present the proof of Theorem 1. We 

first formally define the problem in the context of a simple 
task model where all the tasks have the same deadline:  

EC-FEASIBILITY: Given a DVS-enabled CPU with  
m > 1 speed levels and a task set T={T1, T2,…, Tk } with a 
common ready time R = 0, is it possible to complete all the 
tasks before a common deadline X,  while remaining within a 
fixed energy budget Ebudget ? 

We will show that EC-FEASIBILITY reduces to a 
restricted version of PARTITION. We will denote this 
special case of PARTITION as 2n-PARTITION.  



 

2n-PARTITION:  Given a set of 2n items  
S = < s1, s2,…, s2n> where each item si  has an integer cost zi, 
is it possible to partition S into 2 subsets S’  and S’’ such that 
the total cost of items in each subset is the same and each 
subset contains exactly one element of every pair (s2i-1, s2i)  
i=1…n ?   

This restricted version of PARTITION is known to be 
NP-Hard (p.223 in [13]). Note that the solution to 2n-
PARTITION requires that we consider each pair (s1, s2), (s3, 
s4),…, (s2n-1, s2n) separately and put each element of every  
pair to a different subset. We will show that 2n-PARTITION 
reduces to EC-FEASIBILITY  even for the special case 
where the CPU has 2 speed levels (i.e. m = 2) and gstb = 0. 

Given an instance of 2n-PARTITION, we can construct 
the corresponding instance of EC-FEASIBILITY as follows. 
The task set has  k = n  tasks, where Ci

1
  and  Ci

2  denote the 
execution time of Ti   at low and high CPU speed, 
respectively. Similarly, ei

1 and ei
2 denote the energy 

consumption of Ti   at low and high CPU speed, respectively. 
We set Ci

1
 = ei

2 = z2i-1   and Ci
2
 = ei

1 = z2i   for i = 1…n. 

Further, let X = Ebudget = ∑
=

2n

1i
iz

2
1

. 

Now, suppose that there is a polynomial-time solution to 
EC-FEASIBILITY. Then, given an instance of 2n-
PARTITION, we can compute the answer in polynomial-
time by constructing (in polynomial-time) the corresponding 
instance of EC-FEASIBILITY and then solving it. We claim 
that the answer to 2n-PARTITION instance is YES if and 
only if the answer to the corresponding instance of EC-
FEASIBILITY is YES.  

To start with, observe that the system has a fixed energy 
budget Ebudget whose numerical value is equal to the common 
deadline X (“time budget”). Suppose that the answer to the 
EC-FEASIBILITY instance is YES, that is, all tasks 
complete within energy and time budget X = Ebudget = 

∑
=

2n

1i
iz

2
1 . Then either low- or high-speed version of a each 

task Ti must be definitely scheduled. Observe that if the low-
speed version of Ti is chosen, then z2i-1 contributes to Time 
Cost (total execution time) and z2i contributes to Energy Cost 
(total energy consumption). Similarly, if the high-speed 
version of Ti is chosen, then z2i contributes to Time Cost 
(total execution time) and z2i-1 contributes to Energy Cost 
(total energy consumption). Thus, in the corresponding 
instance of 2n-PARTITION, each element in the pair (s2i-1 , 
s2i)  can be seen as allocated to one subset (“Time Cost”) 
while the other one is allocated to the other subset (“Energy 
Cost”).  

Now define the sets TB = {zj | zj contributes to Time 
Cost} and EB = {zj | zj contributes to Energy Cost}. Observe 
that TB and EB are disjoint, and exactly one element of each 
pair   (z2i-1, z2i) appears in TB (EB).   The completion time of 
all the tasks, that is the sum of all elements in TB, must be 
smaller than or equal to X since the schedule is feasible. 
Similarly, the total energy consumption of all the tasks that is 
the sum of all elements in EB must be smaller than or equal 
to Ebudget since the system does not run out of energy until the 
end of the mission.  Since  

X = Ebudget = ∑
=

2n

1i
iz

2
1

, this shows that the sum of all the 

elements in TB and EB are equal,  implying that the answer 
to the corresponding 2n-PARTITION instance is also YES.  

Conversely, assume that the answer to 2n-PARTITION is 
YES. Then, consider the elements of S’ and S’’. We claim 
that the elements in S’ imply which version of each task 
should be scheduled to meet the timing and energy 
constraints by the following reasoning: For every pair (s2i-1 , 
s2i) i = 1 ..n,  one of them must be in S’ while the other is in 
S’’. The cost associated with the one in S’ will denote the 
execution time of the version selected for Ti, while the cost 
associated with the one in S’’ will denote the energy 
consumption of the version selected for  Ti. Once again, 
observe that one element of the corresponding cost pair (z2i-1, 
z2i) contributes to Time Cost, while the other one contributes 
to Energy Cost. By virtue of being a solution to 2n-
PARTITION instance, we have:   

∑
∈ 'Ss

i
i

z = ∑
∈ ''Ss

i
i

z = X = Ebudget = ∑
=

2n

1i
iz

2
1

, showing that all 

tasks complete within the common deadline and energy 
budget. Thus, the answer to EC-FEASIBILITY is YES.  ■                                 


