

On Energy-Constrained Real-Time Scheduling

Tarek A. AlEnawy, Hakan Aydin
Computer Science Department

George Mason University
Fairfax, VA 22030

{thassan1,aydin}@cs.gmu.edu

Abstract

In this paper, we explore the feasibility and performance
optimization problems for real-time systems that must remain
functional during an operation/mission with a fixed, initial
energy budget. We show that the feasibility problem is NP-
Hard in the context of systems with Dynamic Voltage Scaling
(DVS) capability and discrete speed levels. Then, we focus
on energy-constrained periodic task systems where the
available energy budget is not sufficient to meet all the
deadlines. We propose techniques to maximize the total
number of deadlines met and the total reward (utility) while
guaranteeing the completion of the mission and a minimum
performance for each task. We consider separately: (i)
systems with or without DVS capability, and (ii) off-line
(static) and on-line (dynamic) solutions to select most
valuable jobs for execution. We also discuss the tractability
of the involved optimization problems. Our on-line
algorithms combine job promotion, job demotion and speed
reduction techniques to maximize the system performance
while guaranteeing the completion of the mission. We
evaluate our schemes through simulations and show that the
on-line schemes can yield significant performance
improvements over static solutions.

1. Introduction

Traditionally, the feasibility problem - given a task and
system model, determining whether it is possible to meet all
the deadlines - has always had a central position in research
on hard real-time (RT) systems [10,19]. Another line of
research considers soft RT scheduling for overloaded
systems: typically, researchers choose to trade-off the
precision (such as imprecise computation [18] and reward-
based scheduling [2] approaches) or shed a part of the
workload [7, 8, 9, 14,16] to provide timeliness guarantees to
a subset of tasks or task instances deemed to be essential or
more valuable. In [11], a framework that adjusts the rates for
tasks in overloaded RT applications is presented.

Recently, we have observed extensive research activity
on Power/Energy management with the proliferation of
wireless, portable and embedded devices. Of particular
interest to RT system research is the Dynamic Voltage
Scaling (DVS) technique, which consists in reducing the
CPU supply voltage and the clock frequency (CPU speed) to
obtain energy savings. Thus, many studies investigate ways

to guarantee the feasibility in the presence of DVS for
various task/system models and off-line/on-line scheduling
algorithms [3, 4, 5, 6, 20, 23, 24].

There exist also settings with a fundamentally different
character: One can easily think of RT applications where the
system, given a finite energy budget, has to remain
functional for the entire duration of an operation/mission. In
this case, the energy is obviously a hard constraint. Example
applications include embedded control applications as well
as military, space and disaster recovery missions requiring
predictable RT system operation while not allowing battery
re-charging until the end of the mission. If the system’s
energy budget does not allow executing all the jobs, then
there is the risk of losing functionality - with potential
detrimental effects - in the middle of the mission while trying
to meet each and every deadline [1]. Thus, it may be more
preferable to skip a few jobs in a controlled fashion without
affecting the stability of the system during the mission. As
such, energy-constrained RT scheduling, with the objective
of maximizing the system performance within the limits of
available energy, is the topic of this study.

We note that a number of recent research studies explored
related problems. In [21], Rusu et al. considered the problem
of maximizing the total reward in a system with fixed energy
budget when all the tasks share a common deadline. They
showed that the problem of maximizing the total reward is
NP-Hard with DVS even for the case when all tasks have a
common deadline. The same authors extended this
framework to the periodic task case, focusing on re-
chargeable systems with DVS capability in [22]. They also
presented a set of energy reclamation schemes that can be
invoked only at hyperperiod/frame boundaries. Static
scheduling of periodic tasks with continuous utility functions
and fixed energy budget is explored in [15]. In [1], the static
energy-constrained RT scheduling problem for systems
without DVS capability is investigated.
The main contributions of this paper are as follows:
• We formally characterize energy-constrained RT systems

and explore the nature of the feasibility problem in
limited-energy settings. We show that the feasibility
problem on systems with fixed energy budget and discrete
speed levels is NP-Hard.

• We consider separately the objectives of maximizing the
total number of deadlines met and maximizing the total
reward. We also show how to extend the framework to the
case where some minimum performance guarantees must

be provided for each task (in the form of a “minimum
deadline meet ratio”).

• We explore these performance optimization problems for
systems both with and without DVS capability.

• Although we include the discussion of static analysis, a
focal point of this research is efficient and dynamic energy
reclamation schemes for the common case where tasks
complete early, without presenting their worst-case
workload. We show how excess energy arising from early
completions can be re-used by dynamically selecting jobs
with an eye towards improving the performance of the
system. For systems with multiple speeds, we extend the
dynamic reclaiming algorithm (DRA) [3] to energy-
constrained settings, showing how dynamic energy
harvesting through on-line speed reduction can provide
additional improvements. Our reclaiming schemes are
greedy, i.e. any slack time is put in re-use for speed
reduction as soon as possible (at task
completion/preemption times). This is in contrast with the
nature of dynamic schemes presented in [22], where the
reclamation can occur only at hyperperiod/frame
boundaries. We provide experimental evaluation of our
schemes through simulations. Our results show that reward
gains over static schemes can be as high as 70% for
systems with DVS and as high as 30% for the ones
without.

2. System model and assumptions

2.1. Power and energy consumption model

We consider a single processor system that has to rely on

battery power. In order to remain operational, the available
energy must remain in a ‘safe range’ [Emin, Emax], where Emax
denotes the maximum battery capacity and Emin indicates the
minimum energy threshold below which the stable/safe
operation is not guaranteed [22]. Thus the system has a
limited energy budget Ebudget =Emax - Emin. Further, we assume
that the system must remain operational in the time interval
[0,X]; that is, the total CPU energy consumption should not
exceed Ebudget for X time units (in other words, the system is
subject to a hard energy constraint). We refer to X as the
mission time throughout the paper. Re-charging the battery is
not possible or feasible during the mission.

We consider systems with or without DVS capability. A
system that does not support multiple speed or voltage levels
can be either in normal (execution) mode or stand-by mode.
In stand-by mode, the CPU does not execute any task, but
consumes much less power. Systems with DVS capability
can adjust their speed (frequency) and supply voltage when
in normal mode. We assume that the DVS-enabled CPU can
be in any of the m > 1 speed/frequency levels (or “modes”)
denoted by S1, S2,…, Sm, where Si+1

 > Si. The speeds are
normalized with respect to Sm

 , i.e. Sm =1.0. The power
consumption with speed Si is denoted by gi; similarly, gstb
indicates the power consumption in stand-by mode. Finally,
in any time interval [t1,t2], the total energy consumption is:

stb
stb

i

m

i

i
m

i
i tgtgEttE +== ∑∑

== 11
21),((1)

where ti and tstb denote the total time the CPU speed is Si and
the system is in stand-by mode, respectively.

In current DVS-enabled systems, it is not always possible
to find a speed level that exactly corresponds to a desired
target speed assignment (often obtained assuming a
continuous speed spectrum). We will use the notation HS(S)
for the quantity min(Si|Si ≥ S); informally, HS(S) denotes the
lowest speed level available in the system that is equal to or
greater than a target speed S. Similarly LS(S) will denote the
highest speed level available in the system that does not
exceed a target speed S; formally LS(S) = max(Si| Si ≤ S).

2.2. Task model

We consider a set of n periodic tasks T = {T1, T2,…, Tn}.

Each task Ti has a period Pi which is equal to the relative
deadline of each instance (job) Tij. The worst-case execution
time of task Ti with speed Sk is denoted by Ci

k (we will omit
the superscript and use notation Ci instead of Ci

1 for systems
without DVS capability). Preemption is allowed; the
preemption and the speed change overhead can be
incorporated in Ci

k if necessary. We adopt the Earliest-
Deadline-First (EDF) scheduling policy which is known to
be optimal from the feasibility point of view [17]. The
emphasis of this paper is to study the feasibility and
performance maximization problems in the context of
energy-constrained systems (with limited CPU energy
budget). Therefore, we assume that the task set would be
feasible (schedulable) with a sufficient energy budget when
the CPU speed is maximum (i.e. ∑i Ci

m/Pi ≤ 1).

3. Energy-constrained real-time scheduling

In this section, we introduce the concept of energy-

constrained RT systems, explore feasibility conditions, and
present the performance metrics and our general approach.

Given an RT system that must remain operational during
the mission interval [0,X], the natural question to ask is
whether all deadlines can be met within the limited energy
budget. To answer this question, it is necessary to know the
minimum amount of CPU energy needed to complete all the
tasks before their deadlines while sustaining the system’s
operation until the end of the mission. We refer to this
threshold energy as Ebound in the remainder of the paper.

Definition 1. A real-time system is energy-constrained if
Ebudget < Ebound.

If the system is energy-constrained, then trying to execute
all the jobs may result in a situation where the system runs
out of energy in the middle of the mission with potentially
detrimental effects (see [1] for an illustrative example). Thus,
the aim should be to provide maximum predictability or
utility while sustaining the system operation until the end of
the mission.

The computation of Ebound for systems without DVS
capability and those with continuous speed spectrum can be
performed efficiently (see below). Once Ebound is computed,
then it can be compared against Ebudget to check if the system
is energy-constrained or not.

If the system does not support DVS, then all tasks must
be executed with the only available speed (S1). The system
can switch to stand-by mode when there are no ready tasks,
thus we have:

∑−+=
∈ αi

i
stbstb

bound C)gg(XgE 1 (2)

where α is the set of all task instances with deadlines smaller
than or equal to X.

Assuming an ideal DVS architecture where the speed can
be varied over a continuous spectrum, the optimal speed
assignments while preserving the feasibility can be computed
in polynomial-time for both aperiodic [24] and periodic [3]
task models. In particular, the optimal CPU speed for
periodic model is constant across all the tasks and is equal to
the utilization value, Uv (see [3, 20]). Using this result, one
can easily compute Ebound by a formula similar to (2),
assuming that the power/speed relationship is known.

Unfortunately, the feasibility problem for a system with
limited energy and discrete speed levels is intractable.

Theorem 1. The problem of deciding whether it is possible
to meet all the deadlines of a set of real-time tasks within a
limited energy budget is NP-Hard for a DVS-enabled CPU
with discrete speed levels.
Proof: See Appendix A.

Corollary: Deciding if a task set is energy-constrained is
NP-Hard.
Remark 1: The proof shows that the problem is intractable
for the simple case of tasks sharing a common deadline; thus
it is valid for both aperiodic and periodic task models.
Remark 2: Although the problem is NP-Hard in the general
case, some instances can be decided easily. In the periodic
task model, if Ebudget is smaller than the energy needed to
execute all the tasks with speed LS(Uv), then the system is
energy-constrained since some deadlines will be definitely
missed. Conversely, if Ebudget is greater than the energy
needed to execute all the tasks with the speed HS(Uv), then
all tasks can complete without violating the energy bound.

Since the problem of deciding if a system is energy-

constrained (consequently, computing Ebound) is intractable,
we adopt a conservative (but safe) approach for periodic
tasks; we take Ebound to be the energy required to execute all
the tasks at the speed S=HS(Uv). Recall that this represents
the lowest speed available in the system that is greater than
or equal to the optimal continuous speed.

In the remainder of this paper, we focus on the problem
of maximizing system performance in energy-constrained
settings (where Ebudget < Ebound).

3.1. Performance objectives

We propose two metrics to maximize the performance in

energy-constrained settings:
• Objective O1 − maximize the total number of deadlines

met during the mission without exceeding the energy
budget.

• Objective O2 − maximize the total system reward during
the mission without exceeding the energy budget. In this
objective we account for the fact that some tasks may be
more important than others. To this aim, we associate with
each task Ti a weight (reward) wi that signifies its
importance. An instance of task Ti contributes wi units to
the total system reward only if it completes by its
deadline.

Some applications may require that a minimum number

of instances of each task be successfully completed during
the mission time, for the whole system to function properly.
Maximizing system performance without observing this
constraint cannot provide such a guarantee, since all
instances of a task with small weight may be skipped all
together. To this aim, we may associate with each task Ti a
minimum deadline meet ratio Mi. We require that ni /Ni ≥
Mi, where ni is the number of instances of task Ti that
complete by their deadlines in [0,X] and Ni =  X / Pi  is the
number of all the instances of the same task whose deadlines
lie within the same interval. We refer to the actual instances
selected to meet this minimum requirement as mandatory
jobs and refer to all the remaining jobs as optional jobs. If
the application at hand imposes such a constraint, then the
goal would be to maximize system performance, in the
context of objective O1 or O2, while providing a minimum
performance guarantee for each task.

3.2. Our approach

If the system is energy-constrained, then the task

instances to be executed must be carefully selected in order
to make best use of available energy. This selection process
is guided by the performance metric under consideration for
either objective O1 or O2. To this aim, we use a job selection
phase in which each task instance (job) is labeled as skipped
or selected. The selection process considers the parameters
of the task set, as well as available energy and mission time.
We associate with each job Tij a label Lij, where Lij = 0
indicates that the job is skipped and Lij = 1 indicates that it is
selected for execution. At run-time, only jobs whose labels
are set to “selected” are dispatched. Thus, the problem
becomes choosing the job labels for each performance
objective (O1 or O2) while making sure that the energy
budget is not exceeded. Note that the labeling of jobs can be
performed in static or dynamic fashion. In systems with
DVS, another major component of the problem is to
determine the speed assignments of selected jobs.

4. Solutions to energy-constrained
performance optimization problems

4.1. Classification of energy-constrained RT
scheduling algorithms

In general, it is possible to classify energy-constrained

RT scheduling algorithms depending on the on-line/off-line
nature of the solution and the workload information used by
the scheduler.
• Off-line (Static) schemes select task instances before the

mission starts and, thus, cannot adjust if the actual
workload deviates from the expected one. On-line
(Dynamic) schemes, on the other hand, start with an initial
schedule generated off-line, and later adjust it on-line by,
for example, selecting more jobs when excess energy
becomes available or unselecting some jobs if the system
is running short on energy.

• Conservative schemes only have knowledge about worst-
case workload and, hence, allocate the energy budget to
selected jobs based on worst-case execution times. On the
other hand, aggressive schemes have the additional
knowledge of expected workload and, hence, allocate the
energy budget to selected jobs based on average-case
execution times. Finally, speculative schemes, while not
having the information about expected workload, try to
estimate it dynamically by monitoring actual workload.
By virtue of their nature, aggressive and speculative
schemes are on-line schemes.
Note that an off-line scheme can only be conservative

because it must guarantee the completion of the mission even
under the worst-case scenario. Based on the above
classification, we identified the following generic schemes:

1. Off-line conservative scheme (OFC) is an off-line job

selection scheme that allocates available energy budget to
tasks based on their worst-case execution requirements.
This scheme was the focus of the study in [1].

2. On-line conservative scheme (ONC) is an on-line job
selection scheme that allocates available energy budget to
tasks based on their worst-case execution requirements. It
also promotes jobs on-line (by re-labeling some skipped
jobs as selected) if there is excess energy, thus trying to
improve system reward at the expense of slightly
increased overhead.

3. On-line aggressive scheme (ONA) is an on-line job
selection scheme that allocates available energy budget to
tasks based on their expected execution requirements.

4. On-line speculative scheme (ONS) is an on-line job
selection scheme that estimates average-case
requirements of tasks by monitoring actual workload, and
allocates energy accordingly.

We underline that:
• The specifics of the schemes above differ for systems with

or without DVS capability. We elaborate on the details of
these in Sections 4.2 and 4.3.

• Both aggressive and speculative schemes risk running out
of energy before the end of the mission if (most of the)
tasks present their worst-case workload as opposed to the
expected (average-case) workload. To ensure that the
system remains functional throughout the mission, our on-
line aggressive and speculative schemes -before
dispatching a selected job- check whether the system has
enough energy to remain operational until the end of the
mission if this job were to present its worst-case workload.
We execute the job only if this condition is satisfied;
otherwise the job is skipped (dynamically “demoted”).

4.2. Solutions for systems without DVS capability

4.2.1. Off-line conservative scheme (OFC) for systems
without DVS

In [1], we explored in detail the energy-constrained RT

scheduling algorithms assuming off-line settings and a
scheduler having only the worst-case workload information.
In other words, [1] presented the details of the OFC scheme
for systems without DVS capability. Below we summarize
the main results of [1], since it forms the basis for extended
solutions discussed in the remaining part of this study.

The generic job selection framework that we proposed in
[1] for energy-constrained real-time systems includes the
following major steps:
• For each task Ti, calculate first the total number of

instances Ni whose deadlines are smaller than or equal to X
(Ni =  X / Pi ).

• Set aside enough energy to sustain the system throughout
the mission and to execute the mandatory jobs required to
meet the minimum deadline meet ratio, if any.

• Invoke an auxiliary optimization module OM, which can
be an optimal algorithm or a heuristic, to decide on the
total number of instances ni to be executed for each task Ti
in interval [0,X] to achieve the given objective, without
exceeding the energy budget. This is the only module that
needs to be modified if the performance objective changes.

• Finally, determine specific instances to be actually
scheduled using an additional labeling criterion. In other
words, determine the label Lij (selected or skipped) for
each job.

Now we discuss the details of OFC scheme for each of the
performance objectives O1 and O2.
• Objective O1: maximize total number of deadlines met

In [1], we showed that, in the absence of DVS, the
problem of maximizing the total number of deadlines met
during the mission time without exceeding the energy budget
can be solved optimally and efficiently. We presented an
optimal policy, which we refer to as Favor Shortest Job
(FSJ). FSJ uses an optimization module OM that first orders
tasks according to worst-case execution time per instance Ci,
and then chooses for execution the maximum possible
number of instances of tasks with shortest execution times
until Ebudget is exhausted. Its overall complexity is O(n log n).

Theorem 2. (from [1]) FSJ is optimal for the problem of
maximizing the number of deadlines met.

• Objective O2: maximize total system reward

In [1] we also showed that, in the absence of DVS, the

problem of maximizing total system reward during the
mission time without exceeding the energy budget when
tasks have different weights (which we refer to as the
problem REWARD) is intractable.

Theorem 3. (from [1]) REWARD is NP-Hard.

In [1], we presented a number of fast and greedy
heuristics for REWARD that give preference to tasks that
have higher values of a specific (combination of) task
parameter(s) such as execution time, period, and weight. We
showed through simulation results that the best performing
heuristic is the one that favors jobs with larger reward
density values wi/Ci (i.e. jobs with larger reward and shorter
execution time). We refer to this heuristic as LRD (Larger
Reward Density).

An implicit assumption of the work in [1] is that tasks
always present their worst-case execution times. However,
actual workloads in real-time systems exhibit large
variability. This implies that using on-line schemes to
reclaim excess energy can increase the system reward
significantly. Now we show how to extend the work in [1] to
incorporate a number of reclamation schemes, based on the
on-line schemes discussed in Section 4.1. All of these
schemes use LRD as the optimization module.

4.2.2. On-line solutions for systems without DVS

 As an initial step, our on-line schemes reserve enough
energy to sustain the system throughout the mission, and to
execute the mandatory jobs required to meet the minimum
deadline meet ratio, if any, for each task. To guarantee that
mandatory jobs are successfully completed, the selection
framework allocates enough energy to execute these jobs
under worst-case workload, even for aggressive and
speculative schemes. The selection scheme then uses the
optimization module OM, FSJ for O1 and LRD for O2, to
select additional (optional) jobs to be executed during the
mission to achieve the performance objective under
consideration. Thus, we have an initial static schedule
comprising, potentially, both mandatory and optional jobs.

When the mission starts, the static schedule is used as an
initial schedule, which is adjusted on-line if the actual
workload deviates from the expected one. We refer to the on-
line adjustment of the static schedule as reclamation. To
perform reclamation we keep track of the cumulative
difference between expected energy consumption and actual
one at task completions. For systems without DVS,
reclamation can take two forms: either job promotion or job
demotion. Job promotion occurs if there is excess energy due
to some jobs completing early. In this case we re-invoke the
optimization module OM to try to select additional (optional)
future jobs, if any, for execution using the excess energy
available. Note that OM can potentially be re-invoked at each
task completion point to greedily re-use excess energy. The

associated overhead of this process is O(n) (recall that both
LRD and FSJ are efficient algorithms) and it has the
potential of significantly increasing total system reward, as
we show in Section 5. Job demotion, on the other hand,
occurs when the actual aggregate energy consumption is
higher than the expected one (due to some jobs running
longer than their expected execution times), in which case
the system may become unstable before the end of the
mission. To avoid this scenario, we unselect jobs to save
energy for safe completion of the mission. Job demotion
applies only to aggressive and speculative schemes. The
details of the reclamation process depend on specific
schemes and are discussed below.

• ONC for non-DVS systems

When invoking OM, ONC uses worst-case task execution
times (since it assumes that average-case information is
not available) to allocate the energy budget to selected
optional jobs. It uses job promotion, but does not need to
use job demotion because of its conservative nature.

• ONA for non-DVS systems
ONA uses average-case task execution times when
invoking OM. It uses both job promotion and job
demotion.

• ONS for non-DVS systems
ONS invokes OM with worst-case task execution times
when generating the static schedule. However, at run-
time it estimates the expected execution time of each task
using the well-known exponential averaging formula:
PETn+1 = 0.5(AETn + PETn), where PETn is the predicted
execution time of the nth instance of a given task and
AETn its actual execution time. When invoking OM for
job promotion, ONS uses the most recent predicted
execution time for each task. It also uses job demotion to
ensure mission completion, if necessary.

4.3. Solutions for systems with DVS capability

The DVS capability provides additional opportunities to

save energy through CPU speed adjustment. However, it also
makes the problem of energy-constrained RT scheduling
harder; since, in addition to carefully selecting jobs to
achieve the performance objective, one also needs to
determine the speed(s) at which the selected jobs will run.
Achieving objective O2 with DVS (which we refer to as
DVS-O2) is NP-Hard for static settings as Rusu et al. proved
in [22]. We show below that even achieving the (seemingly)
easier objective O1 in the presence of DVS capability (which
we refer to as DVS-O1) is intractable.

Theorem 4. DVS-O1 is NP-Hard.

Proof: Follows from Theorem 1: If it were possible to
maximize the number of tasks that meet their deadlines in
polynomial-time on a CPU with multiple speed levels, then
the feasibility problem would admit an efficient solution. ■

4.3.1. Static solution for systems with DVS

Since the problem with either of the objectives O1 and

O2 is NP-Hard, we present a general solution that applies to
both. Just as in the case where DVS is not available, we
construct an initial set of ’selected’ jobs (thus, a schedule) in
off-line fashion before the mission starts. However, we
impose a rigorous structure on this simple schedule allowing
us to perform reclamation aggressively, and enhance the
performance.

 In [3], Aydin et al. address the problem of minimizing
energy consumption using DVS while meeting all the
deadlines of a periodic task set. They adopt a continuous
CPU speed spectrum and EDF scheduling policy. They
show that the optimal speed S' that minimizes energy
consumption, in these settings, is constant for all tasks and
equal to the task set’s utilization Uv under maximum CPU
speed. In static optimal schedule, all the tasks run with
constant speed S' and present their worst-case workload,
meeting their deadlines.

We chose to adapt this static solution to our settings
because it enables us to perform CPU-time reclamation
greedily and efficiently. We denote the schedule produced by
our static solution by Γnom. To obtain Γnom we start with a
temporary schedule Γ0 in which all instances of all tasks are
selected and run at exactly the same speed Snom, which we
refer to as the nominal speed, set to Snom = HS(S'). Γ0 is a
feasible schedule and it minimizes the energy consumption,
but it does not necessarily meet the energy constraint. We
use Γ0 to obtain a schedule Γnom that meets the energy
constraint. To this aim, we invoke the optimization module
OM to select a set of jobs that achieves the performance
objective while meeting the energy constraint; only these
jobs are labeled as selected and all the others are labeled as
skipped. All the selected jobs in Γnom run at the speed Snom
exactly as in Γ0. The selected jobs in Γnom meet their
deadlines since Γnom is obtained by eliminating some jobs
from Γ0, which is feasible in hard RT sense. It also meets the
energy constraint since the job selection is done using OM,
which never exceeds the energy budget, by definition. The
job selection schemes we discussed in Section 4.1 are still
applicable in this context.

The schedule Γnom is not optimal. In fact, computing the
optimal solution is NP-Hard (Theorem 4). On the other hand,
computing the total number of selected instances for all the
tasks has a complexity of O(n log n) (the dominant term
coming from the initial task sorting).. The simple structure of
Γnom makes it possible to perform reclamation greedily
during the mission at every task completion/preemption
point, without compromising the deadlines of selected tasks
(unlike the work in [22] where reclamation occurs only at
hyperperiod/frame boundaries).

4.3.2. Principles of dynamic adjustment

For systems without DVS, we presented two forms of

reclamation, namely job promotion and job demotion. Both
techniques are still applicable to systems with DVS. In
addition, we can also have CPU-time reclamation through

dynamic speed reduction. When tasks complete early, we
have some slack time that can be used to further increase the
excess energy by reducing the execution speeds of some
subsequent jobs (as long as this does not compromise the
deadlines of already selected tasks). By reducing the
execution speed of a job, we also reduce its energy
consumption due to the convex nature of the relation
between power and speed.

In [3], Aydin et al. propose a dynamic speed reduction
scheme for periodic tasks assuming continuous speed
spectrum. They refer to this scheme as Dynamic Reclaiming
Algorithm (DRA). We adapt DRA to energy-constrained RT
systems and to the case of discrete speeds. The extended
scheme adds dynamic speed reduction to job promotion and
demotion. We summarize below the principles of DRA and
how it is extended in our solution.

DRA starts with a static optimal schedule where each job
presents its worst-case execution time. In this schedule, all
jobs run at the same speed, namely the nominal speed Uv,
which minimizes the energy assuming continuous speed
without affecting feasibility. DRA computes the amount of
CPU time that each job can safely use to slow down its
execution at dispatch time. This additional CPU time is
referred to as the earliness. The gist of the scheme is how to
calculate the earliness without affecting feasibility. Since it
is impractical to produce the entire schedule a priori, DRA
uses a data structure called the α-queue. The α-queue is
effectively the ready queue of the static optimal schedule.
The formula for calculating the earliness as well as the
details of the DRA are given in [3, 5].

Our solution is based on DRA with the following
extensions: We start with Γnom as the initial (static) schedule.
However, at any time, the α-queue reflects the ready queue
of Γ0 which is a feasible schedule that approximates the static
optimal schedule with continuous speed, assuming sufficient
energy. At dispatch time, the CPU speed is reduced by
computing the earliness with respect to Γ0. Note that the
skipped jobs of Γnom can be considered as the jobs in Γ0 with
zero actual execution time, enabling us to further reduce the
speed. Based on this earliness amount, we determine the
lowest speed that still guarantees the deadlines of already
selected jobs (through HS(.) function) for the dispatched job.
By running at a lower speed we further increase excess
energy that can later be used for job promotion. The speed
reduction helps job promotion and is not an alternative to
it (because Γ0 is feasible in hard RT sense). When a job is
promoted, its initial speed is always Snom. The fact that all the
deadlines of selected tasks are met follows from (i) the
feasibility of DRA (proved in [3]), and (ii) the fact that the
selected jobs run at a speed that does not exceed Snom at all
times, consequently ensuring a workload that does not
exceed the one in the static schedule Γnom.

4.3.3. On-line solutions for systems with DVS

Three reclamation and task selection schemes ONC,

ONA and ONS are still applicable to DVS settings. Just as in
non-DVS settings, each scheme starts with an initial off-line
schedule generated before the mission starts, which can later

be modified on-line through reclamation. Moreover, each
scheme still invokes an optimization module OM chosen
depending on the performance objective of interest. The
information with which OM is invoked for each module
depends on whether it is conservative (uses worst-case
workload information), aggressive (uses average-case
workload information), or speculative (estimates average-
case workload information). In addition, in DVS settings the
CPU speeds of selected tasks are reduced whenever possible
(see Section 4.3.2).

5. Experimental evaluation

In order to evaluate our schemes experimentally, we
implemented a discrete-event simulator. We evaluated:
• Off-line conservative scheme (OFC): the static solution

that uses worst-case workload information, and does not
perform any on-line adjustments.

• On-line conservative scheme (ONC): dynamically uses
job promotion assuming worst-case workload.

• On-line aggressive scheme (ONA) that makes use of its
(additional) knowledge about average workload when
selecting jobs.

• On-line speculative scheme (ONS) that tries to estimate
average-case workload by monitoring the actual workload,
using both job promotion and demotion.
All the schemes invoke the optimization module OM that

is carefully chosen to maximize system performance subject
to the performance objective of choice; we use FSJ as the
optimization module for O1, while LRD is used for O2. The
computational complexity of OM is O(n log n) at each
invocation in both cases. We applied these schemes to
systems with and without DVS. In both cases, we compared
the performance of our proposed schemes to a clairvoyant
optimal scheme, which we refer to as Bound, which has
knowledge about the actual workload information. This
scheme provides an upper bound on the performance of our
schemes. In the absence of DVS, to implement Bound we
use a clairvoyant optimal scheme that uses FSJ for O1 and an
optimization module based on dynamic programming for O2.
In the case of DVS, we use a clairvoyant scheme that
provides an upper bound on the performance of the (real)
optimal solution, since the latter is computationally too
expensive. This scheme maximizes system reward without
exceeding the energy budget; however it only ensures that
the completion time of the total workload does not exceed
the mission time without worrying about individual
deadlines. Clearly, this scheme outperforms the optimal
solution in terms of total reward and provides an even more
optimistic performance bound.

In our simulation experiments we measured the total
system reward R as a function of three parameters:
• System energy budget, Ebudget, represented as a percentage

of the total energy required to meet all deadlines, Ebound .
If the system has DVS capability, then Ebound is
calculated assuming that all jobs run at the nominal speed
(the lowest speed with which all deadlines can be met
without considering energy budget) throughout the
mission time.

• Execution time ratio, ER, which is the ratio of best-case
execution time to worst-case execution time that is taken
to be the same for all tasks. ER represents the variability
of the actual workload compared to the worst-case.

• Total system utilization, U = ∑ Ci
m

 / Pi. Note that Ci
m = Ci

if the system does not have DVS capability.
We generated 100 generic task sets with 30 tasks each,

and then for each task set we ran 1000 experiments to
generate actual execution requirements for each task. We
changed the above parameters over the following ranges: U
ranged from 0.1 to 1.0 in increments of 0.1, Ebudget (as a
percentage of Ebound) ranged from 10% to 100% in
increments of 10%, ER ranged from 0.1 to 1.0 in increments
of 0.1. Task periods were generated according to a uniform
probability distribution. The mission time X was 5 times the
hyperperiod P. Similarly, the actual execution time AET of
any given job was generated uniformly between ER*WCET
and WCET, where WCET is its worst-case execution time.
Finally, for objective O2, the weight wi of each task was
chosen according to a uniform probability distribution in the
interval [1, 10]. For O1, each task weight was set to 1. We
computed the average reward achieved by each scheme over
this spectrum. We present all the results as a percentage of
system reward improvement over the static scheme OFC.

5.1. Experimental results for systems without DVS
capability

In the absence of DVS, the static solution for O1 is

provided optimally by FSJ. The problem of achieving O2 is
NP-Hard. In both cases, the on-line schemes do provide
improvement upon OFC, through dynamic job promotion.

Figure 1 shows the reward improvement of our
reclamation schemes over OFC as a function of Ebudget at
U=0.7 and ER=0.4 for objectives O1 (left) and O2 (right).
When Ebudget is low, the system is very energy-constrained
and it is crucial to utilize any excess energy due to early
completions to achieve the performance objective. Hence,
under such conditions the difference in performance between
the different schemes is significant. The on-line reclamation
schemes provide improvements up to 25% over OFC. ONA
and ONS outperform ONC because of their aggressive nature
while selecting jobs for execution. Moreover, ONA
approaches the performance of the optimal scheme by a
margin of 10%. As Ebudget increases the system becomes less
energy-constrained; more task instances can be executed,
increasing the overall reward. The schemes converge when
Ebudget = 100%, because the system has enough energy to
meet all the deadlines and the reward reaches its maximum
value. Examining Figure 1, one notices that the reward
improvement for O1 (left) is slightly higher than that for O2
(right). This is due to the difference in task reward
assignment between O1 and O2 and the greedy nature of our
solutions. For O1 all tasks have the same reward wi = 1, and
hence dynamically promoted jobs accrue the same reward as
originally selected ones. For O2, on the other hand, the
reward can potentially be different for different tasks. The
optimization module that consists of LRD gives preference

to jobs with largest reward density return among the
unselected jobs whenever it is invoked.

Figure 2 (left) shows the reward improvement vs.
execution time ratio ER for Ebudget = 30% and U = 0.7 for
non-DVS O2. As ER increases the actual workload increases,
compared to the worst-case. At small ER values, say 0.1,
early completions yield more slack time, resulting in ample
excess energy to be used by the reclamation schemes. Hence,
at small ER values the use of aggressive and speculative
techniques pay off and hence the benefit of ONA and ONS is
greater. Figure 2 (right) shows the reward improvement vs.
utilization for Ebudget=Ebound(U = 0.3) and non-DVS O2.
Unlike Figure 1 and Figure 2 (left) where Ebudget is
recalculated as a percentage of Ebound, which is also a
function of the total utilization U, in this set of experiments
Ebudget is set to a fixed value, namely the energy required to
meet all the deadlines when U=0.3 (i.e. Ebound(U=0.3)).
When U ≤ 0.3 the system has enough energy budget to meet
all deadlines (i.e. Ebudget ≥ Ebound) and all heuristics yield the
same reward, which is simply the maximum possible system
reward. As U increases from 0.3 to 1.0, the system becomes
effectively more energy-constrained and the performance of
the online schemes compared to OFC improves.

0

10

20

30

40

10 20 30 40 50 60 70 80 90 100
Energy Budget (% of Energy Bound)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

0

10

20

30

40

10 20 30 40 50 60 70 80 90 100
Energy Budget (% of Energy Bound)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

Figure 1. Effect of Ebudget on non-DVS systems for
objective O1 (left) and objective O2 (right)

0

10

20

30

40

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Execution Time Ratio (ER)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Utilization (U)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

Figure 2. Effect of execution time ratio (left) and utilization
(right) on non-DVS systems for objective O2

5.2. Experimental results for systems with DVS
capability

If the system has DVS capability then the reclamation

schemes ONC, ONA and ONS are still applicable. Further,
our schemes now resort to dynamic speed reduction upon
detecting early completions. This results in additional energy
savings and opportunities to promote jobs during mission
time, thus improving the system performance. The combined
dynamic promotion/speed reduction scheme was presented in
Section 4.3.2. In the next set of experiments, we use the Intel
XScale specifications shown in Table 1 [12]. Here, Bound is

an upper bound on the reward of the clairvoyant optimal
solution.

Table 1. Intel XScale speed settings and voltages

Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8

Figure 3 shows reward improvement over OFC as a

function of Ebudget for U = 0.7 and ER = 0.4 for objectives O1
(left) and O2 (right). We observe the same general patterns
as in the non-DVS case. In addition, we note that the
improvement of our reclamation schemes over OFC is much
higher with DVS than in the case of non-DVS. This is due to
the fact that by utilizing low-speed/low-energy levels, we
effectively increase excess energy that can be used to
promote additional jobs.

Figure 4 (left) shows the reward improvement as a
function of execution time ratio ER for Ebudget=30% and
U=0.7 for DVS O2. Again, the general patterns are similar to
the non-DVS case. But in addition, we notice the improved
performance of our reclamation schemes compared to OFC.
Note also that ONS slightly outperforms ONA at high ER
values (above 0.4) and at low Ebudget values (from Figure 3).
ONA is an aggressive scheme, but this aggressiveness may
involve a cost; by underestimating the actual workload ONA
can select a large number of jobs which results in
subsequent demotions undertaken by the algorithm to
guarantee the completion of the mission, resulting in a
decrease in reward. This critical region emphasizes this
shortcoming of ONA. ONS, on the other hand, is a less
aggressive scheme; it starts with an initial schedule assuming
worst-case workload and gradually estimates the actual
workload using exponential averaging. Recall that Bound is
an upper bound on the optimal solution since it makes the
best use of available energy to complete all the workload
before the end of the mission, without paying attention to
individual deadlines. Interestingly, we also observe that on-
line schemes yield a gain over the static scheme even when
ER=1.0. This is due to the fact that the scheme is able to
reduce the CPU speed dynamically by considering the CPU
time allocated to skipped tasks with respect to the nominal
schedule Γnom (see Section 4.3.2). Figure 4 (right) shows the
reward improvement as a function of the utilization for
Ebudget=Ebound(U=0.3) for DVS O2.

0

40

80

120

10 20 30 40 50 60 70 80 90 100
Energy Budget (% of Energy Bound)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

0

40

80

120

10 20 30 40 50 60 70 80 90 100
Energy Budget (% of Energy Bound)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

Figure 3. Effect of Ebudget on DVS systems for objective O1
(left) and objective O2 (right)

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Execution Time Ratio (ER)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

0

50

100

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total Utilization (U)

R
ew

ar
d

Im
pr

ov
em

en
t o

ve
r O

FC
 (%

) Bound
ONA
ONS
ONC

Figure 4. Effect of execution time ratio (left) and utilization
(right) on DVS systems for objective O2

6. Conclusion

This research effort was aimed at addressing the

fundamental RT scheduling issues in the context of systems
with a given energy budget and mission time. We considered
separately:
• systems both with and without DVS capability,
• the objectives of maximizing the total number of deadlines

met and the total reward, and
• on-line and off-line solutions.
Our solutions are based on skipping less important jobs in a
controlled manner to achieve performance objectives while
guaranteeing that the system remains functional until the end
of the mission. For DVS-enabled systems, we extended the
Dynamic Reclaiming Algorithm (DRA) of [3] to energy-
constrained settings in order to dynamically reduce CPU
speed to obtain additional excess energy for selecting new
jobs in a dynamic fashion. Our algorithms differ both in the
type of workload information they have: conservative,
aggressive, and speculative algorithms use worst-case,
average-case, and estimated workload respectively. They
also differ in their reclamation behavior: off-line schemes
use reclamation while on-line ones do not. The simulation
results show that on-line schemes can provide up to 70% and
30% reward improvement over the off-line schemes for
systems with or without DVS capability, respectively.

References

[1] T. A. AlEnawy and H. Aydin. Energy-Constrained Performance
Optimizations For Real-Time Operating Systems. Workshop on
Compilers and Operating Systems for Low-Power (COLP'03), New
Orleans, LA, September 2003 (available on-line at
http://cs.gmu.edu/~aydin/colp03.pdf).
[2] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Optimal
Reward-Based Scheduling for Periodic Real-Time Tasks. IEEE
Transactions on Computers, 50(2), February 2001.
[3] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systems.
Proceedings of the Real-Time Systems Symposium (RTSS’01), 2001.
[4] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. Proceedings of the 17th
International Parallel and Distributed Processing Symposium
(IPDPS’03), Workshop on Parallel and Distributed Real-Time
Systems, 2003.
[5] H. Aydin, R. Melhem, D. Mossé and P.M. Alvarez. Power-aware
Scheduling for Periodic Real-Time Tasks. IEEE Transactions on
Computers, 53(10), May 2004.
[6] H. Aydin and Q. Yang. Energy-Responsiveness Tradeoffs for
Real-time Systems with Mixed Workload. Proceedings of the IEEE

Real-Time and Embedded Technology and Applications Symposium
(RTAS’04), May 2004.
[7] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha. On-line scheduling in the presence of overload. IEEE
Annual Symposium on the Foundations of Computer Science, 1991.
[8] G. Bernat, A. Burns, A. Llamosi. Weakly Hard Real-time
Systems. IEEE Transactions on Computers, 50(4), April 2001.
[9] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline
Scheduling in Overload Conditions. Proceedings of the Real-Time
System Symposium, Pisa, Italy, 1995.
[10] G. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publishers, Boston, 1997
[11] G. Buttazzo, G. Lipari, and L. Abeni. Elastic Task Model for
Adaptive Rate Control. Proceedings of the IEEE Real-Time Systems
Symposium, Madrid, Spain, 1998.
[12] http://developer.intel.com/design/intelxscale/benchmarks.htm
[13] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.
[14] M. Hamdaoui and P. Ramanathan. A dynamic priority
assignment technique for streams with (m,k)-firm deadlines. IEEE
Transactions on Computers, 44(12), 1995.
[15] D. Kang, S. Crago, and J. Suh. A Fast Resource Synthesis
Technique for Energy-Efficient Real-time Systems. Proceedings of
IEEE Real-Time Systems Symposium, 2002.
[16] G. Koren, and D. Shasha. D-over. An optimal on-line
scheduling algorithm for overloaded real-time systems. Proceedings
of the IEEE Real-Time Systems Symposium, 1992.
[17] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real time environment, Journal of the
ACM, 17(2). 1973.
[18] J. Liu, K. J. Lin, W. K. Shih, A.C. Yu, J. Y. Chung, W. Zhao.
Algorithms for Scheduling Imprecise Computations. IEEE Computer
24(5), 1991
[19] J. Liu. Real-Time Systems. Prentice Hall, NJ, 2000.
[20] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for
low power embedded operating systems. Symposium on Operating
Systems Principles, 2001.
[21] C. Rusu, R. Melhem and D. Mossé. Maximizing the system
value while satisfying time and energy constraints. Proceedings of
the Real-Time Systems Symposium, 2002.
[22] C. Rusu, R. Melhem, and D. Mossé. Multi-Version Scheduling
in Rechargeable Energy-Aware Real-time Systems. Euromicro
Conference on Real-Time Systems (ECRTS'03), Porto, 2003.
[23] S. Saewong and R. Rajkumar. Practical Voltage-Scaling for
Fixed-Priority Real-time Systems. Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS’03), May 2003.
[24] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. IEEE Annual Foundations of Computer
Science, 1995.

Appendix A

In this section, we present the proof of Theorem 1. We

first formally define the problem in the context of a simple
task model where all the tasks have the same deadline:

EC-FEASIBILITY: Given a DVS-enabled CPU with
m > 1 speed levels and a task set T={T1, T2,…, Tk } with a
common ready time R = 0, is it possible to complete all the
tasks before a common deadline X, while remaining within a
fixed energy budget Ebudget ?

We will show that EC-FEASIBILITY reduces to a
restricted version of PARTITION. We will denote this
special case of PARTITION as 2n-PARTITION.

2n-PARTITION: Given a set of 2n items
S = < s1, s2,…, s2n> where each item si has an integer cost zi,
is it possible to partition S into 2 subsets S’ and S’’ such that
the total cost of items in each subset is the same and each
subset contains exactly one element of every pair (s2i-1, s2i)
i=1…n ?

This restricted version of PARTITION is known to be
NP-Hard (p.223 in [13]). Note that the solution to 2n-
PARTITION requires that we consider each pair (s1, s2), (s3,
s4),…, (s2n-1, s2n) separately and put each element of every
pair to a different subset. We will show that 2n-PARTITION
reduces to EC-FEASIBILITY even for the special case
where the CPU has 2 speed levels (i.e. m = 2) and gstb = 0.

Given an instance of 2n-PARTITION, we can construct
the corresponding instance of EC-FEASIBILITY as follows.
The task set has k = n tasks, where Ci

1
 and Ci

2 denote the
execution time of Ti at low and high CPU speed,
respectively. Similarly, ei

1 and ei
2 denote the energy

consumption of Ti at low and high CPU speed, respectively.
We set Ci

1
 = ei

2 = z2i-1 and Ci
2
 = ei

1 = z2i for i = 1…n.

Further, let X = Ebudget = ∑
=

2n

1i
iz

2
1

.

Now, suppose that there is a polynomial-time solution to
EC-FEASIBILITY. Then, given an instance of 2n-
PARTITION, we can compute the answer in polynomial-
time by constructing (in polynomial-time) the corresponding
instance of EC-FEASIBILITY and then solving it. We claim
that the answer to 2n-PARTITION instance is YES if and
only if the answer to the corresponding instance of EC-
FEASIBILITY is YES.

To start with, observe that the system has a fixed energy
budget Ebudget whose numerical value is equal to the common
deadline X (“time budget”). Suppose that the answer to the
EC-FEASIBILITY instance is YES, that is, all tasks
complete within energy and time budget X = Ebudget =

∑
=

2n

1i
iz

2
1 . Then either low- or high-speed version of a each

task Ti must be definitely scheduled. Observe that if the low-
speed version of Ti is chosen, then z2i-1 contributes to Time
Cost (total execution time) and z2i contributes to Energy Cost
(total energy consumption). Similarly, if the high-speed
version of Ti is chosen, then z2i contributes to Time Cost
(total execution time) and z2i-1 contributes to Energy Cost
(total energy consumption). Thus, in the corresponding
instance of 2n-PARTITION, each element in the pair (s2i-1 ,
s2i) can be seen as allocated to one subset (“Time Cost”)
while the other one is allocated to the other subset (“Energy
Cost”).

Now define the sets TB = {zj | zj contributes to Time
Cost} and EB = {zj | zj contributes to Energy Cost}. Observe
that TB and EB are disjoint, and exactly one element of each
pair (z2i-1, z2i) appears in TB (EB). The completion time of
all the tasks, that is the sum of all elements in TB, must be
smaller than or equal to X since the schedule is feasible.
Similarly, the total energy consumption of all the tasks that is
the sum of all elements in EB must be smaller than or equal
to Ebudget since the system does not run out of energy until the
end of the mission. Since

X = Ebudget = ∑
=

2n

1i
iz

2
1

, this shows that the sum of all the

elements in TB and EB are equal, implying that the answer
to the corresponding 2n-PARTITION instance is also YES.

Conversely, assume that the answer to 2n-PARTITION is
YES. Then, consider the elements of S’ and S’’. We claim
that the elements in S’ imply which version of each task
should be scheduled to meet the timing and energy
constraints by the following reasoning: For every pair (s2i-1 ,
s2i) i = 1 ..n, one of them must be in S’ while the other is in
S’’. The cost associated with the one in S’ will denote the
execution time of the version selected for Ti, while the cost
associated with the one in S’’ will denote the energy
consumption of the version selected for Ti. Once again,
observe that one element of the corresponding cost pair (z2i-1,
z2i) contributes to Time Cost, while the other one contributes
to Energy Cost. By virtue of being a solution to 2n-
PARTITION instance, we have:

∑
∈ 'Ss

i
i

z = ∑
∈ ''Ss

i
i

z = X = Ebudget = ∑
=

2n

1i
iz

2
1

, showing that all

tasks complete within the common deadline and energy
budget. Thus, the answer to EC-FEASIBILITY is YES. ■

