
Generalized Reliability-Oriented Energy Management for
Real-time Embedded Applications

∗

Baoxian Zhao, Hakan Aydin
Department of Computer Science

George Mason University
Fairfax, VA 22030

bzhao@gmu.edu, aydin@cs.gmu.edu

Dakai Zhu
Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249
dzhu@cs.utsa.edu

ABSTRACT

DVFS remains an important energy management technique
for embedded systems. However, its negative impact on
transient fault rates has been recently shown. In this pa-
per, we propose the Generalized Shared Recovery (GSHR)
technique to optimally use the DVFS technique in order to
achieve a given reliability goal for real-time embedded ap-
plications. Our technique determines the optimal number
of recoveries to deploy as well as task-level processing fre-
quencies to minimize the energy consumption while achiev-
ing the reliability goal and meeting the timing constraints.
The recoveries may be shared among tasks, improving the
prospects of DVFS compared to existing reliability-aware
power management frameworks. The experimental evalu-
ation points to the close-to-optimal energy savings of our
proposed technique.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.4.7 [Operating Systems]: Organization and De-
sign—Real-time systems and embedded systems

General Terms

Algorithms, Design, Reliability

Keywords

Real-Time Embedded Systems, Energy Management, DVFS

1. INTRODUCTION
Portable embedded systems often have to operate under

severe power and timing constraints. Consequently, research
on low-power real-time embedded systems has been very ac-
tive in the last decade. In that regard, Dynamic Voltage

∗This work was supported by US National Science Foun-
dation awards CNS-1016855, CNS-1016974, and CAREER
Awards CNS-0546244 and CNS-0953005.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’11, June 5-10, 2011, San Diego, California, USA.
Copyright c© 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

and Frequency Scaling (DVFS) has been one of the most
commonly used techniques to manage energy. With DVFS,
the processor frequency and supply voltage are lowered at
run-time to reduce energy consumption. Since the tasks
take longer to execute at lower frequencies, several research
studies investigated the problem of guaranteeing the timing
constraints in embedded applications while saving energy
through DVFS [2,5,8, 11,17].

However, with reduced feature sizes and aggressive low-
power design techniques, soft errors that result from tran-
sient faults become more frequent and also an increasing
concern for system designers and engineers [1]. More im-
portantly, recent research [7,16] has illustrated significantly
increased (often by several orders of magnitude [16]) tran-
sient fault rates when operating at low voltage/frequency
levels with DVFS.

As a result, recently a number of research studies pro-
moted the so-called Reliability-Aware Power Management
(RA-PM) framework, where DVFS is applied for energy
management only in a controlled manner while keeping an
eye on reliability [6,9,15,16]. Specifically, the RA-PM schemes
reserve some CPU time (slack) for recovery tasks that may
be invoked at run-time upon the detection of faults at the
end of task executions. However, existing RA-PM studies
share certain fundamental characteristics and limitations.
First, the necessary and sufficient objective is casted as to
preserve the task set’s original reliability, which is defined as
the reliability when all tasks run at the maximum frequency,
and without any recovery task. Second, to achieve this aim
a separate recovery task is scheduled for every task that runs
at a low-frequency.

The main objective of this paper is to lay the foundations
of a more general RA-PM framework by addressing these
two limitations. Our motivation to address the first point
is very natural: a more comprehensive framework is highly
desirable in order to achieve any reliability goal, which can
be set by the designer to be lower or higher than the applica-
tion’s original reliability. This is because, some modest reli-
ability degradation might be acceptable in energy-scarce set-
tings. In contrast, it may be necessary to achieve very high
reliability levels for safety-critical systems (e.g. electronics-
hostile settings encountered in space applications). Clearly,
merely maintaining task-level reliabilities would be too con-
servative or insufficient, respectively, in these two scenarios.

The second motivation is to further reduce energy con-
sumption: by scheduling a separate recovery for every scaled
task, the existing RA-PM solutions inherently reduce the
amount of available slack for DVFS and thus the extent

of energy savings. A preliminary solution to this problem
was recently proposed: the technique, called shared recovery
(SHR), reserves only one shared recovery task that can be
used by any single faulty task at runtime [14]. Hence, SHR
can save more energy as larger slack is made available for
slow-down through DVFS. Upon the detection of a fault,
the shared recovery task is invoked and the remaining tasks
are forced to run at the maximum frequency until the end
of the current period to preserve the system’s original relia-
bility [14].

In this paper, we propose the Generalized Shared Recovery
(GSHR) technique to potentially use any number of recov-
eries, and using this as a leverage, we tackle the generalized
Energy-Optimal Reliability Configuration (EORC)
problem: determine the number of recoveries and task-level
frequency assignments to minimize the system level energy
consumption while satisfying given target reliability and dead-
line constraints. Note that each additional (potential) recov-
ery task, while improving the reliability, reduces the avail-
able slack for DVFS and limits the opportunities for scaling
down frequencies. In other words, the problem mandates
an efficient technique in three-dimensional timing, energy,
and reliability space to satisfy all the constraints. For this
problem we develop a fast algorithm with comparable perfor-
mance to that of an optimal, but computationally expensive
exhaustive-search based solution.

Motivational Example. To illustrate the potential gains
that can be obtained by the new GSHR technique, let us
consider an application with five tasks and a common pe-
riod/deadline of 80 ms. The worst-case execution times of
T1 and T2 are given as 2 ms each, while those of T3 and
T5 are 6 ms and that of T4 is 5 ms. As can be seen in Fig-
ure 1(a), originally there is 80 − 21 = 59 ms slack when all
tasks execute at the maximum frequency 1 GHz (No Power
Management case). In that case, by using the fault rate
model from [15], the original probability of failure (PoF) is
computed as ρ0 = 2.1 × 10−7. Here the PoF is defined as
1 − reliability, where the reliability is the probability that all
tasks will complete without encountering soft errors caused
by transient faults. If we consider the traditional greedy
RA-PM scheme [15], five separate recovery tasks (denoted
by {Bi}) will be statically allocated to five tasks, yielding
the RA-PM schedule depicted in Figure 1(b). In that sched-
ule, the first four tasks are executed at the energy-efficient
frequency [8] fee = 0.29 GHz and the fifth task runs at the
frequency 0.78 GHz. Applying the power model from [15]
indicates that the energy consumption of the RA-PM solu-
tion is 7.88 and its actual PoF is 9 × 10−10. Now, if the
objective is to merely preserve the original reliability ρ0, al-
ternatively, we can use the GSHR technique with one shared
recovery task of size 6 ms (denoted by SRT1) as shown in
Figure 1(c). Then, all the tasks can be executed at the
frequency 0.31 GHz. Simple calculation shows that the to-
tal energy consumption is 5.4, giving a 32% reduction with
respect to RA-PM. Figure 1(d) presents the GSHR solu-
tion with two recoveries that yield the exact reliability ob-
tained from traditional RA-PM scheme (Figure 1(b)). Thus,
one can obtain the reliability achieved by RA-PM through
GSHR with 15% less energy (6.68), by using the frequency
0.46 GHz. Notice that with two shared recoveries, the sys-
tem can also potentially recover from two faults affecting
the same task (unlike RA-PM that statically allocates one
recovery to each task), which enables achieving the target

f D

0 4 8 12 16 20 40 60 80

T1 T2 T3 T4 T5

(a) No power management scheme

f D

0 20 40 60 80

B1 B2 B3 B4 B5
 T1 T2 T3 T4

 T5

(b) The RA-PM scheme (from [15])

f D

0 20 40 60 80

 SRT1

 T1 T2 T3 T5 T4

(c) GSHR with one recovery

f

0 20 40 60 80

 T1 T2 T3 T4 T5

D

 SRT2 SRT1

(d) GSHR with two recoveries

f

0 20 40 60 80

 T1 T2 T3 T4 T5

D

 SRT2 SRT1 SRT3

(e) GSHR with three recoveries

Figure 1: The motivational example

reliability yielded by RA-PM (PoF = 9 × 10−10) with more
energy savings. Further, through GSHR one can achieve re-
liability levels even higher than that achieved by RA-PM,
for example PoF = 5×10−10, by deploying three shared re-
coveries and still consuming less energy than RA-PM (7.47)
at the uniform frequency level of 0.51 GHz. In all these ex-
amples, we illustrated the potential gains of GSHR in terms
of energy and reliability by using a simple uniform frequency
approach – as we demonstrate later in this paper, these gains
can be further improved by optimizing the frequency selec-
tion.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the system models used in this paper and
presents our assumptions. The generalized shared recovery
technique (GSHR) and the energy-optimal reliability con-
figuration problem are introduced Section 3. Our specific
solution to the problem, the IRCS algorithm, is presented
in Section 4. Section 5 presents the simulation results and
Section 6 concludes the paper.

2. SYSTEM MODELS

2.1 Application Model
In this work, we consider a frame-based real-time embed-

ded application with n independent real-time tasks. The
tasks {T1, T2, ..., Tn} share a common deadline D, which can
be also viewed as the application’s period. Without loss of
generality, we assume that the task indices indicate the order
of execution within each frame (period).

The tasks are executed on a DVFS enabled uniprocessor
system and there are ℓ available discrete frequencies, which
are sorted in increasing order as fmin = f1 < f2 < ... < fℓ =
fmax. We assume that the frequency values are normalized

with respect to fmax (i.e. fmax = 1). The worst-case execu-
tion time of task Ti under fmax is denoted by ci. We assume
the task may take up to ci

fi
time units when executed at the

frequency fi.

2.2 Power/Energy Model
Our system-level power model follows the previous RA-

PM research studies [14,15] by distinguishing the frequency-
independent and frequency-dependent power components.
As in these works, we assume that shutting down the entire
system during the operation of the system is not an option
due to the prohibitive overhead and that static power is not
manageable. Hence, we concentrate on the active power
consumption Pd, which is given as [16]:

Pd = Pind + Pdep = Pind + Ceff
α (1)

where Pind is the frequency-independent active power, de-
noting the power consumed by off-chip devices such as main
memory and external devices. However, when putting sys-
tems into sleep states, Pind can be efficiently removed [3].
Pind may vary from task to task, and its value for task Ti

is denoted by Pind,i. Pdep is the frequency-dependent active
power, including the CPU power, and any power that de-
pends on the processing frequency f [3]. Similarly, Pdep will
vary with the task currently in execution, in particular with
the processing frequency fi assigned to Ti.

The effective switching capacitance Cef and the dynamic
power exponent α (which is, in general, no smaller than 2)
are system-dependent constants and f is the processing fre-
quency. Hence, considering only the active power, the en-
ergy consumption of a task Ti running at the frequency level
fi and with the frequency-independent power Pind,i can be
expressed as [16]:

Ei(fi) = (Pind,i + Ceff
α
i) ·

ci

fi

= Pind,i
ci

fi

+ Cefcif
α−1
i (2)

The frequency-independent power component implies the
existence of a frequency threshold below which DVFS ad-
versely affects the total energy. This threshold, commonly
known as energy-efficient frequency (or, critical speed), can
be computed by standard methods [8, 17].

2.3 Fault/Reliability Model
During the execution of an application, faults may occur

due to various reasons, such as hardware failures, software
errors and the effects of electromagnetic interference and
cosmic ray radiations. Previous research has shown that
transient faults occur much more frequently than permanent
faults [4]. Therefore, in this work, we focus on transient
faults and adopt the backward recovery technique to tolerate
such faults [10].

More specifically, transient faults are assumed to follow
Poisson distribution with an average arrival rate λ [13]. Con-
sidering the effects of voltage scaling on transient faults, the
average fault rate λ will depend on system supply voltage
and processing frequency. In this paper, we use the expo-
nential fault rate model used in [14–16]:

λ(f) = λ0 10
d(1−f)
1−fmin (3)

where the exponent d (> 0) is a constant, indicating the
sensitivity of fault rates to voltage scaling. λ0 is the av-
erage fault rate corresponding to the maximum frequency
fmax = 1 (and supply voltage Vmax). That is, reducing the

supply voltage and frequency for energy savings will result
in exponentially increased fault rates. The maximum av-
erage fault rate is assumed to be λmax = λ0 · 10d, which
corresponds to the lowest frequency fmin (and supply volt-
age Vmin).

The reliability of a task is defined as the probability of
completing its execution successfully (i.e. without encoun-
tering failures triggered by transient faults) [15, 16]. As a
result, during a single frame, the reliability of the task Ti

with the worst-case execution time ci, when executed at the
frequency level fi is [16]:

Ri(fi) = e
−λ(fi)·

ci
fi (4)

where λ(fi) is given by Equation (3).
Following the previous research [14–16], we assume that

faults are tolerated through backward recovery technique
and the recovery takes the form of re-execution at the maxi-
mum frequency (fmax) when a fault is detected at the end of
a task’s execution. The use of fmax for recovery leaves more
slack for fault-free executions and improves energy savings,
as transient faults occur with low probability.

3. GENERALIZED SHARED RECOVERY
In [14], a shared recovery (SHR) technique has been pro-

posed where all tasks share one recovery, which is utilized to
recover the first faulty task and the remaining tasks within
one frame (period) will run at fmax for reliability preser-
vation. Extending this idea, for general reliability goals, we
can employ a fixed number (j ≥ 0) of recovery blocks, which
will be shared by n tasks within a frame. By choosing proper
task frequency assignments, a broad spectrum of reliability
can be obtained. We call this scheme Generalized Shared Re-
covery (GSHR) technique. Unlike SHR, task-level reliability
degradation is allowed in GSHR, as long as the system’s tar-
get reliability is still achieved. Specifically, in GSHR, after a
fault and possible recovery/ies, the remaining tasks can still
run at their pre-calculated scaled frequencies. Moreover, for
j shared recoveries, GSHR reserves a total CPU time equal
to the sum of the first j largest tasks.

Let Rj(T1, .., Tn) denote the reliability (i.e. the probability
of completing successfully the execution of tasks T1, .., Tn)
by using the slack of j recoveries if necessary. Further, let
Rg be the reliability goal to achieve. Then, the Energy-
Optimal Reliability Configuration (EORC) problem
can be formally expressed as: find the optimal number j

of recovery tasks and frequency assignments f1, f2, ..., fn to
minimize:

E =

n∑

i=1

Ei(fi) =

n∑

i=1

(Pind,i
ci

fi

+ Cefcif
α−1
i) (5)

Subject to:

R
j(T1, .., Tn) ≥ Rg (6)

n∑

i=1

ci

fi

≤ D
′ (7)

where D′= D − Sj , and Sj is the total slack required for j

recoveries.
Intuitively, with more recoveries, the target reliability Rg

can be achieved more easily. However, the deadline con-
straint further complicates the problem, as each additional

ER

 0 ka ka+1 kmax

Energy

k

ED

Figure 2: Energy-Optimal Reliability Configuration

recovery will reduce the available slack and limit the oppor-
tunities for DVFS to save energy. Figure 2 depicts these
non-trivial trade-off dimensions for the simultaneous con-
sideration of the reliability and deadline constraints. The
curve ED illustrates the minimum energy consumption that
can be achieved when deploying k recoveries by ignoring the
reliability constraint Rg. Similarly, the curve ER gives the
minimum energy consumption figure satisfying the target
reliability constraint, but without taking the deadline con-
straint into consideration. Since the actual solution must
satisfy both reliability and deadline constraints, the best
energy performance that can be achieved with k recoveries
corresponds to the union of the upper parts of these two
plots, namely max{ED(k), ER(k)}. As a result, the optimal
number of recoveries is either ka or ka + 1 as illustrated in
the figure.

Before concluding this section, we sketch how the reliabil-
ity of n tasks with j recoveries, namely Rj(T1, .., Tn), can
be computed. The overall reliability when no recovery task
is scheduled, is by definition the product of individual task
reliabilities, i.e. R0(T1, .., Tn) =

∏n

i=1 Ri(fi) [15]. Similarly,
considering that the recovery tasks are always invoked at
fmax, the reliability with a single recovery is given by [15]:

R
1(T1, .., Tn) = R1(f1)R

1(T2, .., Tn) +

(1 − R1(f1))R1(fmax)R0(T2, .., Tn) (8)

In the general case, the reliability with j recoveries can be
expressed recursively as:

R
j(T1, .., Tn) = R1(f1)R

j(T2, .., Tn) +

(1 − R1(f1))R1(fmax)Rj−1(T2, .., Tn) (9)

The first term above corresponds to the scenario where task
T1 completes successfully and all j recoveries are made avail-
able to the remaining tasks. Similarly, the second term cap-
tures the scenario where task T1 fails and subsequently is
recovered with one recovery block. The remaining tasks will
have j − 1 recoveries to complete their executions. While
the details have to be omitted due to space limitations, we
note that the value of Rj(T1, .., Tn) can be quickly computed
by the well-known dynamic programming technique (with
linear asymptotic complexity O(j · n)).

4. COMPUTING ENERGY-OPTIMAL CON-

FIGURATIONS: ALGORITHM IRCS

While an exact and fast solution may be out of reach due
to the multi-dimensional interplay of deadline, energy and
reliability factors, in the following, we propose an algorithm
called Incremental Reliability Configuration Search (IRCS)

and establish its good performance through experimental
evaluation. The basic idea of the IRCS algorithm is to itera-

Algorithm 1 Incremental Reliability Configuration Search
(IRCS)

1: For all tasks, compute W
j
i , Q

j
i , S

j
i and ERR

j
i ;

2: Sort all task execution time in decreasing order as
b1, ..., bn;

3: AC = D −
∑n

i=1 ci;

4: k = max{ j |
∑j

i=1 bi ≤ AC} //compute the maximum
number of recoveries.

5: Set kopt = 0;
6: Set fi = fℓ (i = 1, ..., n);
7: Set E =

∑
Ei(fi);

8: for j = 0 to k do
9: if j > 0 then

10: AC = AC − bj

11: end if
12: Assign-frequencies({Sm

i }, AC);
13: Compute the total energy consumption Etotal under

the new frequency assignments {f∗

i }
14: if E > Etotal then
15: Set E = Etotal;
16: Set kopt = j;
17: Set fi = f∗

i (i = 1, .., n);
18: end if
19: end for
20: return kopt and f1, ..., fn

tively determine the best frequency assignments for different
recovery task allocation options, and select the best alterna-
tive at the end. That is, for a given number of recoveries k,
IRCS reduces the frequencies of individual tasks as long as
the overall reliability is no smaller than the target reliabil-
ity, Rg. Initially, we set fi = fmax = fℓ for all tasks. Then
we determine the task to scale down to the next (lower) fre-
quency level, by estimating the task that would yield large
energy savings with relatively low reliability degradation in
every step.

Specifically, we first define W
j
i = Ei(fj+1)−Ei(fj), which

indicates the energy savings obtained when the task Ti’s
frequency is scaled down from fj+1 to fj . Similarly, Q

j
i =

Ri(fj+1)−Ri(fj) indicates the reliability degradation follow-

ing this frequency reduction. Now, we define ERR
j
i =

W
j
i

Q
j
i

as the energy-reliability ratio (ERR) of task Ti when scal-
ing down from frequency j + 1 to the frequency j. ERR is
a measure of utility (i.e. energy savings per unit reliability
degradation) that guides our search.

The IRCS algorithm (Algorithm 1) iterates over possi-
ble number of recoveries (Lines 8-19), selecting the best fre-
quency assignment along the way. For this purpose, Algo-
rithm 2 Assign-Frequencies is invoked to choose the task
with the largest ERR value for the subsequent slow-down
decision(s). Assign-Frequencies continues to reduce the task
frequencies iteratively by this principle as long as the target
reliability Rg is still satisfied. Note that, the input to Algo-
rithm 2 is an array of task-level frequency-dependent slack
usage factors {Sm

i } and available total slack for DVFS (AC)
after reserving the CPU time for the given number recover-
ies. S

j
i = ci

fj
− ci

fj+1
denotes the CPU time needed to scale

task Ti from the frequency fj+1 to fj .

Algorithm 2 Assign-frequencies({Sm
i }, AC)

1: For all tasks, set frequency f∗

i = fℓ and zi = ℓ − 1;
2: Set X = AC;
3: while X > 0 and there exists i such that S

zi
i ≤ X do

4: In the set α = {Ti|S
zi
i ≤ X}, find task Ty with maxi-

mum ERR
zy
y value;

5: f∗

y = fzy ;
6: Compute the new system reliability Rnew by Eq. (9);
7: if Rnew < Rg then
8: Set f∗

y = fzy+1 and break
9: else

10: Set X = X − S
zy
y ;

11: Set zy = zy − 1;
12: end if
13: end while
14: return f∗

1 , ..., f∗

n

5. PERFORMANCE EVALUATION
To evaluate the performance of our proposed solution, we

implemented a discrete-event simulator in C programming
language. In our simulator, we implemented the following
four schemes:

• The uniform frequency (UF) scheme, which chooses
the best constant frequency level for all tasks. UF
simply evaluates all discrete frequency levels (whose
number is typically a small integer) in terms of energy
consumption and meeting the reliability goal, and se-
lects the best solution.

• Our new incremental reliability configuration search
(IRCS) scheme which tries to obtain best energy sav-
ings by scaling down the tasks step by step based on
their energy-reliability ratio (ERR) values.

• The greedy RA-PM (RAPM) scheme [15] which aims
to minimize the energy consumption and still maintain
the system’s original reliability. Notice that RAPM
is designed to reach a reliability level no less than the
system’s original reliability, and cannot be configured
to yield arbitrary reliability figures.

• The Optimal (OPT) scheme, which obtains the energy
optimal reliability configuration by performing an ex-
haustive search in all possible frequency assignments
for all the tasks. Even with small number of frequency
levels, the number of distinct task frequency assign-
ments grows exponentially, and this solution is not
scalable. While not practical, OPT is included in our
comparison as a yardstick algorithm.

In the simulations, transient faults are assumed to follow
Poisson distribution with an average fault rate of λ0 = 10−6

at fmax, which is a realistic fault rate as reported in [18].
Moreover, the fault rate exponent d is set to 2. The six dis-
crete frequency levels that we assume are modeled after Intel
Xscale processor [12]. We use a cubic frequency-dependent
power component Pd which is equal to unity at fmax = 1.0.
The frequency-independent power component Pind for each
task is normalized with respect to Pd and is generated ac-
cording to the uniform distribution in the range of [0, 2].

For each task set (that contains 10 tasks), the worst-
case execution time ci for each task is randomly generated

through a uniform distribution, such that the worst-case ex-
ecution time under maximum frequency falls in the range
of [1ms, 10ms]. All energy consumption results are nor-
malized with respect to the no power management (NPM)
scheme that executes all tasks without any frequency and
voltage scaling at fmax. The original probability of fail-
ure PoF without any energy management (i.e. 1 − R0 =
1 −

∏
Ri(fmax)) is denoted by ρo. Each point in the pre-

sented figures is obtained by averaging the results obtained
through 1000 different task sets.

First, we analyze the impact of available slack on the
energy consumption, as shown in Figures 3 and 4. The
frequency-independent power is set to Pind = 0.05 and the
available slack is represented by L = D−C, where C =

∑
ci.

In Figure 3, the target reliability is set to original system reli-
ability Rg = 1−ρo. The energy savings of IRCS is extremely
close to that of OPT and represents an improvement of up
to 30% compared to RAPM. Notice that even UF is able
to outperform RAPM, when using GSHR for recovery task
assignments. The larger slack, the more more opportunities
for both DVFS and recovery assignment; and all schemes
achieve more energy savings with increasing L. At large
L values, IRCS and UF can easily use low frequencies by
deploying suitable number of shared recoveries. However,
RAPM’s options are more limited, as it is forced to allocate
separate recovery tasks to different tasks.

Figure 4 repeats the evaluation for the case when a more
strict reliability goal of Rg = 1 − ρo

1000
is imposed. In other

words, in this case the system is supposed to be configured
to reach a probability of failure level 1000 times smaller
than the original case. RAPM simply cannot reach this very
high reliability level, and thus is excluded from comparison.
While similar trends are observed here, note that the energy
consumptions of all schemes increase due to high-frequency
executions, mandated by a more stringent reliability goal.
The difference between IRCS and OPT becomes more visi-
ble in this scenario, however it does not exceed 10%.

Figure 5 further illustrates the impact of the reliability
target Rg on system energy consumption, with the avail-
able slack L = 1.1 · C and Pind = 0.05. Here, we vary the
target PoF from 10−4 to 10−11. As expected, the energy
consumptions of all schemes get higher with increasing re-
liability objective (i.e decreasing PoF). This is due to the
need for scheduling more recovery tasks to meet the target
reliability, resulting in less available slack for DVFS. When
PoF < 10−9, the energy savings of IRCS is very close to
that of the ideal OPT scheme. After that, OPT starts to
perform slightly better, but as mentioned before, at very
high computational cost. When PoF = 10−11, all schemes
are forced to run at the maximum frequency fmax, and also
deploy recoveries, to achieve this high reliability level.

Finally, we investigate the effects of different frequency-
independent active power Pind on the system energy savings
when L = 1.1·C and the target reliability is the system orig-
inal reliability R0 = 1−ρ0. Pind value for each task Ti is ran-
domly generated from [Pind,min, Pind,max] where Pind,min

is set to 0. Figure 6 shows that energy consumptions of
all schemes increase with increasing Pind,max. This is be-
cause, as Pind,max increases, the frequency-independent en-
ergy consumption increases and further, the energy-efficient
frequency thresholds for tasks become higher, which limits
the DVFS opportunities. Consequently, when Pind,max ≥
0.2, the energy consumptions of the IRCS and UF coincide

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

N
o

rm
a

liz
e

d

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

available slack L (*C)

UF
IRCS

RAPM
OPT

Figure 3: The impact of slack on
energy when Rg = 1 − ρo

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

N
o

rm
a

liz
e

d

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

available slack L (*C)

UF
IRCS
OPT

Figure 4: The impact of slack on en-
ergy when Rg = 1 − ρo

1000

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4N

o
rm

a
liz

e
d

E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

PoF

UF
IRCS
OPT

Figure 5: The impact of PoF on
system energy consumption

with that of ideal OPT scheme. After this threshold, by
executing all tasks at the energy-efficient frequency levels
with the suitable numbers of shared recoveries, the original
reliability can be preserved.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.05 0.1 0.15 0.2 0.25

N
o

rm
a

liz
e

d

E
n

e
rg

y
 C

o
n
s
u

m
p

ti
o

n

Pind,max

UF
IRCS

RAPM
OPT

Figure 6: The impact of Pind on system energy con-
sumption

6. CONCLUSIONS
In this paper, we addressed the energy-optimal reliabil-

ity configuration (EORC) problem for real-time embedded
applications with the goal of minimizing system energy con-
sumption while satisfying an arbitrary target reliability and
deadline constraints. To this aim, we developed the Gener-
alized Shared Recovery (GSHR) technique through which a
small number of recovery tasks are shared by all the tasks.
Our experimental evaluation indicates that for a broad range
of reliability objective goals, our proposed solution IRCS de-
livers close-to-optimal energy savings.

7. REFERENCES
[1] H. Aydin. Exact fault-sensitive feasibility analysis of

real-time tasks. IEEE Transactions on Computers,
56(10):1372 – 1386, 2007.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(5):584 – 600, 2004.

[3] T. Burd and R. Brodersen. Energy efficient cmos
microprocessor design. Proceedings of the 28th Hawaii
International Conference on System Sciences (HICSS),
1995.

[4] X. Castillo, S. Mconnel, and D. Siewiorek. Derivation and
caliberation of a transient error reliability model. IEEE
Trans. on Computers, 31(7):658–671, 1982.

[5] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic
voltage and frequency scaling for precise energy and
performance trade-off based on the ratio of off-chip access
to on-chip computation times. In Proc. Design, Automation
and Test in Europe (DATE), 2004.

[6] A. Ejlali, B. M. Al-Hashimi, and P. Eles. A standby-sparing
technique with low energy-overhead for fault-tolerant hard
real-time systems. Proceedings of International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2009.

[7] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
N. S. Kim, and K. Flautner. Razor: circuit-level correction
of timing errors for low-power operation. IEEE Micro,
24(6):10–20, 2004.

[8] R. Jejurikar and R. Gupta. Dynamic voltage scaling for
systemwide energy minimization in real-time embedded
systems. In Proc. International Symposium on Low Power
Electronics and Design (ISLPED), 2004.

[9] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles. Scheduling
and voltage scaling for energy/reliability trade-offs in
fault-tolerant time-triggered embedded systems.
Proceedings of International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007.

[10] D. K. Pradhan. Fault-tolerant computer system design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[11] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. In Proc. the Annual Conference on Design
Automation (DAC), 2001.

[12] R. Xu, D. Mossé, and R. Melhem. Minimzing expected
energy consumption in real-time systems through dynamic
voltage scaling. ACM Transactions on Computer Systems,
25(4), 2007.

[13] Y. Zhang and K. Chakrabarty. Energy-aware adaptive
checkpointing in embedded real-time systems. In Proc.
Design, Automation and Test in Europe (DATE), 2003.

[14] B. Zhao, H. Aydin, and D. Zhu. Enhanced reliability-aware
power management through shared recovery technique. In
Proc. International Conference on Computer Aided Design
(ICCAD), 2009.

[15] D. Zhu and H. Aydin. Energy management for real-time
embedded systems with reliability requirements. In Proc.
International Conference on Computer Aided Design
(ICCAD), 2006.

[16] D. Zhu, R. Melhem, and D. Mossé. The effects of energy
management on reliability in real-time embedded systems.
In Proc. International Conference on Computer Aided
Design (ICCAD), 2004.

[17] J. Zhuo and C. Chakrabarti. System-level energy-efficient
dynamic task scheduling. In Proc. the Annual Conference
on Design Automation (DAC), 2005.

[18] J. F. Ziegler. Trends in electronic reliability: Effects of
terrestrial cosmic rays. available at
http://www.srim.org/SER/SERTrends.htm, 2004.

